江蘇省淮安市淮安區(qū)2023-2024學年中考數(shù)學押題卷含解析_第1頁
江蘇省淮安市淮安區(qū)2023-2024學年中考數(shù)學押題卷含解析_第2頁
江蘇省淮安市淮安區(qū)2023-2024學年中考數(shù)學押題卷含解析_第3頁
江蘇省淮安市淮安區(qū)2023-2024學年中考數(shù)學押題卷含解析_第4頁
江蘇省淮安市淮安區(qū)2023-2024學年中考數(shù)學押題卷含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

江蘇省淮安市淮安區(qū)2023-2024學年中考數(shù)學押題卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.計算的結(jié)果為()A.2 B.1 C.0 D.﹣12.下列計算正確的是()A.﹣2x﹣2y3?2x3y=﹣4x﹣6y3 B.(﹣2a2)3=﹣6a6C.(2a+1)(2a﹣1)=2a2﹣1 D.35x3y2÷5x2y=7xy3.下列運算正確的是()A.(a2)3=a5 B.(a-b)2=a2-b2 C.3=3 D.=-34.下列各點中,在二次函數(shù)的圖象上的是()A. B. C. D.5.某運動器材的形狀如圖所示,以箭頭所指的方向為左視方向,則它的主視圖可以是()A.B.C.D.6.《九章算術(shù)》是中國古代數(shù)學的重要著作,方程術(shù)是它的最高成就,其中記載:今有牛五、羊二,直金十兩;牛二、羊五,直金八兩。問:牛、羊各直金幾何?譯文:“假設有5頭牛、2只羊,值金10兩;2頭牛、5只羊,值金8兩。問:每頭牛、每只羊各值金多少兩?”設每頭牛值金x兩,每只羊值金y兩,則列方程組錯誤的是()A. B. C. D.7.方程5x+2y=-9與下列方程構(gòu)成的方程組的解為的是()A.x+2y=1 B.3x+2y=-8C.5x+4y=-3 D.3x-4y=-88.若一個函數(shù)的圖象是經(jīng)過原點的直線,并且這條直線過點(-3,2a)和點(8a,-3),則a的值為()A.916 B.34 C.±9.設x1,x2是方程x2-2x-1=0的兩個實數(shù)根,則的值是()A.-6 B.-5 C.-6或-5 D.6或510.若55+55+55+55+55=25n,則n的值為()A.10 B.6 C.5 D.3二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在△ABC中,∠ACB=90°,∠A=45°,CD⊥AB于點D,點P在線段DB上,若AP2-PB2=48,則△PCD的面積為____.12.要使式子有意義,則的取值范圍是__________.13.如圖,小量角器的零度線在大量角器的零度線上,且小量角器的中心在大量角器的外緣邊上.如果它們外緣邊上的公共點P在小量角器上對應的度數(shù)為65°,那么在大量角器上對應的度數(shù)為_____度(只需寫出0°~90°的角度).14.一個多項式與的積為,那么這個多項式為.15.今年我市初中畢業(yè)暨升學統(tǒng)一考試的考生約有35300人,該數(shù)據(jù)用科學記數(shù)法表示為________人.16.如圖,四邊形ABCD中,E,F(xiàn),G,H分別是邊AB、BC、CD、DA的中點.若四邊形EFGH為菱形,則對角線AC、BD應滿足條件_____.