浙江省金華市東陽中學(xué)2023-2024學(xué)年高三考前熱身數(shù)學(xué)試卷含解析_第1頁
浙江省金華市東陽中學(xué)2023-2024學(xué)年高三考前熱身數(shù)學(xué)試卷含解析_第2頁
浙江省金華市東陽中學(xué)2023-2024學(xué)年高三考前熱身數(shù)學(xué)試卷含解析_第3頁
浙江省金華市東陽中學(xué)2023-2024學(xué)年高三考前熱身數(shù)學(xué)試卷含解析_第4頁
浙江省金華市東陽中學(xué)2023-2024學(xué)年高三考前熱身數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

浙江省金華市東陽中學(xué)2023-2024學(xué)年高三考前熱身數(shù)學(xué)試卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知直線和平面,若,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充分必要條件 D.不充分不必要2.如圖,在三棱柱中,底面為正三角形,側(cè)棱垂直底面,.若分別是棱上的點,且,,則異面直線與所成角的余弦值為()A. B. C. D.3.已知,,則的大小關(guān)系為()A. B. C. D.4.已知函數(shù)的最小正周期為,且滿足,則要得到函數(shù)的圖像,可將函數(shù)的圖像()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度5.已知條件,條件直線與直線平行,則是的()A.充要條件 B.必要不充分條件 C.充分不必要條件 D.既不充分也不必要條件6.已知復(fù)數(shù)是純虛數(shù),其中是實數(shù),則等于()A. B. C. D.7.運(yùn)行如圖程序,則輸出的S的值為()A.0 B.1 C.2018 D.20178.自2019年12月以來,在湖北省武漢市發(fā)現(xiàn)多起病毒性肺炎病例,研究表明,該新型冠狀病毒具有很強(qiáng)的傳染性各級政府反應(yīng)迅速,采取了有效的防控阻擊措施,把疫情控制在最低范圍之內(nèi).某社區(qū)按上級要求做好在鄂返鄉(xiāng)人員體格檢查登記,有3個不同的住戶屬在鄂返鄉(xiāng)住戶,負(fù)責(zé)該小區(qū)體格檢查的社區(qū)診所共有4名醫(yī)生,現(xiàn)要求這4名醫(yī)生都要分配出去,且每個住戶家里都要有醫(yī)生去檢查登記,則不同的分配方案共有()A.12種 B.24種 C.36種 D.72種9.德國數(shù)學(xué)家萊布尼茲(1646年-1716年)于1674年得到了第一個關(guān)于π的級數(shù)展開式,該公式于明朝初年傳入我國.在我國科技水平業(yè)已落后的情況下,我國數(shù)學(xué)家?天文學(xué)家明安圖(1692年-1765年)為提高我國的數(shù)學(xué)研究水平,從乾隆初年(1736年)開始,歷時近30年,證明了包括這個公式在內(nèi)的三個公式,同時求得了展開三角函數(shù)和反三角函數(shù)的6個新級數(shù)公式,著有《割圓密率捷法》一書,為我國用級數(shù)計算π開創(chuàng)了先河.如圖所示的程序框圖可以用萊布尼茲“關(guān)于π的級數(shù)展開式”計算π的近似值(其中P表示π的近似值),若輸入,則輸出的結(jié)果是()A. B.C. D.10.如圖,正方體中,,,,分別為棱、、、的中點,則下列各直線中,不與平面平行的是()A.直線 B.直線 C.直線 D.直線11.已知等差數(shù)列中,若,則此數(shù)列中一定為0的是()A. B. C. D.12.設(shè)x、y、z是空間中不同的直線或平面,對下列四種情形:①x、y、z均為直線;②x、y是直線,z是平面;③z是直線,x、y是平面;④x、y、z均為平面.其中使“且”為真命題的是()A.③④ B.①③ C.②③ D.①②二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的定義域為_____________.14.若,則=____,=___.15.已知等比數(shù)列的各項都是正數(shù),且成等差數(shù)列,則=__________.16.如圖,在體積為V的圓柱中,以線段上的點O為項點,上下底面為底面的兩個圓錐的體積分別為,,則的值是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知,分別是橢圓:的左,右焦點,點在橢圓上,且拋物線的焦點是橢圓的一個焦點.(1)求,的值:(2)過點作不與軸重合的直線,設(shè)與圓相交于A,B兩點,且與橢圓相交于C,D兩點,當(dāng)時,求△的面積.18.(12分)橢圓:的左、右焦點分別是,,離心率為,左、右頂點分別為,.過且垂直于軸的直線被橢圓截得的線段長為1.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)經(jīng)過點的直線與橢圓相交于不同的兩點、(不與點、重合),直線與直線相交于點,求證:、、三點共線.19.(12分)已知集合,集合.(1)求集合;(2)若,求實數(shù)的取值范圍.20.(12分)已知圓:和拋物線:,為坐標(biāo)原點.(1)已知直線和圓相切,與拋物線交于兩點,且滿足,求直線的方程;(2)過拋物線上一點作兩直線和圓相切,且分別交拋物線于兩點,若直線的斜率為,求點的坐標(biāo).21.(12分)在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求的普通方程和的直角坐標(biāo)方程;(2)把曲線向下平移個單位,然后各點橫坐標(biāo)變?yōu)樵瓉淼谋兜玫角€(縱坐標(biāo)不變),設(shè)點是曲線上的一個動點,求它到直線的距離的最小值.22.(10分)直線與拋物線相交于,兩點,且,若,到軸距離的乘積為.(1)求的方程;(2)設(shè)點為拋物線的焦點,當(dāng)面積最小時,求直線的方程.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

