版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆安徽省池州市貴池區(qū)高三第六次模擬考試數(shù)學(xué)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.函數(shù)在上的圖象大致為()A. B. C. D.2.在中,已知,,,為線(xiàn)段上的一點(diǎn),且,則的最小值為()A. B. C. D.3.設(shè)且,則下列不等式成立的是()A. B. C. D.4.已知數(shù)列的通項(xiàng)公式為,將這個(gè)數(shù)列中的項(xiàng)擺放成如圖所示的數(shù)陣.記為數(shù)陣從左至右的列,從上到下的行共個(gè)數(shù)的和,則數(shù)列的前2020項(xiàng)和為()A. B. C. D.5.若函數(shù)為自然對(duì)數(shù)的底數(shù))在區(qū)間上不是單調(diào)函數(shù),則實(shí)數(shù)的取值范圍是()A. B. C. D.6.做拋擲一枚骰子的試驗(yàn),當(dāng)出現(xiàn)1點(diǎn)或2點(diǎn)時(shí),就說(shuō)這次試驗(yàn)成功,假設(shè)骰子是質(zhì)地均勻的.則在3次這樣的試驗(yàn)中成功次數(shù)X的期望為()A.13 B.17.已知的展開(kāi)式中第項(xiàng)與第項(xiàng)的二項(xiàng)式系數(shù)相等,則奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)和為().A. B. C. D.8.在平行六面體中,M為與的交點(diǎn),若,,則與相等的向量是()A. B. C. D.9.如圖,設(shè)為內(nèi)一點(diǎn),且,則與的面積之比為A. B.C. D.10.已知雙曲線(xiàn),為坐標(biāo)原點(diǎn),、為其左、右焦點(diǎn),點(diǎn)在的漸近線(xiàn)上,,且,則該雙曲線(xiàn)的漸近線(xiàn)方程為()A. B. C. D.11.盒中裝有形狀、大小完全相同的5張“刮刮卡”,其中只有2張“刮刮卡”有獎(jiǎng),現(xiàn)甲從盒中隨機(jī)取出2張,則至少有一張有獎(jiǎng)的概率為()A. B. C. D.12.已知是虛數(shù)單位,若,則()A. B.2 C. D.3二、填空題:本題共4小題,每小題5分,共20分。13.春天即將來(lái)臨,某學(xué)校開(kāi)展以“擁抱春天,播種綠色”為主題的植物種植實(shí)踐體驗(yàn)活動(dòng).已知某種盆栽植物每株成活的概率為,各株是否成活相互獨(dú)立.該學(xué)校的某班隨機(jī)領(lǐng)養(yǎng)了此種盆栽植物10株,設(shè)為其中成活的株數(shù),若的方差,,則________.14.在△ABC中,()⊥(>1),若角A的最大值為,則實(shí)數(shù)的值是_______.15.已知二面角α﹣l﹣β為60°,在其內(nèi)部取點(diǎn)A,在半平面α,β內(nèi)分別取點(diǎn)B,C.若點(diǎn)A到棱l的距離為1,則△ABC的周長(zhǎng)的最小值為_(kāi)____.16.已知拋物線(xiàn)的焦點(diǎn)為,過(guò)點(diǎn)且斜率為1的直線(xiàn)與拋物線(xiàn)交于點(diǎn),以線(xiàn)段為直徑的圓上存在點(diǎn),使得以為直徑的圓過(guò)點(diǎn),則實(shí)數(shù)的取值范圍為_(kāi)_______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)設(shè)的內(nèi)角的對(duì)邊分別為,已知.(1)求;(2)若為銳角三角形,求的取值范圍.18.(12分)如圖,三棱錐中,(1)證明:面面;(2)求二面角的余弦值.19.(12分)在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,曲線(xiàn)C的極坐標(biāo)方程為;直線(xiàn)l的參數(shù)方程為(t為參數(shù)).