三、解答題(共8題,共72分)17.(8分)某商場要經(jīng)營一種新上市的文具,進價為20元,試營銷階段發(fā)現(xiàn):當銷售單價是25元時,每天的銷售量為250件,銷售單價每上漲1元,每天的銷售量就減少10件寫出商場銷售這種文具,每天所得的銷售利潤(元)與銷售單價(元)之間的函數(shù)關系式;求銷售單價為多少元時,該文具每天的銷售利潤最大;商場的營銷部結(jié)合上述情況,提出了A、B兩種營銷方案方案A:該文具的銷售單價高于進價且不超過30元;方案B:每天銷售量不少于10件,且每件文具的利潤至少為25元請比較哪種方案的最大利潤更高,并說明理由18.(8分)科技改變世界.2017年底,快遞分揀機器人從微博火到了朋友圈,據(jù)介紹,這些機器人不僅可以自動規(guī)劃最優(yōu)路線,將包裹準確地放入相應的格口,還會感應避讓障礙物,自動歸隊取包裹.沒電的時候還會自己找充電樁充電.某快遞公司啟用80臺A種機器人、300臺B種機器人分揀快遞包裹.A,B兩種機器人全部投入工作,1小時共可以分揀1.44萬件包裹,若全部A種機器人工作3小時,全部B種機器人工作2小時,一共可以分揀3.12萬件包裹.(1)求兩種機器人每臺每小時各分揀多少件包裹;(2)為了進一步提高效率,快遞公司計劃再購進A,B兩種機器人共200臺,若要保證新購進的這批機器人每小時的總分揀量不少于7000件,求最多應購進A種機器人多少臺?19.(8分)已知:如圖,△MNQ中,MQ≠NQ.(1)請你以MN為一邊,在MN的同側(cè)構(gòu)造一個與△MNQ全等的三角形,畫出圖形,并簡要說明構(gòu)造的方法;(2)參考(1)中構(gòu)造全等三角形的方法解決下面問題:如圖,在四邊形ABCD中,,∠B=∠D.求證:CD=AB.20.(8分)如圖,在中,以為直徑的⊙交于點,過點作于點,且.()判斷與⊙的位置關系并說明理由;()若,,求⊙的半徑.21.(8分)如圖,在平面直角坐標系xOy中,直線y=kx+m與雙曲線y=﹣相交于點A(m,2).(1)求直線y=kx+m的表達式;(2)直線y=kx+m與雙曲線y=﹣的另一個交點為B,點P為x軸上一點,若AB=BP,直接寫出P點坐標.22.(10分)下面是一位同學的一道作圖題:已知線段a、b、c(如圖),求作線段x,使他的作法如下:(1)以點O為端點畫射線,.(2)在上依次截取,.(3)在上截?。?)聯(lián)結(jié),過點B作,交于點D.所以:線段________就是所求的線段x.①試將結(jié)論補完整②這位同學作圖的依據(jù)是________③如果,,,試用向量表示向量.23.(12分)作圖題:在∠ABC內(nèi)找一點P,使它到∠ABC的兩邊的距離相等,并且到點A、C的距離也相等.(寫出作法,保留作圖痕跡)24.省教育廳決定在全省中小學開展“關注校車、關愛學生”為主題的交通安全教育宣傳周活動,某中學為了了解本校學生的上學方式,在全校范圍內(nèi)隨機抽查了部分學生,將收集的數(shù)據(jù)繪制成如下兩幅不完整的統(tǒng)計圖(如圖所示),請根據(jù)圖中提供的信息,解答下列問題.m=%,這次共抽取名學生進行調(diào)查;并補全條形圖;在這次抽樣調(diào)查中,采用哪種上學方式的人數(shù)最多?如果該校共有1500名學生,請你估計該校騎自行車上學的學生有多少名?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

