




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
湖南省邵陽市郊區(qū)重點中學2024屆中考數(shù)學四模試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.下列4個數(shù):,,π,()0,其中無理數(shù)是()A. B. C.π D.()02.如圖,AB為⊙O直徑,已知為∠DCB=20°,則∠DBA為()A.50° B.20° C.60° D.70°3.如圖,△ABC中,AB>AC,∠CAD為△ABC的外角,觀察圖中尺規(guī)作圖的痕跡,則下列結論錯誤的是()A.∠DAE=∠B B.∠EAC=∠C C.AE∥BC D.∠DAE=∠EAC4.如圖,在中,邊上的高是()A. B. C. D.5.如圖,O是坐標原點,菱形OABC的頂點A的坐標為(3,﹣4),頂點C在x軸的正半軸上,函數(shù)y=(k<0)的圖象經(jīng)過點B,則k的值為()A.﹣12 B.﹣32 C.32 D.﹣366.如圖,在平面直角坐標系中,線段AB的端點坐標為A(-2,4),B(4,2),直線y=kx-2與線段AB有交點,則K的值不可能是()A.-5 B.-2 C.3 D.57.夏新同學上午賣廢品收入13元,記為+13元,下午買舊書支出9元,記為()元.A.+4B.﹣9C.﹣4D.+98.下列實數(shù)中,為無理數(shù)的是()A. B. C.﹣5 D.0.31569.如圖,正方形ABCD的邊長為2,其面積標記為S1,以CD為斜邊作等腰直角三角形,以該等腰直角三角形的一條直角邊為邊向外作正方形,其面積標記為S2,…,按照此規(guī)律繼續(xù)下去,則S9的值為()A.()6 B.()7 C.()6 D.()710.化簡的結果是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,⊙O的直徑AB=8,C為的中點,P為⊙O上一動點,連接AP、CP,過C作CD⊥CP交AP于點D,點P從B運動到C時,則點D運動的路徑長為_____.12.如圖,圓錐的表面展開圖由一扇形和一個圓組成,已知圓的面積為100π,扇形的圓心角為120°,這個扇形的面積為.13.春節(jié)期間,《中國詩詞大會)節(jié)目的播出深受觀眾喜愛,進一步激起了人們對古詩詞的喜愛,現(xiàn)有以下四句古詩詞:①鋤禾日當午;②春眠不覺曉;③白日依山盡;④床前明月光.甲、乙兩名同學從中各隨機選取了一句寫在紙上,則他們選取的詩句恰好相同的概率為________.14.在平面直角坐標系中,⊙P的圓心是(2,a)(a>2),半徑為2,函數(shù)y=x的圖象被⊙P截得的弦AB的長為,則a的值是_____.15.我國古代《易經(jīng)》一書中記載,遠古時期,人們通過在繩子上打結來記錄數(shù)量,即“結繩記數(shù)”.如圖,一位婦女在從右到左依次排列的繩子上打結,滿六進一,用來記錄采集到的野果數(shù)量,由圖可知,她一共采集到的野果數(shù)量為_____個.16.解不等式組,則該不等式組的最大整數(shù)解是_____.三、解答題(共8題,共72分)17.(8分)如圖,AB是⊙O的直徑,,連結AC,過點C作直線l∥AB,點P是直線l上的一個動點,直線PA與⊙O交于另一點D,連結CD,設直線PB與直線AC交于點E.求∠BAC的度數(shù);當點D在AB上方,且CD⊥BP時,求證:PC=AC;在點P的運動過程中①當點A在線段PB的中垂線上或點B在線段PA的中垂線上時,求出所有滿足條件的∠ACD的度數(shù);②設⊙O的半徑為6,點E到直線l的距離為3,連結BD,DE,直接寫出△BDE的面積.18.