廣西百色市右江區(qū)2024屆中考數(shù)學(xué)全真模擬試卷含解析_第1頁(yè)
廣西百色市右江區(qū)2024屆中考數(shù)學(xué)全真模擬試卷含解析_第2頁(yè)
廣西百色市右江區(qū)2024屆中考數(shù)學(xué)全真模擬試卷含解析_第3頁(yè)
廣西百色市右江區(qū)2024屆中考數(shù)學(xué)全真模擬試卷含解析_第4頁(yè)
廣西百色市右江區(qū)2024屆中考數(shù)學(xué)全真模擬試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩18頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

廣西百色市右江區(qū)2024屆中考數(shù)學(xué)全真模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題(共10小題,每小題3分,共30分)1.如圖,是直角三角形,,,點(diǎn)在反比例函數(shù)的圖象上.若點(diǎn)在反比例函數(shù)的圖象上,則的值為()A.2 B.-2 C.4 D.-42.如圖,,交于點(diǎn),平分,交于.若,則

的度數(shù)為()

A.35o B.45o C.55o D.65o3.計(jì)算6m3÷(-3m2)的結(jié)果是()A.-3m B.-2m C.2m D.3m4.已知:如圖,在△ABC中,邊AB的垂直平分線分別交BC、AB于點(diǎn)G、D,若△AGC的周長(zhǎng)為31cm,AB=20cm,則△ABC的周長(zhǎng)為()A.31cm B.41cm C.51cm D.61cm5.在實(shí)數(shù)π,0,,﹣4中,最大的是()A.π B.0 C. D.﹣46.如圖,已知函數(shù)與的圖象在第二象限交于點(diǎn),點(diǎn)在的圖象上,且點(diǎn)B在以O(shè)點(diǎn)為圓心,OA為半徑的上,則k的值為A. B. C. D.7.如圖,已知是中的邊上的一點(diǎn),,的平分線交邊于,交于,那么下列結(jié)論中錯(cuò)誤的是()A.△BAC∽△BDA B.△BFA∽△BECC.△BDF∽△BEC D.△BDF∽△BAE8.計(jì)算的結(jié)果是(