按照分式運算規(guī)則運算即可,注意結(jié)果的化簡.【詳解】解:原式=,故選擇B.【點睛】本題考查了分式的運算規(guī)則.2、D【解析】

A.根據(jù)同底數(shù)冪乘法法則判斷;B.根據(jù)積的乘方法則判斷即可;C.根據(jù)平方差公式計算并判斷;D.根據(jù)同底數(shù)冪除法法則判斷.【詳解】A.-2x-2y32x3y=-4xy4,故本選項錯誤;B.

(?2a2)3=?8a6,故本項錯誤;C.

(2a+1)(2a?1)=4a2?1,故本項錯誤;D.35x3y2÷5x2y=7xy,故本選項正確.故答案選D.【點睛】本題考查了同底數(shù)冪的乘除法法則、積的乘方法則與平方差公式,解題的關鍵是熟練的掌握同底數(shù)冪的乘除法法則、積的乘方法則與平方差公式.3、D【解析】試題分析:A、原式=a6,錯誤;B、原式=a2﹣2ab+b2,錯誤;C、原式不能合并,錯誤;D、原式=﹣3,正確,故選D考點:完全平方公式;合并同類項;同底數(shù)冪的乘法;平方差公式.4、D【解析】

將各選項的點逐一代入即可判斷.【詳解】解:當x=1時,y=-1,故點不在二次函數(shù)的圖象;當x=2時,y=-4,故點和點不在二次函數(shù)的圖象;當x=-2時,y=-4,故點在二次函數(shù)的圖象;故答案為:D.【點睛】本題考查了判斷一個點是否在二次函數(shù)圖象上,解題的關鍵是將點代入函數(shù)解析式.5、B【解析】從幾何體的正面看可得下圖,故選B.6、D【解析】

由5頭牛、2只羊,值金10兩可得:5x+2y=10,由2頭牛、5只羊,值金8兩可得2x+5y=8,則7頭牛、7只羊,值金18兩,據(jù)此可知7x+7y=18,據(jù)此可得答案.【詳解】解:設每頭牛值金x兩,每只羊值金y兩,

由5頭牛、2只羊,值金10兩可得:5x+2y=10,

由2頭牛、5只羊,值金8兩可得2x+5y=8,

則7頭牛、7只羊,值金18兩,據(jù)此可知7x+7y=18,

所以方程組錯誤,

故選:D.【點睛】本題主要考查由實際問題抽象出二元一次方程組,解題的關鍵是理解題意找到相等關系及等式的基本性質(zhì).7、D【解析】試題分析:將x與y的值代入各項檢驗即可得到結(jié)果.解:方程5x+2y=﹣9與下列方程構(gòu)成的方程組的解為的是3x﹣4y=﹣1.故選D.點評:此題考查了二元一次方程組的解,方程組的解即為能使方程組中兩方程成立的未知數(shù)的值.8、D【解析】

根據(jù)一次函數(shù)的圖象過原點得出一次函數(shù)式正比例函數(shù),設一次函數(shù)的解析式為y=kx,把點(?3,2a)與點(8a,?3)代入得出方程組2a=-3k①-3=8ak②【詳解】解:設一次函數(shù)的解析式為:y=kx,把點(?3,2a)與點(8a,?3)代入得出方程組2a=-3k①-3=8ak②由①得:k=-2把③代入②得:-3=8a×-解得:a=±3故選:D.【點睛】本題考查了用待定系數(shù)法求一次函數(shù)的解析式,主要考查學生運用性質(zhì)進行計算的能力.9、A【解析】試題解析:∵x1,x2是方程x2-2x-1=0的兩個實數(shù)根,∴x1+x2=2,x1?x2=-1∴=.故選A.10、D【解析】

直接利用提取公因式法以及冪的乘方運算法則將原式變形進而得出答案.【詳解】解:∵55+55+55+55+55=25n,∴55×5=52n,則56=52n,解得:n=1.故選D.【點睛】此題主要考查了冪的乘方運算,正確將原式變形是解題關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、6【解析】

根據(jù)等角對等邊,可得AC=BC,由等腰三角形的“三線合一”可得AD=BD=AB,利用直角三角形斜邊的中線等于斜邊的一半,可得CD=AB,由AP2-PB2=48

,利用平方差公式及線段的和差公式將其變形可得CD·PD=12,利用△PCD的面積=CD·PD可得.【詳解】解:∵在△ABC中,∠ACB=90°,∠A=45°,∴∠B=45°,∴AC=BC,∵CD⊥AB

,∴AD=BD=CD=AB,∵AP2-PB2=48

,∴(AP+PB)(AP-PB)=48,∴AB(AD+PD-BD+DP)=48,∴AB·2PD=48,∴2CD·2PD=48,∴CD·PD=12,∴△PCD的面積=CD·PD=6.故答案為6.【點睛】此題考查等腰三角形的性質(zhì),直角三角形的性質(zhì),解題關鍵在于利用等腰三角形的“三線合一12、【解析】

根據(jù)二次根式被開方數(shù)必須是非負數(shù)的條件可得關于x的不等式,解不等式即可得.【詳解】由題意得:2-x≥0,解得:x≤2,故答案為x≤2.13、1.【解析】