(8分)如圖,要在木里縣某林場東西方向的兩地之間修一條公路MN,已知C點周圍200米范圍內(nèi)為原始森林保護區(qū),在MN上的點A處測得C在A的北偏東45°方向上,從A向東走600米到達B處,測得C在點B的北偏西60°方向上.(1)MN是否穿過原始森林保護區(qū),為什么?(參考數(shù)據(jù):≈1.732)(2)若修路工程順利進行,要使修路工程比原計劃提前5天完成,需將原定的工作效率提高25%,則原計劃完成這項工程需要多少天?19.(8分)如圖,AB是⊙O的直徑,弦DE交AB于點F,⊙O的切線BC與AD的延長線交于點C,連接AE.(1)試判斷∠AED與∠C的數(shù)量關系,并說明理由;(2)若AD=3,∠C=60°,點E是半圓AB的中點,則線段AE的長為.20.(8分)如圖,在銳角三角形ABC中,點D,E分別在邊AC,AB上,AG⊥BC于點G,AF⊥DE于點F,∠EAF=∠GAC.求證:△ADE∽△ABC;若AD=3,AB=5,求的值.21.(8分)如圖,某反比例函數(shù)圖象的一支經(jīng)過點A(2,3)和點B(點B在點A的右側),作BC⊥y軸,垂足為點C,連結AB,AC.求該反比例函數(shù)的解析式;若△ABC的面積為6,求直線AB的表達式.22.(10分)為了增強居民節(jié)水意識,某市自來水公司對居民用水采用以戶為單位分段計費辦法收費.若用戶的月用水量不超過15噸,每噸收水費4元;用戶的月用水量超過15噸,超過15噸的部分,按每噸6元收費.(I)根據(jù)題意,填寫下表:月用水量(噸/戶)41016……應收水費(元/戶)40……(II)設一戶居民的月用水量為x噸,應收水費y元,寫出y關于x的函數(shù)關系式;(III)已知用戶甲上個月比用戶乙多用水6噸,兩戶共收水費126元,求他們上個月分別用水多少噸?23.(12分)咸寧市某中學為了解本校學生對新聞、體育、動畫、娛樂四類電視節(jié)目的喜愛情況,隨機抽取了部分學生進行問卷調(diào)查,根據(jù)調(diào)查結果繪制了如下圖所示的兩幅不完整統(tǒng)計圖,請你根據(jù)圖中信息解答下列問題:=1\*GB2⑴補全條形統(tǒng)計圖,“體育”對應扇形的圓心角是度;=2\*GB2⑵根據(jù)以上統(tǒng)計分析,估計該校名學生中喜愛“娛樂”的有人;=3\*GB2⑶在此次問卷調(diào)查中,甲、乙兩班分別有人喜愛新聞節(jié)目,若從這人中隨機抽取人去參加“新聞小記者”培訓,請用列表法或者畫樹狀圖的方法求所抽取的人來自不同班級的概率24.如圖,在平面直角坐標系xOy中,直線y=kx+m與雙曲線y=﹣相交于點A(m,2).(1)求直線y=kx+m的表達式;(2)直線y=kx+m與雙曲線y=﹣的另一個交點為B,點P為x軸上一點,若AB=BP,直接寫出P點坐標.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】=3,是無限循環(huán)小數(shù),π是無限不循環(huán)小數(shù),,所以π是無理數(shù),故選C.2、D【解析】題解析:∵AB為⊙O直徑,∴∠ACB=90°,∴∠ACD=90°-∠DCB=90°-20°=70°,∴∠DBA=∠ACD=70°.故選D.【點睛】本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.推論:半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑.3、D【解析】