)A. B. C. D.29.如圖1是一座立交橋的示意圖(道路寬度忽略不計(jì)),A為人口,F(xiàn),G為出口,其中直行道為AB,CG,EF,且AB=CG=EF;彎道為以點(diǎn)O為圓心的一段弧,且,,所對(duì)的圓心角均為90°.甲、乙兩車(chē)由A口同時(shí)駛?cè)肓⒔粯?,均?0m/s的速度行駛,從不同出口駛出,其間兩車(chē)到點(diǎn)O的距離y(m)與時(shí)間x(s)的對(duì)應(yīng)關(guān)系如圖2所示.結(jié)合題目信息,下列說(shuō)法錯(cuò)誤的是()A.甲車(chē)在立交橋上共行駛8s B.從F口出比從G口出多行駛40m C.甲車(chē)從F口出,乙車(chē)從G口出 D.立交橋總長(zhǎng)為150m10.如圖,已知△ABC中,∠A=75°,則∠1+∠2=()A.335°° B.255° C.155° D.150°二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.寫(xiě)出一個(gè)大于3且小于4的無(wú)理數(shù):___________.12.使得分式值為零的x的值是_________;13.函數(shù)中,自變量的取值范圍是______.14.如圖,AB、CD相交于點(diǎn)O,AD=CB,請(qǐng)你補(bǔ)充一個(gè)條件,使得△AOD≌△COB,你補(bǔ)充的條件是_____.15.不等式組的解集是__.16.如圖,點(diǎn)M、N分別在∠AOB的邊OA、OB上,將∠AOB沿直線MN翻折,設(shè)點(diǎn)O落在點(diǎn)P處,如果當(dāng)OM=4,ON=3時(shí),點(diǎn)O、P的距離為4,那么折痕MN的長(zhǎng)為_(kāi)_____.三、解答題(共8題,共72分)17.(8分)(7分)某中學(xué)1000名學(xué)生參加了”環(huán)保知識(shí)競(jìng)賽“,為了了解本次競(jìng)賽成績(jī)情況,從中抽取了部分學(xué)生的成績(jī)(得分取整數(shù),滿(mǎn)分為100分)作為樣本進(jìn)行統(tǒng)計(jì),并制作了如圖頻數(shù)分布表和頻數(shù)分布直方圖(不完整且局部污損,其中“■”表示被污損的數(shù)據(jù)).請(qǐng)解答下列問(wèn)題:成績(jī)分組頻數(shù)頻率50≤x<6080.1660≤x<7012a70≤x<80■0.580≤x<9030.0690≤x≤100bc合計(jì)■1(1)寫(xiě)出a,b,c的值;(2)請(qǐng)估計(jì)這1000名學(xué)生中有多少人的競(jìng)賽成績(jī)不低于70分;(3)在選取的樣本中,從競(jìng)賽成績(jī)是80分以上(含80分)的同學(xué)中隨機(jī)抽取兩名同學(xué)參加環(huán)保知識(shí)宣傳活動(dòng),求所抽取的2名同學(xué)來(lái)自同一組的概率.18.(8分)拋物線:與軸交于,兩點(diǎn)(點(diǎn)在點(diǎn)左側(cè)),拋物線的頂點(diǎn)為.(1)拋物線的對(duì)稱(chēng)軸是直線________;(2)當(dāng)時(shí),求拋物線的函數(shù)表達(dá)式;(3)在(2)的條件下,直線:經(jīng)過(guò)拋物線的頂點(diǎn),直線與拋物線有兩個(gè)公共點(diǎn),它們的橫坐標(biāo)分別記為,,直線與直線的交點(diǎn)的橫坐標(biāo)記為,若當(dāng)時(shí),總有,請(qǐng)結(jié)合函數(shù)的圖象,直接寫(xiě)出的取值范圍.19.(8分)如圖,矩形ABCD中,O是AC與BD的交點(diǎn),過(guò)O點(diǎn)的直線EF與AB、CD的延長(zhǎng)線分別交于E、F.(1)證明:△BOE≌△DOF;(2)當(dāng)EF⊥AC時(shí),求證四邊形AECF是菱形.20.(8分)如圖,點(diǎn)A在∠MON的邊ON上,AB⊥OM于B,AE=OB,DE⊥ON于E,AD=AO,DC⊥OM于C.求證:四邊形ABCD是矩形;若DE=3,OE=9,求AB、AD的長(zhǎng).21.(8分)在如圖所示的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1,格點(diǎn)三角形(頂點(diǎn)是網(wǎng)格線的交點(diǎn)的三角形)的頂點(diǎn)、的坐標(biāo)分別為,.請(qǐng)?jiān)谌鐖D所示的網(wǎng)格平面內(nèi)作出平面直角坐標(biāo)系;請(qǐng)作出關(guān)于軸對(duì)稱(chēng)的;點(diǎn)的坐標(biāo)為.的面積為.22.(10分)如圖,已知拋物線y=ax2﹣2ax+b與x軸交于A、B(3,0)兩點(diǎn),與y軸交于點(diǎn)C,且OC=3OA,設(shè)拋物線的頂點(diǎn)為D.(1)求拋物線的解析式;(2)在拋物線對(duì)稱(chēng)軸的右側(cè)的拋物線上是否存在點(diǎn)P,使得△PDC是等腰三角形?若存在,求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;(3)若平行于x軸的直線與該拋物線交于M、N兩點(diǎn)(其中點(diǎn)M在點(diǎn)N的右側(cè)),在x軸上是否存在點(diǎn)Q,使△MNQ為等腰直角三角形?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.23.(12分)豆豆媽媽用小米運(yùn)動(dòng)手環(huán)記錄每天的運(yùn)動(dòng)情況,下面是她6天的數(shù)據(jù)記錄(不完整):(1)4月5日,4月6日,豆豆媽媽沒(méi)來(lái)得及作記錄,只有手機(jī)圖片,請(qǐng)你根據(jù)圖片數(shù)據(jù),幫她補(bǔ)全表格.(2)豆豆利用自己學(xué)習(xí)的統(tǒng)計(jì)知識(shí),把媽媽步行距離與燃燒脂肪情況用如下統(tǒng)計(jì)圖表示出來(lái),請(qǐng)你根據(jù)圖中提供的信息寫(xiě)出結(jié)論:.(寫(xiě)一條即可)(3)豆豆還幫媽媽分析出步行距離和卡路里消耗數(shù)近似成正比例關(guān)系,豆豆媽媽想使自己的卡路里消耗數(shù)達(dá)到250千卡,預(yù)估她一天步行距離為公里.(直接寫(xiě)出結(jié)果,精確到個(gè)位)24.如圖,在Rt△ABC中,∠C=90°,翻折∠C,使點(diǎn)C落在斜邊AB上某一點(diǎn)D處,折痕為EF(點(diǎn)E、F分別在邊AC、BC上)若△CEF與△ABC相似.①當(dāng)AC=BC=2時(shí),AD的長(zhǎng)為;②當(dāng)AC=3,BC=4時(shí),AD的長(zhǎng)為;當(dāng)點(diǎn)D是AB的中點(diǎn)時(shí),△CEF與△ABC相似嗎?請(qǐng)說(shuō)明理由.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