由線面關(guān)系可知,不能確定與平面的關(guān)系,若一定可得,即可求出答案.【詳解】,不能確定還是,,當(dāng)時,存在,,由又可得,所以“”是“”的必要不充分條件,故選:B【點睛】本題主要考查了必要不充分條件,線面垂直,線線垂直的判定,屬于中檔題.2、B【解析】

建立空間直角坐標(biāo)系,利用向量法計算出異面直線與所成角的余弦值.【詳解】依題意三棱柱底面是正三角形且側(cè)棱垂直于底面.設(shè)的中點為,建立空間直角坐標(biāo)系如下圖所示.所以,所以.所以異面直線與所成角的余弦值為.故選:B【點睛】本小題主要考查異面直線所成的角的求法,屬于中檔題.3、D【解析】

由指數(shù)函數(shù)的圖像與性質(zhì)易得最小,利用作差法,結(jié)合對數(shù)換底公式及基本不等式的性質(zhì)即可比較和的大小關(guān)系,進(jìn)而得解.【詳解】根據(jù)指數(shù)函數(shù)的圖像與性質(zhì)可知,由對數(shù)函數(shù)的圖像與性質(zhì)可知,,所以最??;而由對數(shù)換底公式化簡可得由基本不等式可知,代入上式可得所以,綜上可知,故選:D.【點睛】本題考查了指數(shù)式與對數(shù)式的化簡變形,對數(shù)換底公式及基本不等式的簡單應(yīng)用,作差法比較大小,屬于中檔題.4、C【解析】

依題意可得,且是的一條對稱軸,即可求出的值,再根據(jù)三角函數(shù)的平移規(guī)則計算可得;【詳解】解:由已知得,是的一條對稱軸,且使取得最值,則,,,,故選:C.【點睛】本題考查三角函數(shù)的性質(zhì)以及三角函數(shù)的變換規(guī)則,屬于基礎(chǔ)題.5、C【解析】

先根據(jù)直線與直線平行確定的值,進(jìn)而即可確定結(jié)果.【詳解】因為直線與直線平行,所以,解得或;即或;所以由能推出;不能推出;即是的充分不必要條件.故選C【點睛】本題主要考查充分條件和必要條件的判定,熟記概念即可,屬于基礎(chǔ)題型.6、A【解析】

對復(fù)數(shù)進(jìn)行化簡,由于為純虛數(shù),則化簡后的復(fù)數(shù)形式中,實部為0,得到的值,從而得到復(fù)數(shù).【詳解】因為為純虛數(shù),所以,得所以.故選A項【點睛】本題考查復(fù)數(shù)的四則運(yùn)算,純虛數(shù)的概念,屬于簡單題.7、D【解析】