解:根據(jù)圖中尺規(guī)作圖的痕跡,可得∠DAE=∠B,故A選項正確,∴AE∥BC,故C選項正確,∴∠EAC=∠C,故B選項正確,∵AB>AC,∴∠C>∠B,∴∠CAE>∠DAE,故D選項錯誤,故選D.【點睛】本題考查作圖—復雜作圖;平行線的判定與性質(zhì);三角形的外角性質(zhì).4、D【解析】
根據(jù)三角形的高線的定義解答.【詳解】根據(jù)高的定義,AF為△ABC中BC邊上的高.故選D.【點睛】本題考查了三角形的高的定義,熟記概念是解題的關鍵.5、B【解析】
解:∵O是坐標原點,菱形OABC的頂點A的坐標為(3,﹣4),頂點C在x軸的正半軸上,∴OA=5,AB∥OC,∴點B的坐標為(8,﹣4),∵函數(shù)y=(k<0)的圖象經(jīng)過點B,∴﹣4=,得k=﹣32.故選B.【點睛】本題主要考查菱形的性質(zhì)和用待定系數(shù)法求反函數(shù)的系數(shù),解此題的關鍵在于根據(jù)A點坐標求得OA的長,再根據(jù)菱形的性質(zhì)求得B點坐標,然后用待定系數(shù)法求得反函數(shù)的系數(shù)即可.6、B【解析】
當直線y=kx-2與線段AB的交點為A點時,把A(-2,4)代入y=kx-2,求出k=-3,根據(jù)一次函數(shù)的有關性質(zhì)得到當k≤-3時直線y=kx-2與線段AB有交點;當直線y=kx-2與線段AB的交點為B點時,把B(4,2)代入y=kx-2,求出k=1,根據(jù)一次函數(shù)的有關性質(zhì)得到當k≥1時直線y=kx-2與線段AB有交點,從而能得到正確選項.【詳解】把A(-2,4)代入y=kx-2得,4=-2k-2,解得k=-3,∴當直線y=kx-2與線段AB有交點,且過第二、四象限時,k滿足的條件為k≤-3;把B(4,2)代入y=kx-2得,4k-2=2,解得k=1,∴當直線y=kx-2與線段AB有交點,且過第一、三象限時,k滿足的條件為k≥1.即k≤-3或k≥1.所以直線y=kx-2與線段AB有交點,則k的值不可能是-2.故選B.【點睛】本題考查了一次函數(shù)y=kx+b(k≠0)的性質(zhì):當k>0時,圖象必過第一、三象限,k越大直線越靠近y軸;當k<0時,圖象必過第二、四象限,k越小直線越靠近y軸.7、B【解析】
收入和支出是兩個相反的概念,故兩個數(shù)字分別為正數(shù)和負數(shù).【詳解】收入13元記為+13元,那么支出9元記作-9元【點睛】本題主要考查了正負數(shù)的運用,熟練掌握正負數(shù)的概念是本題的關鍵.8、B【解析】
根據(jù)無理數(shù)的定義解答即可.【詳解】選項A、是分數(shù),是有理數(shù);選項B、是無理數(shù);選項C、﹣5為有理數(shù);選項D、0.3156是有理數(shù);故選B.【點睛】本題考查了無理數(shù)的判定,熟知無理數(shù)是無限不循環(huán)小數(shù)是解決問題的關鍵.9、A【解析】試題分析:如圖所示.∵正方形ABCD的邊長為2,△CDE為等腰直角三角形,∴DE2+CE2=CD2,DE=CE,∴S2+S2=S1.觀察發(fā)現(xiàn)規(guī)律:S1=22=4,S2=S1=2,S2=S2=1,S4=S2=,…,由此可得Sn=()n﹣2.當n=9時,S9=()9﹣2=()6,故選A.考點:勾股定理.10、D【解析】