要求函數(shù)的解析式只要求出點(diǎn)的坐標(biāo)就可以,過(guò)點(diǎn)、作軸,軸,分別于、,根據(jù)條件得到,得到:,然后用待定系數(shù)法即可.【詳解】過(guò)點(diǎn)、作軸,軸,分別于、,設(shè)點(diǎn)的坐標(biāo)是,則,,,,,,,,,,,,因?yàn)辄c(diǎn)在反比例函數(shù)的圖象上,則,點(diǎn)在反比例函數(shù)的圖象上,點(diǎn)的坐標(biāo)是,.故選:.【點(diǎn)睛】本題考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,相似三角形的判定與性質(zhì),求函數(shù)的解析式的問(wèn)題,一般要轉(zhuǎn)化為求點(diǎn)的坐標(biāo)的問(wèn)題,求出圖象上點(diǎn)的橫縱坐標(biāo)的積就可以求出反比例函數(shù)的解析式.2、D【解析】分析:根據(jù)平行線的性質(zhì)求得∠BEC的度數(shù),再由角平分線的性質(zhì)即可求得∠CFE的度數(shù).詳解:又∵EF平分∠BEC,.故選D.點(diǎn)睛:本題主要考查了平行線的性質(zhì)和角平分線的定義,熟知平行線的性質(zhì)和角平分線的定義是解題的關(guān)鍵.3、B【解析】

根據(jù)單項(xiàng)式相除,把系數(shù)與同底數(shù)冪分別相除作為商的因式,對(duì)于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個(gè)因式計(jì)算,然后選取答案即可.【詳解】6m3÷(﹣3m2)=[6÷(﹣3)](m3÷m2)=﹣2m.故選B.4、C【解析】∵DG是AB邊的垂直平分線,∴GA=GB,△AGC的周長(zhǎng)=AG+AC+CG=AC+BC=31cm,又AB=20cm,∴△ABC的周長(zhǎng)=AC+BC+AB=51cm,故選C.5、C【解析】

根據(jù)實(shí)數(shù)的大小比較即可得到答案.【詳解】解:∵16<17<25,∴4<<5,∴>π>0>-4,故最大的是,故答案選C.【點(diǎn)睛】本題主要考查了實(shí)數(shù)的大小比較,解本題的要點(diǎn)在于統(tǒng)一根據(jù)二次根式的性質(zhì),把根號(hào)外的移到根號(hào)內(nèi),只需比較被開(kāi)方數(shù)的大小.6、A【解析】

由題意,因?yàn)榕c反比例函數(shù)都是關(guān)于直線對(duì)稱(chēng),推出A與B關(guān)于直線對(duì)稱(chēng),推出,可得,求出m即可解決問(wèn)題;【詳解】函數(shù)與的圖象在第二象限交于點(diǎn),點(diǎn)與反比例函數(shù)都是關(guān)于直線對(duì)稱(chēng),與B關(guān)于直線對(duì)稱(chēng),,,點(diǎn)故選:A.【點(diǎn)睛】本題考查反比例函數(shù)與一次函數(shù)的交點(diǎn)問(wèn)題,反比例函數(shù)的圖像與性質(zhì),圓的對(duì)稱(chēng)性及軸對(duì)稱(chēng)的性質(zhì).解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題,本題的突破點(diǎn)是發(fā)現(xiàn)A,B關(guān)于直線對(duì)稱(chēng).7、C【解析】