依次運(yùn)行程序框圖給出的程序可得第一次:,不滿足條件;第二次:,不滿足條件;第三次:,不滿足條件;第四次:,不滿足條件;第五次:,不滿足條件;第六次:,滿足條件,退出循環(huán).輸出1.選D.8、C【解析】

先將4名醫(yī)生分成3組,其中1組有2人,共有種選法,然后將這3組醫(yī)生分配到3個不同的住戶中去,有種方法,由分步原理可知共有種.【詳解】不同分配方法總數(shù)為種.故選:C【點睛】此題考查的是排列組合知識,解此類題時一般先組合再排列,屬于基礎(chǔ)題.9、B【解析】

執(zhí)行給定的程序框圖,輸入,逐次循環(huán),找到計算的規(guī)律,即可求解.【詳解】由題意,執(zhí)行給定的程序框圖,輸入,可得:第1次循環(huán):;第2次循環(huán):;第3次循環(huán):;第10次循環(huán):,此時滿足判定條件,輸出結(jié)果,故選:B.【點睛】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的計算與輸出,其中解答中認(rèn)真審題,逐次計算,得到程序框圖的計算功能是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.10、C【解析】

充分利用正方體的幾何特征,利用線面平行的判定定理,根據(jù)判斷A的正誤.根據(jù),判斷B的正誤.根據(jù)與相交,判斷C的正誤.根據(jù),判斷D的正誤.【詳解】在正方體中,因為,所以平面,故A正確.因為,所以,所以平面故B正確.因為,所以平面,故D正確.因為與相交,所以與平面相交,故C錯誤.故選:C【點睛】本題主要考查正方體的幾何特征,線面平行的判定定理,還考查了推理論證的能力,屬中檔題.11、A【解析】

將已知條件轉(zhuǎn)化為的形式,由此確定數(shù)列為的項.【詳解】由于等差數(shù)列中,所以,化簡得,所以為.故選:A【點睛】本小題主要考查等差數(shù)列的基本量計算,屬于基礎(chǔ)題.12、C【解析】

①舉反例,如直線x、y、z位于正方體的三條共點棱時②用垂直于同一平面的兩直線平行判斷.③用垂直于同一直線的兩平面平行判斷.④舉例,如x、y、z位于正方體的三個共點側(cè)面時.【詳解】①當(dāng)直線x、y、z位于正方體的三條共點棱時,不正確;②因為垂直于同一平面的兩直線平行,正確;③因為垂直于同一直線的兩平面平行,正確;④如x、y、z位于正方體的三個共點側(cè)面時,不正確.故選:C.【點睛】此題考查立體幾何中線面關(guān)系,選擇題一般可通過特殊值法進(jìn)行排除,屬于簡單題目.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由題意可得,,解不等式可求.【詳解】解:由題意可得,,解可得,,故答案為.【點睛】本題主要考查了函數(shù)的定義域的求解,屬于基礎(chǔ)題.14、12821【解析】

令,求得的值.利用展開式的通項公式,求得的值.【詳解】令,得.展開式的通項公式為,當(dāng)時,為,即.【點睛】本小題主要考查二項式展開式的通項公式,考查賦值法求解二項式系數(shù)有關(guān)問題,屬于基礎(chǔ)題.15、【解析】

根據(jù)等差中項性質(zhì),結(jié)合等比數(shù)列通項公式即可求得公比;代入表達(dá)式,結(jié)合對數(shù)式的化簡即可求解.【詳解】等比數(shù)列的各項都是正數(shù),且成等差數(shù)列,則,由等比數(shù)列通項公式可知,所以,解得或(舍),所以由對數(shù)式運(yùn)算性質(zhì)可得,故答案為:.【點睛】本題考查了等差數(shù)列通項公式的簡單應(yīng)用,等比數(shù)列通項公式的用法,對數(shù)式的化簡運(yùn)算,屬于中檔題.16、【解析】