將除法變?yōu)槌朔ǎ喍胃?,再用乘法分配律展開計算即可.【詳解】原式=×=×(+1)=2+.故選D.【點睛】本題主要考查二次根式的加減乘除混合運算,掌握二次根式的混合運算法則是解題關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】分析:以AC為斜邊作等腰直角三角形ACQ,則∠AQC=90°,依據(jù)∠ADC=135°,可得點D的運動軌跡為以Q為圓心,AQ為半徑的,依據(jù)△ACQ中,AQ=4,即可得到點D運動的路徑長為=2π.詳解:如圖所示,以AC為斜邊作等腰直角三角形ACQ,則∠AQC=90°.∵⊙O的直徑為AB,C為的中點,∴∠APC=45°.又∵CD⊥CP,∴∠DCP=90°,∴∠PDC=45°,∠ADC=135°,∴點D的運動軌跡為以Q為圓心,AQ為半徑的.又∵AB=8,C為的中點,∴AC=4,∴△ACQ中,AQ=4,∴點D運動的路徑長為=2π.故答案為2π.點睛:本題考查了軌跡,等腰直角三角形的性質(zhì),圓周角定理以及弧長的計算,正確作出輔助線是解題的關鍵.12、300π【解析】試題分析:首先根據(jù)底面圓的面積求得底面的半徑,然后結合弧長公式求得扇形的半徑,然后利用扇形的面積公式求得側面積即可.∵底面圓的面積為100π,∴底面圓的半徑為10,∴扇形的弧長等于圓的周長為20π,設扇形的母線長為r,則=20π,解得:母線長為30,∴扇形的面積為πrl=π×10×30=300π考點:(1)、圓錐的計算;(2)、扇形面積的計算13、【解析】
用列舉法或者樹狀圖法解答即可.【詳解】解:如圖,由圖可得,甲乙兩人選取的詩句恰好相同的概率為.故答案為:.【點睛】本題考查用樹狀圖法或者列表法求隨機事件的概率,熟練掌握兩種解答方法是關鍵.14、2+【解析】
試題分析:過P點作PE⊥AB于E,過P點作PC⊥x軸于C,交AB于D,連接PA.∵PE⊥AB,AB=2,半徑為2,∴AE=AB=,PA=2,根據(jù)勾股定理得:PE=1,∵點A在直線y=x上,∴∠AOC=45°,∵∠DCO=90°,∴∠ODC=45°,∴△OCD是等腰直角三角形,∴OC=CD=2,∴∠PDE=∠ODC=45°,∴∠DPE=∠PDE=45°,∴DE=PE=1,∴PD=∵⊙P的圓心是(2,a),∴a=PD+DC=2+.【點睛】本題主要考查的就是垂徑定理的應用以及直角三角形勾股定理的應用,屬于中等難度的題型.解決這個問題的關鍵就是在于作出輔助線,將所求的線段放入到直角三角形中.本題還需要注意的一個隱含條件就是:直線y=x或直線y=-x與x軸所形成的銳角為45°,這一個條件的應用也是很重要的.15、1【解析】分析:類比于現(xiàn)在我們的十進制“滿十進一”,可以表示滿六進一的數(shù)為:萬位上的數(shù)×64+千位上的數(shù)×63+百位上的數(shù)×62+十位上的數(shù)×6+個位上的數(shù),即1×64+2×63+3×62+0×6+2=1.詳解:2+0×6+3×6×6+2×6×6×6+1×6×6×6×6=1,故答案為:1.點睛:本題是以古代“結繩計數(shù)”為背景,按滿六進一計數(shù),運用了類比的方法,根據(jù)圖中的數(shù)學列式計算;本題題型新穎,一方面讓學生了解了古代的數(shù)學知識,另一方面也考查了學生的思維能力.16、x=1.【解析】
先求出每個不等式的解集,再確定其公共解,得到不等式組的解集,然后求其整數(shù)解.【詳解】,由不等式①得x≤1,由不等式②得x>-1,其解集是-1<x≤1,所以整數(shù)解為0,1,2,1,則該不等式組的最大整數(shù)解是x=1.故答案為:x=1.【點睛】考查不等式組的解法及整數(shù)解的確定.求不等式組的解集,應遵循以下原則:同大取較大,同小取較小,小大大小中間找,大大小小解不了.三、解答題(共8題,共72分)17、(1)45°;(2)見解析;(3)①∠ACD=15°;∠ACD=105°;∠ACD=60°;∠ACD=120°;②36或.【解析】