根據(jù)相似三角形的判定,采用排除法,逐項(xiàng)分析判斷.【詳解】∵∠BAD=∠C,∠B=∠B,∴△BAC∽△BDA.故A正確.∵BE平分∠ABC,∴∠ABE=∠CBE,∴△BFA∽△BEC.故B正確.∴∠BFA=∠BEC,∴∠BFD=∠BEA,∴△BDF∽△BAE.故D正確.而不能證明△BDF∽△BEC,故C錯(cuò)誤.故選C.【點(diǎn)睛】本題考查相似三角形的判定.識(shí)別兩三角形相似,除了要掌握定義外,還要注意正確找出兩三角形的對(duì)應(yīng)邊和對(duì)應(yīng)角.8、C【解析】

化簡(jiǎn)二次根式,并進(jìn)行二次根式的乘法運(yùn)算,最后合并同類(lèi)二次根式即可.【詳解】原式=3﹣2·=3﹣=.故選C.【點(diǎn)睛】本題主要考查二次根式的化簡(jiǎn)以及二次根式的混合運(yùn)算.9、C【解析】分析:結(jié)合2個(gè)圖象分析即可.詳解:A.根據(jù)圖2甲的圖象可知甲車(chē)在立交橋上共行駛時(shí)間為:,故正確.B.3段弧的長(zhǎng)度都是:從F口出比從G口出多行駛40m,正確.C.分析圖2可知甲車(chē)從G口出,乙車(chē)從F口出,故錯(cuò)誤.D.立交橋總長(zhǎng)為:故正確.故選C.點(diǎn)睛:考查圖象問(wèn)題,觀察圖象,讀懂圖象是解題的關(guān)鍵.10、B【解析】∵∠A+∠B+∠C=180°,∠A=75°,∴∠B+∠C=180°﹣∠A=105°.∵∠1+∠2+∠B+∠C=360°,∴∠1+∠2=360°﹣105°=255°.故選B.點(diǎn)睛:本題考查了三角形、四邊形內(nèi)角和定理,掌握n邊形內(nèi)角和為(n﹣2)×180°(n≥3且n為整數(shù))是解題的關(guān)鍵.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、如等,答案不唯一.【解析】

本題考查無(wú)理數(shù)的概念.無(wú)限不循環(huán)小數(shù)叫做無(wú)理數(shù).介于和之間的無(wú)理數(shù)有無(wú)窮多個(gè),因?yàn)?,故?和16都是完全平方數(shù),都是無(wú)理數(shù).12、2【解析】

根據(jù)分式的性質(zhì),要使分式有意義,則必須分母不能為0,要使分式為零,則只有分子為0,因此計(jì)算即可.【詳解】解:要使分式有意義則,即要使分式為零,則,即綜上可得故答案為2【點(diǎn)睛】本題主要考查分式的性質(zhì),關(guān)鍵在于分式的分母不能為0.13、【解析】

根據(jù)分式有意義的條件是分母不為2;分析原函數(shù)式可得關(guān)系式x?1≠2,解得答案.【詳解】根據(jù)題意得x?1≠2,解得:x≠1;故答案為:x≠1.【點(diǎn)睛】本題主要考查自變量得取值范圍的知識(shí)點(diǎn),當(dāng)函數(shù)表達(dá)式是分式時(shí),考慮分式的分母不能為2.14、∠A=∠C或∠ADC=∠ABC【解析】

本題證明兩三角形全等的三個(gè)條件中已經(jīng)具備一邊和一角,所以只要再添加一組對(duì)應(yīng)角或邊相等即可.【詳解】添加條件可以是:∠A=∠C或∠ADC=∠ABC.∵添加∠A=∠C根據(jù)AAS判定△AOD≌△COB,添加∠ADC=∠ABC根據(jù)AAS判定△AOD≌△COB,故填空答案:∠A=∠C或∠ADC=∠ABC.【點(diǎn)睛】本題考查了三角形全等的判定方法;判定兩個(gè)三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加時(shí)注意:AAA、SSA不能判定兩個(gè)三角形全等,不能添加,根據(jù)已知結(jié)合圖形及判定方法選擇條件是正確解題的關(guān)鍵.15、2≤x<1【解析】

分別解兩個(gè)不等式得到x<1和x≥2,然后根據(jù)大小小大中間找確定不等數(shù)組的解集.【詳解】解:,解①得x<1,解②得x≥2,所以不等式組的解集為2≤x<1.故答案為2≤x<1.【點(diǎn)睛】本題考查了解一元一次不等式組:解一元一次不等式組時(shí),一般先求出其中各不等式的解集,再求出這些解集的公共部分,利用數(shù)軸可以直觀地表示不等式組的解集.解集的規(guī)律:同大取大;同小取??;大小小大中間找;大大小小找不到.16、【解析】