直線(xiàn)l與曲線(xiàn)C分別交于M,N兩點(diǎn).(1)寫(xiě)出曲線(xiàn)C的直角坐標(biāo)方程和直線(xiàn)l的普通方程;(2)若點(diǎn)P的極坐標(biāo)為,,求的值.20.(12分)如圖,是矩形,的頂點(diǎn)在邊上,點(diǎn),分別是,上的動(dòng)點(diǎn)(的長(zhǎng)度滿(mǎn)足需求).設(shè),,,且滿(mǎn)足.(1)求;(2)若,,求的最大值.21.(12分)已知的內(nèi)角的對(duì)邊分別為,且滿(mǎn)足.(1)求角的大??;(2)若的面積為,求的周長(zhǎng)的最小值.22.(10分)已知函數(shù),.(1)求函數(shù)在處的切線(xiàn)方程;(2)當(dāng)時(shí),證明:對(duì)任意恒成立.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
根據(jù)函數(shù)的奇偶性及函數(shù)在時(shí)的符號(hào),即可求解.【詳解】由可知函數(shù)為奇函數(shù).所以函數(shù)圖象關(guān)于原點(diǎn)對(duì)稱(chēng),排除選項(xiàng)A,B;當(dāng)時(shí),,,排除選項(xiàng)D,故選:C.【點(diǎn)睛】本題主要考查了函數(shù)的奇偶性的判定及奇偶函數(shù)圖像的對(duì)稱(chēng)性,屬于中檔題.2、A【解析】
在中,設(shè),,,結(jié)合三角形的內(nèi)角和及和角的正弦公式化簡(jiǎn)可求,可得,再由已知條件求得,,,考慮建立以所在的直線(xiàn)為軸,以所在的直線(xiàn)為軸建立直角坐標(biāo)系,根據(jù)已知條件結(jié)合向量的坐標(biāo)運(yùn)算求得,然后利用基本不等式可求得的最小值.【詳解】在中,設(shè),,,,即,即,,,,,,,,即,又,,,則,所以,,解得,.以所在的直線(xiàn)為軸,以所在的直線(xiàn)為軸建立如下圖所示的平面直角坐標(biāo)系,則、、,為線(xiàn)段上的一點(diǎn),則存在實(shí)數(shù)使得,,設(shè),,則,,,,,消去得,,所以,,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,因此,的最小值為.故選:A.【點(diǎn)睛】本題是一道構(gòu)思非常巧妙的試題,綜合考查了三角形的內(nèi)角和定理、兩角和的正弦公式及基本不等式求解最值問(wèn)題,解題的關(guān)鍵是理解是一個(gè)單位向量,從而可用、表示,建立、與參數(shù)的關(guān)系,解決本題的第二個(gè)關(guān)鍵點(diǎn)在于由,發(fā)現(xiàn)為定值,從而考慮利用基本不等式求解最小值,考查計(jì)算能力,屬于難題.3、A【解析】項(xiàng),由得到,則,故項(xiàng)正確;項(xiàng),當(dāng)時(shí),該不等式不成立,故項(xiàng)錯(cuò)誤;項(xiàng),當(dāng),時(shí),,即不等式不成立,故項(xiàng)錯(cuò)誤;項(xiàng),當(dāng),時(shí),,即不等式不成立,故項(xiàng)錯(cuò)誤.綜上所述,故選.4、D【解析】
由題意,設(shè)每一行的和為,可得,繼而可求解,表示,裂項(xiàng)相消即可求解.【詳解】由題意,設(shè)每一行的和為故因此:故故選:D【點(diǎn)睛】本題考查了等差數(shù)列型數(shù)陣的求和,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.5、B【解析】
求得的導(dǎo)函數(shù),由此構(gòu)造函數(shù),根據(jù)題意可知在上有變號(hào)零點(diǎn).由此令,利用分離常數(shù)法結(jié)合換元法,求得的取值范圍.【詳解】,設(shè),要使在區(qū)間上不是單調(diào)函數(shù),即在上有變號(hào)零點(diǎn),令,則,令,則問(wèn)題即在上有零點(diǎn),由于在上遞增,所以的取值范圍是.故選:B【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查方程零點(diǎn)問(wèn)題的求解策略,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.6、C【解析】