(1)易得△ABC是等腰直角三角形,從而∠BAC=∠CBA=45°;(2)分當B在PA的中垂線上,且P在右時;B在PA的中垂線上,且P在左;A在PB的中垂線上,且P在右時;A在PB的中垂線上,且P在左時四中情況求解;(3)①先說明四邊形OHEF是正方形,再利用△DOH∽△DFE求出EF的長,然后利用割補法求面積;②根據(jù)△EPC∽△EBA可求PC=4,根據(jù)△PDC∽△PCA可求PD?PA=PC2=16,再根據(jù)S△ABP=S△ABC得到,利用勾股定理求出k2,然后利用三角形面積公式求解.【詳解】(1)解:(1)連接BC,∵AB是直徑,∴∠ACB=90°.∴△ABC是等腰直角三角形,∴∠BAC=∠CBA=45°;(2)解:∵,∴∠CDB=∠CDP=45°,CB=CA,∴CD平分∠BDP又∵CD⊥BP,∴BE=EP,即CD是PB的中垂線,∴CP=CB=CA,(3)①(Ⅰ)如圖2,當B在PA的中垂線上,且P在右時,∠ACD=15°;(Ⅱ)如圖3,當B在PA的中垂線上,且P在左,∠ACD=105°;(Ⅲ)如圖4,A在PB的中垂線上,且P在右時∠ACD=60°;(Ⅳ)如圖5,A在PB的中垂線上,且P在左時∠ACD=120°②(Ⅰ)如圖6,,.(Ⅱ)如圖7,,,.,.,,,.設BD=9k,PD=2k,,,,.【點睛】本題是圓的綜合題,熟練掌握30°角所對的直角邊等于斜邊的一半,平行線的性質(zhì),垂直平分線的性質(zhì),相似三角形的判定與性質(zhì),圓周角定理,圓內(nèi)接四邊形的性質(zhì),勾股定理,同底等高的三角形的面積相等是解答本題的關鍵.18、(1)不會穿過森林保護區(qū).理由見解析;(2)原計劃完成這項工程需要25天.【解析】試題分析:(1)要求MN是否穿過原始森林保護區(qū),也就是求C到MN的距離.要構造直角三角形,再解直角三角形;(2)根據(jù)題意列方程求解.試題解析:(1)如圖,過C作CH⊥AB于H,設CH=x,由已知有∠EAC=45°,∠FBC=60°則∠CAH=45°,∠CBA=30°,在RT△ACH中,AH=CH=x,在RT△HBC中,tan∠HBC=∴HB===x,∵AH+HB=AB∴x+x=600解得x≈220(米)>200(米).∴MN不會穿過森林保護區(qū).(2)設原計劃完成這項工程需要y天,則實際完成工程需要y-5根據(jù)題意得:=(1+25%)×,解得:y=25知:y=25的根.答:原計劃完成這項工程需要25天.19、(1)∠AED=∠C,理由見解析;(2)【解析】
(1)根據(jù)切線的性質(zhì)和圓周角定理解答即可;(2)根據(jù)勾股定理和三角函數(shù)進行解答即可.【詳解】(1)∠AED=∠C,證明如下:連接BD,可得∠ADB=90°,∴∠C+∠DBC=90°,∵CB是⊙O的切線,∴∠CBA=90°,∴∠ABD+∠DBC=90°,∴∠ABD=∠C,∵∠AEB=∠ABD,∴∠AED=∠C,(2)連接BE,∴∠AEB=90°,∵∠C=60°,∴∠CAB=30°,在Rt△DAB中,AD=3,∠ADB=90°,∴cos∠DAB=,解得:AB=2,∵E是半圓AB的中點,∴AE=BE,∵∠AEB=90°,∴∠BAE=45°,在Rt△AEB中,AB=2,∠ADB=90°,∴cos∠EAB=,解得:AE=.故答案為【點睛】此題考查了切線的性質(zhì)、直角三角形的性質(zhì)以及圓周角定理.此題難度適中,注意掌握數(shù)形結合思想的應用,注意掌握輔助線的作法.20、(1)證明見解析;(2).【解析】
(1)由于AG⊥BC,AF⊥DE,所以∠AFE=∠AGC=90°,從而可證明∠AED=∠ACB,進而可證明△ADE∽△ABC;(2)△ADE∽△ABC,,又易證△EAF∽△CAG,所以,從而可求解.【詳解】(1)∵AG⊥BC,AF⊥DE,∴∠AFE=∠AGC=90°,∵∠EAF=∠GAC,∴∠AED=∠ACB,∵∠EAD=∠BAC,∴△ADE∽△ABC,(2)由(1)可知:△ADE∽△ABC,∴由(1)可知:∠AFE=∠AGC=90°,∴∠EAF=∠GAC,∴△EAF∽△CAG,∴,∴=考點:相似三角形的判定21、(1)y;(2)yx+1.【解析】