由折疊的性質(zhì)可得MN⊥OP,EO=EP=2,由勾股定理可求ME,NE的長(zhǎng),即可求MN的長(zhǎng).【詳解】設(shè)MN與OP交于點(diǎn)E,

∵點(diǎn)O、P的距離為4,

∴OP=4

∵折疊

∴MN⊥OP,EO=EP=2,

在Rt△OME中,ME=在Rt△ONE中,NE=∴MN=ME-NE=2-故答案為2-【點(diǎn)睛】本題考查了翻折變換,勾股定理,利用勾股定理求線段的長(zhǎng)度是本題的關(guān)鍵.三、解答題(共8題,共72分)17、(1)a=0.24,b=2,c=0.04;(2)600人;(3)人.【解析】

(1)利用50≤x<60的頻數(shù)和頻率,根據(jù)公式:頻率=頻數(shù)÷總數(shù)先計(jì)算出樣本總?cè)藬?shù),再分別計(jì)算出a,b,c的值;(2)先計(jì)算出競(jìng)賽分?jǐn)?shù)不低于70分的頻率,根據(jù)樣本估計(jì)總體的思想,計(jì)算出1000名學(xué)生中競(jìng)賽成績(jī)不低于70分的人數(shù);(3)列樹(shù)形圖或列出表格,得到要求的所有情況和2名同學(xué)來(lái)自一組的情況,利用求概率公式計(jì)算出概率.【詳解】解:(1)樣本人數(shù)為:8÷0.16=50(名)a=12÷50=0.24,70≤x<80的人數(shù)為:50×0.5=25(名)b=50﹣8﹣12﹣25﹣3=2(名)c=2÷50=0.04所以a=0.24,b=2,c=0.04;(2)在選取的樣本中,競(jìng)賽分?jǐn)?shù)不低于70分的頻率是0.5+0.06+0.04=0.6,根據(jù)樣本估計(jì)總體的思想,有:1000×0.6=600(人)∴這1000名學(xué)生中有600人的競(jìng)賽成績(jī)不低于70分;(3)成績(jī)是80分以上的同學(xué)共有5人,其中第4組有3人,不妨記為甲,乙,丙,第5組有2人,不妨記作A,B從競(jìng)賽成績(jī)是80分以上(含80分)的同學(xué)中隨機(jī)抽取兩名同學(xué),情形如樹(shù)形圖所示,共有20種情況:抽取兩名同學(xué)在同一組的有:甲乙,甲丙,乙甲,乙丙,丙甲,丙乙,AB,BA共8種情況,∴抽取的2名同學(xué)來(lái)自同一組的概率P==【點(diǎn)睛】本題考查了頻數(shù)、頻率、總數(shù)間關(guān)系及用列表法或樹(shù)形圖法求概率.列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹(shù)形圖法適合兩步或兩步以上完成的事件;概率=所求情況數(shù)與總情況數(shù)之比.18、(1);(2);(3)【解析】

(1)根據(jù)拋物線的函數(shù)表達(dá)式,利用二次函數(shù)的性質(zhì)即可找出拋物線的對(duì)稱(chēng)軸;(2)根據(jù)拋物線的對(duì)稱(chēng)軸及即可得出點(diǎn)、的坐標(biāo),根據(jù)點(diǎn)的坐標(biāo),利用待定系數(shù)法即可求出拋物線的函數(shù)表達(dá)式;(3)利用配方法求出拋物線頂點(diǎn)的坐標(biāo),依照題意畫(huà)出圖形,觀察圖形可得出,再利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可得出,結(jié)合的取值范圍即可得出的取值范圍.【詳解】(1)∵拋物線的表達(dá)式為,∴拋物線的對(duì)稱(chēng)軸為直線.故答案為:.(2)∵拋物線的對(duì)稱(chēng)軸為直線,,∴點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為.將代入,得:,解得:,∴拋物線的函數(shù)表達(dá)式為.(3)∵,∴點(diǎn)的坐標(biāo)為.∵直線y=n與直線的交點(diǎn)的橫坐標(biāo)記為,且當(dāng)時(shí),總有,∴x2<x3<x1,∵x3>0,∴直線與軸的交點(diǎn)在下方,∴.∵直線:經(jīng)過(guò)拋物線的頂點(diǎn),∴,∴.【點(diǎn)睛】本題考查了二次函數(shù)的性質(zhì)、待定系數(shù)法求二次函數(shù)解析式以及一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,解題的關(guān)鍵是:(1)利用二次函數(shù)的性質(zhì)找出拋物線的對(duì)稱(chēng)軸;(2)根據(jù)點(diǎn)的坐標(biāo),利用待定系數(shù)法求出二次函數(shù)表達(dá)式;(3)依照題意畫(huà)出圖形,利用數(shù)形結(jié)合找出.19、(1)(2)證明見(jiàn)解析【解析】