每一次成功的概率為p=26=【詳解】每一次成功的概率為p=26=13故選:C.【點(diǎn)睛】本題考查了二項(xiàng)分布求數(shù)學(xué)期望,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.7、D【解析】因?yàn)榈恼归_(kāi)式中第4項(xiàng)與第8項(xiàng)的二項(xiàng)式系數(shù)相等,所以,解得,所以二項(xiàng)式中奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)和為.考點(diǎn):二項(xiàng)式系數(shù),二項(xiàng)式系數(shù)和.8、D【解析】
根據(jù)空間向量的線(xiàn)性運(yùn)算,用作基底表示即可得解.【詳解】根據(jù)空間向量的線(xiàn)性運(yùn)算可知因?yàn)?,則即,故選:D.【點(diǎn)睛】本題考查了空間向量的線(xiàn)性運(yùn)算,用基底表示向量,屬于基礎(chǔ)題.9、A【解析】
作交于點(diǎn),根據(jù)向量比例,利用三角形面積公式,得出與的比例,再由與的比例,可得到結(jié)果.【詳解】如圖,作交于點(diǎn),則,由題意,,,且,所以又,所以,,即,所以本題答案為A.【點(diǎn)睛】本題考查三角函數(shù)與向量的結(jié)合,三角形面積公式,屬基礎(chǔ)題,作出合適的輔助線(xiàn)是本題的關(guān)鍵.10、D【解析】
根據(jù),先確定出的長(zhǎng)度,然后利用雙曲線(xiàn)定義將轉(zhuǎn)化為的關(guān)系式,化簡(jiǎn)后可得到的值,即可求漸近線(xiàn)方程.【詳解】如圖所示:因?yàn)椋?,又因?yàn)椋?,所以,所以,所以,所以,所以,所以漸近線(xiàn)方程為.故選:D.【點(diǎn)睛】本題考查根據(jù)雙曲線(xiàn)中的長(zhǎng)度關(guān)系求解漸近線(xiàn)方程,難度一般.注意雙曲線(xiàn)的焦點(diǎn)到漸近線(xiàn)的距離等于虛軸長(zhǎng)度的一半.11、C【解析】
先計(jì)算出總的基本事件的個(gè)數(shù),再計(jì)算出兩張都沒(méi)獲獎(jiǎng)的個(gè)數(shù),根據(jù)古典概型的概率,求出兩張都沒(méi)有獎(jiǎng)的概率,由對(duì)立事件的概率關(guān)系,即可求解.【詳解】從5張“刮刮卡”中隨機(jī)取出2張,共有種情況,2張均沒(méi)有獎(jiǎng)的情況有(種),故所求概率為.故選:C.【點(diǎn)睛】本題考查古典概型的概率、對(duì)立事件的概率關(guān)系,意在考查數(shù)學(xué)建模、數(shù)學(xué)計(jì)算能力,屬于基礎(chǔ)題.12、A【解析】
直接將兩邊同時(shí)乘以求出復(fù)數(shù),再求其模即可.【詳解】解:將兩邊同時(shí)乘以,得故選:A【點(diǎn)睛】考查復(fù)數(shù)的運(yùn)算及其模的求法,是基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由題意可知:,且,從而可得值.【詳解】由題意可知:∴,即,∴故答案為:【點(diǎn)睛】本題考查二項(xiàng)分布的實(shí)際應(yīng)用,考查分析問(wèn)題解決問(wèn)題的能力,考查計(jì)算能力,屬于中檔題.14、1【解析】
把向量進(jìn)行轉(zhuǎn)化,用表示,利用基本不等式可求實(shí)數(shù)的值.【詳解】,解得=1.故答案為:1.【點(diǎn)睛】本題主要考查平面向量的數(shù)量積應(yīng)用,綜合了基本不等式,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).15、【解析】