(1)把A的坐標代入反比例函數(shù)的解析式即可求得;(2)作AD⊥BC于D,則D(2,b),即可利用a表示出AD的長,然后利用三角形的面積公式即可得到一個關于b的方程,求得b的值,進而求得a的值,根據(jù)待定系數(shù)法,可得答案.【詳解】(1)由題意得:k=xy=2×3=6,∴反比例函數(shù)的解析式為y;(2)設B點坐標為(a,b),如圖,作AD⊥BC于D,則D(2,b),∵反比例函數(shù)y的圖象經(jīng)過點B(a,b),∴b,∴AD=3,∴S△ABCBC?ADa(3)=6,解得a=6,∴b1,∴B(6,1),設AB的解析式為y=kx+b,將A(2,3),B(6,1)代入函數(shù)解析式,得,解得:,所以直線AB的解析式為yx+1.【點睛】本題考查了利用待定系數(shù)法求反比例函數(shù)以及一次函數(shù)解析式,熟練掌握待定系數(shù)法以及正確表示出BC,AD的長是解題的關鍵.22、(Ⅰ)16;66;(Ⅱ)當x≤15時,y=4x;當x>15時,y=6x﹣30;(Ⅲ)居民甲上月用水量為18噸,居民乙用水12噸【解析】
(Ⅰ)根據(jù)題意計算即可;(Ⅱ)根據(jù)分段函數(shù)解答即可;(Ⅲ)根據(jù)題意,可以分段利用方程或方程組解決用水量問題.【詳解】解:(Ⅰ)當月用水量為4噸時,應收水費=4×4=16元;當
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 山東科技職業(yè)學院《中級財務會計二》2023-2024學年第二學期期末試卷
- 湖南汽車工程職業(yè)學院《工業(yè)控制與PLC應用》2023-2024學年第二學期期末試卷
- 寧夏衛(wèi)生健康職業(yè)技術學院《人工智能倫理學》2023-2024學年第二學期期末試卷
- 仙桃職業(yè)學院《大數(shù)據(jù)可視化與可視分析》2023-2024學年第二學期期末試卷
- 甘肅財貿(mào)職業(yè)學院《工程造價軟件應用》2023-2024學年第二學期期末試卷
- 武漢船舶職業(yè)技術學院《即興口語表達》2023-2024學年第二學期期末試卷
- 長春汽車工業(yè)高等專科學?!吨袑W化學實驗創(chuàng)新設計》2023-2024學年第二學期期末試卷
- 黃岡職業(yè)技術學院《歐美文學作品選讀》2023-2024學年第二學期期末試卷
- 西安鐵路職業(yè)技術學院《環(huán)境健康科學》2023-2024學年第二學期期末試卷
- Unit 4 Dis aster Survival:Listening ViewingSpeaking 教學設計-2024-2025學年高中英語上外版(2020)選擇性必修第二冊
- 食品中阿維菌素等55種農(nóng)藥最大殘留限量
- 保潔部消殺培訓
- 口服輪狀疫苗知識課件
- 中國腦小血管病診治指南2023版
- 中國聚乙烯催化劑行業(yè)發(fā)展狀況及需求規(guī)模預測研究報告(2024-2030版)
- 新能源汽車驅動電機及控制系統(tǒng)檢修課件 學習情境4:電的轉換
- 車輛實際使用權協(xié)議書范文模板
- 新版加油站全員安全生產(chǎn)責任制
- 腦出血課件完整版本
- 涼山州小學數(shù)學教師業(yè)務素質(zhì)考試試題(真題+訓練)
- 長護險定點機構自查報告
評論
0/150
提交評論