(1)根據(jù)矩形的性質(zhì),通過(guò)“角角邊”證明三角形全等即可;(2)根據(jù)題意和(1)可得AC與EF互相垂直平分,所以四邊形AECF是菱形.【詳解】(1)證明:∵四邊形ABCD是矩形,∴OB=OD,AE∥CF,∴∠E=∠F(兩直線平行,內(nèi)錯(cuò)角相等),在△BOE與△DOF中,,∴△BOE≌△DOF(AAS).(2)證明:∵四邊形ABCD是矩形,∴OA=OC,又∵由(1)△BOE≌△DOF得,OE=OF,∴四邊形AECF是平行四邊形,又∵EF⊥AC,∴四邊形AECF是菱形.20、(1)證明見(jiàn)解析;(2)AB、AD的長(zhǎng)分別為2和1.【解析】

(1)證Rt△ABO≌Rt△DEA(HL)得∠AOB=∠DAE,AD∥BC.證四邊形ABCD是平行四邊形,又,故四邊形ABCD是矩形;(2)由(1)知Rt△ABO≌Rt△DEA,AB=DE=2.設(shè)AD=x,則OA=x,AE=OE-OA=9-x.在Rt△DEA中,由得:.【詳解】(1)證明:∵AB⊥OM于B,DE⊥ON于E,∴.在Rt△ABO與Rt△DEA中,∵∴Rt△ABO≌Rt△DEA(HL).∴∠AOB=∠DAE.∴AD∥BC.又∵AB⊥OM,DC⊥OM,∴AB∥DC.∴四邊形ABCD是平行四邊形.∵,∴四邊形ABCD是矩形;(2)由(1)知Rt△ABO≌Rt△DEA,∴AB=DE=2.設(shè)AD=x,則OA=x,AE=OE-OA=9-x.在Rt△DEA中,由得:,解得.∴AD=1.即AB、AD的長(zhǎng)分別為2和1.【點(diǎn)睛】矩形的判定和性質(zhì);掌握判斷定證三角形全等是關(guān)鍵.21、(1)見(jiàn)解析;(2)見(jiàn)解析;(3);(4)4.【解析】

(1)根據(jù)C點(diǎn)坐標(biāo)確定原點(diǎn)位置,然后作出坐標(biāo)系即可;(2)首先確定A、B、C三點(diǎn)關(guān)于y軸對(duì)稱(chēng)的點(diǎn)的位置,再連接即可;(3)根據(jù)點(diǎn)在坐標(biāo)系中的位置寫(xiě)出其坐標(biāo)即可(4)利用長(zhǎng)方形的面積剪去周?chē)嘤嗳切蔚拿娣e即可.【詳解】解:(1)如圖所示:(2)如圖所示:(3)結(jié)合圖形可得:;(4).【點(diǎn)睛】此題主要考查了作圖??軸對(duì)稱(chēng)變換,關(guān)鍵是確定組成圖形的關(guān)鍵點(diǎn)的對(duì)稱(chēng)點(diǎn)位置.22、(1)y=﹣x2+2x+1;(2)P(2,1)或(,);(1)存在,且Q1(1,0),Q2(2﹣,0),Q1(2+,0),Q4(﹣,0),Q5(,0).【解析】