設大量角器的左端點是A,小量角器的圓心是B,連接AP,BP,則∠APB=90°,∠ABP=65°,因而∠PAB=90°﹣65°=25°,在大量角器中弧PB所對的圓心角是1°,因而P在大量角器上對應的度數(shù)為1°.故答案為1.14、【解析】試題分析:依題意知=考點:整式運算點評:本題難度較低,主要考查學生對整式運算中多項式計算知識點的掌握。同底數(shù)冪相乘除,指數(shù)相加減。15、3.53×104【解析】科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù),35300=3.53×104,故答案為:3.53×104.16、AC=BD.【解析】試題分析:添加的條件應為:AC=BD,把AC=BD作為已知條件,根據(jù)三角形的中位線定理可得,HG平行且等于AC的一半,EF平行且等于AC的一半,根據(jù)等量代換和平行于同一條直線的兩直線平行,得到HG和EF平行且相等,所以EFGH為平行四邊形,又EH等于BD的一半且AC=BD,所以得到所證四邊形的鄰邊EH與HG相等,所以四邊形EFGH為菱形.試題解析:添加的條件應為:AC=BD.證明:∵E,F(xiàn),G,H分別是邊AB、BC、CD、DA的中點,∴在△ADC中,HG為△ADC的中位線,所以HG∥AC且HG=AC;同理EF∥AC且EF=AC,同理可得EH=BD,則HG∥EF且HG=EF,∴四邊形EFGH為平行四邊形,又AC=BD,所以EF=EH,∴四邊形EFGH為菱形.考點:1.菱形的性質(zhì);2.三角形中位線定理.三、解答題(共8題,共72分)17、(1)w=-10x2+700x-10000;(2)即銷售單價為35元時,該文具每天的銷售利潤最大;(3)A方案利潤更高.【解析】

試題分析:(1)根據(jù)利潤=(單價-進價)×銷售量,列出函數(shù)關系式即可.(2)根據(jù)(1)式列出的函數(shù)關系式,運用配方法求最大值.(3)分別求出方案A、B中x的取值范圍,然后分別求出A、B方案的最大利潤,然后進行比較.【詳解】解:(1)w=(x-20)(250-10x+250)=-10x2+700x-10000.(2)∵w=-10x2+700x-10000=-10(x-35)2+2250∴當x=35時,w有最大值2250,即銷售單價為35元時,該文具每天的銷售利潤最大.(3)A方案利潤高,理由如下:A方案中:20<x≤30,函數(shù)w=-10(x-35)2+2250隨x的增大而增大,∴當x=30時,w有最大值,此時,最大值為2000元.B方案中:,解得x的取值范圍為:45≤x≤49.∵45≤x≤49時,函數(shù)w=-10(x-35)2+2250隨x的增大而減小,∴當x=45時,w有最大值,此時,最大值為1250元.∵2000>1250,∴A方案利潤更高18、(1)A種機器人每臺每小時各分揀30件包裹,B種機器人每臺每小時各分揀40件包裹(2)最多應購進A種機器人100臺【解析】

(1)A種機器人每臺每小時各分揀x件包裹,B種機器人每臺每小時各分揀y件包裹,根據(jù)題意列方程組即可得到結(jié)論;(2)設最多應購進A種機器人a臺,購進B種機器人(200?a)臺,由題意得,根據(jù)題意兩不等式即可得到結(jié)論.【詳解】(1)A種機器人每臺每小時各分揀x件包裹,B種機器人每臺每小時各分揀y件包裹,由題意得,,解得,,答:A種機器人每臺每小時各分揀30件包裹,B種機器人每臺每小時各分揀40件包裹;(2)設最多應購進A種機器人a臺,購進B種機器人(200﹣a)臺,由題意得,30a+40(200﹣a)≥7000,解得:a≤100,則最多應購進A種機器人100臺.【點睛】本題考查了二元一次方程組,一元一次不等式的應用,正確的理解題意是解題的關鍵.19、(1)作圖見解析;(2)證明書見解析.【解析】