根據(jù)圓柱的體積為,以及圓錐的體積公式,計算即得.【詳解】由題得,,得.故答案為:【點睛】本題主要考查圓錐體的體積,是基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)由已知根據(jù)拋物線和橢圓的定義和性質(zhì),可求出,;(2)設(shè)直線方程為,聯(lián)立直線與圓的方程可以求出,再聯(lián)立直線和橢圓的方程化簡,由根與系數(shù)的關(guān)系得到結(jié)論,繼而求出面積.【詳解】(1)焦點為F(1,0),則F1(1,0),F(xiàn)2(1,0),,解得,=1,=1,(Ⅱ)由已知,可設(shè)直線方程為,,聯(lián)立得,易知△>0,則===因為,所以=1,解得聯(lián)立,得,△=8>0設(shè),則【點睛】本題主要考查拋物線和橢圓的定義與性質(zhì)應(yīng)用,同時考查利用根與系數(shù)的關(guān)系,解決直線與圓,直線與橢圓的位置關(guān)系問題.意在考查學(xué)生的數(shù)學(xué)運(yùn)算能力.18、(1);(2)見解析【解析】

(1)根據(jù)已知可得,結(jié)合離心率和關(guān)系,即可求出橢圓的標(biāo)準(zhǔn)方程;(2)斜率不為零,設(shè)的方程為,與橢圓方程聯(lián)立,消去,得到縱坐標(biāo)關(guān)系,求出方程,令求出坐標(biāo),要證、、三點共線,只需證,將分子用縱坐標(biāo)表示,即可證明結(jié)論.【詳解】(1)由于,將代入橢圓方程,得,由題意知,即.又,所以,.所以橢圓的方程為.(2)解法一:依題意直線斜率不為0,設(shè)的方程為,聯(lián)立方程,消去得,由題意,得恒成立,設(shè),,所以,直線的方程為.令,得.又因為,,則直線,的斜率分別為,,所以.上式中的分子,.所以,,三點共線.解法二:當(dāng)直線的斜率不存在時,由題意,得的方程為,代入橢圓的方程,得,,直線的方程為.則,,,所以,即,,三點共線.當(dāng)直線的斜率存在時,設(shè)的方程為,,,聯(lián)立方程消去,得.由題意,得恒成立,故,.直線的方程為.令,得.又因為,,則直線,的斜率分別為,,所以.上式中的分子所以.所以,,三點共線.【點睛】本題考查橢圓的標(biāo)準(zhǔn)方程、直線與橢圓的位置關(guān)系,要熟練掌握根與系數(shù)關(guān)系,設(shè)而不求方法解決相交弦問題,考查計算求解能力,屬于中檔題.19、(1);(2).【解析】

(1)求出函數(shù)的定義域,即可求出結(jié)論;(2)化簡集合,根據(jù)確定集合的端點位置,建立的不等量關(guān)系,即可求解.【詳解】(1)由,即得或,所以集合或.(2)集合,由得或,解得或,所以實數(shù)的取值范圍為.【點睛】本題考查集合的運(yùn)算,集合間的關(guān)系求參數(shù),考查函數(shù)的定義域,屬于基礎(chǔ)題.20、(1);(2)或.【解析】試題分析:直線與圓相切只需圓心到直線的距離等于圓的半徑,直線與曲線相交于兩點,且滿足,只需數(shù)量積為0,要聯(lián)立方程組設(shè)而不求,利用坐標(biāo)關(guān)系及根與系數(shù)關(guān)系解題,這是解析幾何常用解題方法,第二步利用直線的斜率找出坐標(biāo)滿足的要求,再利用兩直線與圓相切,求出點的坐標(biāo).試題解析:(1)解:設(shè),,,由和圓相切,得.∴.由消去,并整理得,∴,.由,得,即.∴.∴,∴,∴.∴.∴或(舍).當(dāng)時,,故直線的方程為.(2)設(shè),,,則.∴.設(shè),由直線和圓相切,得,即.設(shè),同理可得:.故是方程的兩根,故.由得,故.同理,則,即.∴,解或.當(dāng)時,;當(dāng)時,.故或.21、(1),;(2).【解析】

(1)在直線的參數(shù)方程中消去參數(shù)可得出直線

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論