作A關(guān)于平面α和β的對(duì)稱(chēng)點(diǎn)M,N,交α和β與D,E,連接MN,AM,AN,DE,根據(jù)對(duì)稱(chēng)性三角形ADC的周長(zhǎng)為AB+AC+BC=MB+BC+CN,當(dāng)四點(diǎn)共線(xiàn)時(shí)長(zhǎng)度最短,結(jié)合對(duì)稱(chēng)性和余弦定理求解.【詳解】作A關(guān)于平面α和β的對(duì)稱(chēng)點(diǎn)M,N,交α和β與D,E,連接MN,AM,AN,DE,根據(jù)對(duì)稱(chēng)性三角形ABC的周長(zhǎng)為AB+AC+BC=MB+BC+CN,當(dāng)M,B,C,N共線(xiàn)時(shí),周長(zhǎng)最小為MN設(shè)平面ADE交l于,O,連接OD,OE,顯然OD⊥l,OE⊥l,∠DOE=60°,∠MOA+∠AON=240°,OA=1,∠MON=120°,且OM=ON=OA=1,根據(jù)余弦定理,故MN2=1+1﹣2×1×1×cos120°=3,故MN.故答案為:.【點(diǎn)睛】此題考查求空間三角形邊長(zhǎng)的最值,關(guān)鍵在于根據(jù)幾何性質(zhì)找出對(duì)稱(chēng)關(guān)系,結(jié)合解三角形知識(shí)求解.16、【解析】
由題意求出以線(xiàn)段AB為直徑的圓E的方程,且點(diǎn)D恒在圓E外,即圓E上存在點(diǎn),使得,則當(dāng)與圓E相切時(shí),此時(shí),由此列出不等式,即可求解?!驹斀狻坑深}意可得,直線(xiàn)的方程為,聯(lián)立方程組,可得,設(shè),則,,設(shè),則,,又,所以圓是以為圓心,4為半徑的圓,所以點(diǎn)恒在圓外.圓上存在點(diǎn),使得以為直徑的圓過(guò)點(diǎn),即圓上存在點(diǎn),使得,設(shè)過(guò)點(diǎn)的兩直線(xiàn)分別切圓于點(diǎn),要滿(mǎn)足題意,則,所以,整理得,解得,故實(shí)數(shù)的取值范圍為【點(diǎn)睛】本題主要考查了直線(xiàn)與拋物線(xiàn)位置關(guān)系的應(yīng)用,以及直線(xiàn)與圓的位置關(guān)系的應(yīng)用,其中解答中準(zhǔn)確求得圓E的方程,把圓上存在點(diǎn),使得以為直徑的圓過(guò)點(diǎn),轉(zhuǎn)化為圓上存在點(diǎn),使得是解答的關(guān)鍵,著重考查了分析問(wèn)題和解答問(wèn)題的能力,屬于中檔試題。三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)【解析】
(1)利用正弦定理化簡(jiǎn)已知條件,由此求得的值,進(jìn)而求得的大小.(2)利用正弦定理和兩角差的正弦公式,求得的表達(dá)式,進(jìn)而求得的取值范圍.【詳解】(1)由題設(shè)知,,即,所以,即,又所以.(2)由題設(shè)知,,即,又為銳角三角形,所以,即所以,即,所以的取值范圍是.【點(diǎn)睛】本小題主要考查利用正弦定理解三角形,考查利用角的范圍,求邊的比值的取值范圍,屬于中檔題.18、(1)證明見(jiàn)解析(2)【解析】
(1)取中點(diǎn),連結(jié),證明平面得到答案.(2)如圖所示,建立空間直角坐標(biāo)系,為平面的一個(gè)法向量,平面的一個(gè)法向量為,計(jì)算夾角得到答案.【詳解】(1)取中點(diǎn),連結(jié),,,,,為直角,,平面,平面,∴面面.(2)如圖所示,建立空間直角坐標(biāo)系,則,可取為平面的一個(gè)法向量.設(shè)平面的一個(gè)法向量為.則,其中,,不妨取,則..為銳二面角,∴二面角的余弦值為.【點(diǎn)睛】本題考查了面面垂直,二面角,意在考查學(xué)生的計(jì)算能力和空間想象能力.19、(1),;(2)2.【解析】