(1)以點N為圓心,以MQ長度為半徑畫弧,以點M為圓心,以NQ長度為半徑畫弧,兩弧交于一點F,則△MNF為所畫三角形.(2)延長DA至E,使得AE=CB,連結(jié)CE.證明△EAC≌△BCA,得:∠B=∠E,AB=CE,根據(jù)等量代換可以求得答案.【詳解】解:(1)如圖1,以N為圓心,以MQ為半徑畫圓弧;以M為圓心,以NQ為半徑畫圓弧;兩圓弧的交點即為所求.(2)如圖,延長DA至E,使得AE=CB,連結(jié)CE.∵∠ACB+∠CAD=180°,∠DACDAC+∠EAC=180°,∴∠BACBCA=∠EAC.在△EAC和△BAC中,AE=CE,AC=CA,∠EAC=∠BCN,∴△AECEAC≌△BCA(SAS).∴∠B=∠E,AB=CE.∵∠B=∠D,∴∠D=∠E.∴CD=CE,∴CD=AB.考點:1.尺規(guī)作圖;2.全等三角形的判定和性質(zhì).20、(1)DE與⊙O相切,詳見解析;(2)5【解析】

(1)根據(jù)直徑所對的圓心角是直角,再結(jié)合所給條件∠BDE=∠A,可以推導出∠ODE=90°,說明相切的位置關系。(2)根據(jù)直徑所對的圓心角是直角,并且在△BDE中,由DE⊥BC,有∠BDE+∠DBE=90°可以推導出∠DAB=∠C,可判定△ABC是等腰三角形,再根據(jù)BD⊥AC可知D是AC的中點,從而得出AD的長度,再在Rt△ADB中計算出直徑AB的長,從而算出半徑?!驹斀狻浚?)連接OD,在⊙O中,因為AB是直徑,所以∠ADB=90°,即∠ODA+∠ODB=90°,由OA=OD,故∠A=∠ODA,又因為∠BDE=∠A,所以∠ODA=∠BDE,故∠ODA+∠ODB=∠BDE+∠ODB=∠ODE=90°,即OD⊥DE,OD過圓心,D是圓上一點,故DE是⊙O切線上的一段,因此位置關系是直線DE與⊙O相切;(2)由(1)可知,∠ADB=90°,故∠A+∠ABD=90°,故BD⊥AC,由∠BDE=∠A,則∠BDE+∠ABD=90°,因為DE⊥BC,所以∠DEB=90°,故在△BDE中,有∠BDE+∠DBE=90°,則∠ABD=∠DBE,又因為BD⊥AC,即∠ADB=∠CDB=90°,所以∠DAB=∠C,故△ABC是等腰三角形,BD是等腰△ABC底邊BC上的高,則D是AC的中點,故AD=AC=×16=8,在Rt△ABD中,tanA===,可解得BD=6,由勾股定理可得AB===10,AB為直徑,所以⊙O的半徑是5.【點睛】本題主要考查圓中的計算問題和與圓有關的位置關系,解本題的要點在于求出AD的長,從而求出AB的長.21、(1)m=﹣1;y=﹣3x﹣1;(2)P1(5,0),P2(,0).【解析】

(1)將A代入反比例函數(shù)中求出m的值,即可求出直線解析式,(2)聯(lián)立方程組求出B的坐標,理由過兩點之間距離公式求出AB的長,求出P點坐標,表示出BP長即可解題.【詳解】解:(1)∵點A(m,2)在雙曲線上,∴m=﹣1,∴A(﹣1,2),直線y=kx﹣1,∵點A(﹣1,2)在直線y=kx﹣1上,∴y=﹣3x﹣1.(2),解得或,∴B(,﹣3),∴AB==,設P(n,0),則有(n﹣)2+32=解得n=5或,∴P1(5,0),P2(,0).【點睛】本題考查了一次函數(shù)和反比例函數(shù)的交點問題,中等難度,聯(lián)立方程組,會用兩點之間距離公式是解題關鍵.22、①CD;②平行于三角形一邊的直線截其它兩邊(或兩

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論