(1)由得,求出曲線(xiàn)的直角坐標(biāo)方程.由直線(xiàn)的參數(shù)方程消去參數(shù),即求直線(xiàn)的普通方程;(2)將直線(xiàn)的參數(shù)方程化為標(biāo)準(zhǔn)式(為參數(shù)),代入曲線(xiàn)的直角坐標(biāo)方程,韋達(dá)定理得,點(diǎn)在直線(xiàn)上,則,即可求出的值.【詳解】(1)由可得,即,即,曲線(xiàn)的直角坐標(biāo)方程為,由直線(xiàn)的參數(shù)方程(t為參數(shù)),消去得,即直線(xiàn)的普通方程為.(Ⅱ)點(diǎn)的直角坐標(biāo)為,則點(diǎn)在直線(xiàn)上.將直線(xiàn)的參數(shù)方程化為標(biāo)準(zhǔn)式(為參數(shù)),代入曲線(xiàn)的直角坐標(biāo)方程,整理得,直線(xiàn)與曲線(xiàn)交于兩點(diǎn),,即.設(shè)點(diǎn)所對(duì)應(yīng)的參數(shù)分別為,由韋達(dá)定理可得,.點(diǎn)在直線(xiàn)上,,.【點(diǎn)睛】本題考查參數(shù)方程、極坐標(biāo)方程和普通方程的互化及應(yīng)用,屬于中檔題.20、(1)(2)【解析】
(1)利用正弦定理和余弦定理化簡(jiǎn),根據(jù)勾股定理逆定理求得.(2)設(shè),由此求得的表達(dá)式,利用三角函數(shù)最值的求法,求得的最大值.【詳解】(1)設(shè),,,由,根據(jù)正弦定理和余弦定理得.化簡(jiǎn)整理得.由勾股定理逆定理得.(2)設(shè),,由(1)的結(jié)論知.在中,,由,所以.在中,,由,所以.所以,由,所以當(dāng),即時(shí),取得最大值,且最大值為.【點(diǎn)睛】本小題考查正弦定理,余弦定理,勾股定理,解三角形,三角函數(shù)性質(zhì)及其三角恒等變換等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,推理論證能力,化歸與轉(zhuǎn)換思想,應(yīng)用意識(shí).21、(1)(2)【解析】
(1)因?yàn)椋裕捎嘞叶ɡ淼?,化?jiǎn)得,可得,解得,又因?yàn)?,所?(6分)(2)因?yàn)?,所以,則(當(dāng)且僅當(dāng)時(shí),取等號(hào)).由(1)得(當(dāng)且僅當(dāng)時(shí),取等號(hào)),解得.所以
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 成都職業(yè)技術(shù)學(xué)院《金屬材料數(shù)值模擬基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷
- 二零二五年度個(gè)人債務(wù)轉(zhuǎn)讓協(xié)議范本:債務(wù)轉(zhuǎn)讓的合同起草與簽署技巧3篇
- 二零二五年度冷鏈企業(yè)冷庫(kù)設(shè)備采購(gòu)與技術(shù)培訓(xùn)合同2篇
- 2024年廣播行業(yè)發(fā)展監(jiān)測(cè)及投資戰(zhàn)略規(guī)劃研究報(bào)告
- 新質(zhì)生產(chǎn)力促進(jìn)高質(zhì)量發(fā)展的路徑設(shè)計(jì)與實(shí)施方案
- 2025版觀(guān)光電梯安裝安全責(zé)任協(xié)議書(shū)二零二五年度6篇
- 深度解析2024年公務(wù)員錄用規(guī)定
- 2025年度勞動(dòng)合同法在員工薪酬福利體系中的應(yīng)用合同2篇
- 二零二五年度公司設(shè)備租賃與技術(shù)輸出合同3篇
- 2025版新能源汽車(chē)電池技術(shù)入股合作協(xié)議3篇
- 第二章航空燃?xì)廨啓C(jī)的工作原理
- 推板式造波機(jī)的機(jī)械結(jié)構(gòu)設(shè)計(jì)
- SAPHR快速指南
- 廣東海洋大學(xué)大數(shù)據(jù)庫(kù)課程設(shè)計(jì)
- (完整版)食堂管理制度及流程
- 某醫(yī)院后備人才梯隊(duì)建設(shè)方案
- 二年級(jí)上冊(cè)英語(yǔ)教案Unit6 Lesson22︱北京課改版
- 桂枝加龍骨牡蠣湯_金匱要略卷上_方劑加減變化匯總
- 電機(jī)與電氣控制技術(shù)PPT課件
- 廢棄鉆井泥漿和壓裂返排液無(wú)害化處理研究報(bào)告
- 論文-基于單片機(jī)的搶答器.doc
評(píng)論
0/150
提交評(píng)論