(1)根據(jù)拋物線的解析式,可得到它的對(duì)稱(chēng)軸方程,進(jìn)而可根據(jù)點(diǎn)B的坐標(biāo)來(lái)確定點(diǎn)A的坐標(biāo),已知OC=1OA,即可得到點(diǎn)C的坐標(biāo),利用待定系數(shù)法即可求得該拋物線的解析式.(2)求出點(diǎn)C關(guān)于對(duì)稱(chēng)軸的對(duì)稱(chēng)點(diǎn),求出兩點(diǎn)間的距離與CD相比較可知,PC不可能與CD相等,因此要分兩種情況討論:①CD=PD,根據(jù)拋物線的對(duì)稱(chēng)性可知,C點(diǎn)關(guān)于拋物線對(duì)稱(chēng)軸的對(duì)稱(chēng)點(diǎn)滿(mǎn)足P點(diǎn)的要求,坐標(biāo)易求得;②PD=PC,可設(shè)出點(diǎn)P的坐標(biāo),然后表示出PC、PD的長(zhǎng),根據(jù)它們的等量關(guān)系列式求出點(diǎn)P的坐標(biāo).(1)此題要分三種情況討論:①點(diǎn)Q是直角頂點(diǎn),那么點(diǎn)Q必為拋物線對(duì)稱(chēng)軸與x軸的交點(diǎn),由此求得點(diǎn)Q的坐標(biāo);②M、N在x軸上方,且以N為直角頂點(diǎn)時(shí),可設(shè)出點(diǎn)N的坐標(biāo),根據(jù)拋物線的對(duì)稱(chēng)性可知MN正好等于拋物線對(duì)稱(chēng)軸到N點(diǎn)距離的2倍,而△MNQ是等腰直角三角形,則QN=MN,由此可表示出點(diǎn)N的縱坐標(biāo),聯(lián)立拋物線的解析式,即可得到關(guān)于N點(diǎn)橫坐標(biāo)的方程,從而求得點(diǎn)Q的坐標(biāo);根據(jù)拋物線的對(duì)稱(chēng)性知:Q關(guān)于拋物線的對(duì)稱(chēng)點(diǎn)也符合題意;③M、N在x軸下方,且以N為直角頂點(diǎn)時(shí),方法同②.【詳解】解:(1)由y=ax2﹣2ax+b可得拋物線對(duì)稱(chēng)軸為x=1,由B(1,0)可得A(﹣1,0);∵OC=1OA,∴C(0,1);依題意有:,解得;∴y=﹣x2+2x+1.(2)存在.①DC=DP時(shí),由C點(diǎn)(0,1)和x=1可得對(duì)稱(chēng)點(diǎn)為P(2,1);設(shè)P2(x,y),∵C(0,1),P(2,1),∴CP=2,∵D(1,4),∴CD=<2,②由①此時(shí)CD⊥PD,根據(jù)垂線段最短可得,PC不可能與CD相等;②PC=PD時(shí),∵CP22=(1﹣y)2+x2,DP22=(x﹣1)2+(4﹣y)2∴(1﹣y)2+x2=(x﹣1)2+(4﹣y)2將y=﹣x2+2x+1代入可得:,∴;∴P2(,).綜上所述,P(2,1)或(,).(1)存在,且Q1(1,0),Q2(2﹣,0),Q1(2+,0),Q4(﹣,0),Q5(,0);①若Q是直角頂點(diǎn),由對(duì)稱(chēng)性可直接得Q1(1,0);②若N是直角頂點(diǎn),且M、N在x軸上方時(shí);設(shè)Q2(x,0)(x<1),∴MN=2Q1O2=2(1﹣x),∵△Q2MN為等腰直角三角形;∴y=2(1﹣x)即﹣x2+2x+1=2(1﹣x);∵x<1,∴Q2(,0);由對(duì)稱(chēng)性可得Q1(,0);③若N是直角頂點(diǎn),且M、N在x軸下方時(shí);同理設(shè)Q4(x,y),(x<1)∴Q1Q4=1﹣x,而Q4N=2(Q1Q4),∵y為負(fù),∴﹣y=2(1﹣x),∴﹣(﹣x2+2x+1)=2(1﹣x),∵x<1,∴x=﹣,∴Q4(-,0);由對(duì)稱(chēng)性可得Q5(+2,0).【點(diǎn)睛】本題考查了二次函數(shù)的知識(shí)點(diǎn),解題的關(guān)鍵是熟練的掌握二次函數(shù)相關(guān)知識(shí)點(diǎn).23、(1)見(jiàn)解析;(2)步行距離越大,燃燒脂肪越多;(3)1.【解析】

(1)依據(jù)手機(jī)圖片的中的數(shù)據(jù),即可補(bǔ)全表格;(2)依據(jù)步行距離與燃燒脂肪情況,即可得出步行距離越大,燃燒脂肪越多;(3)步行距離和卡路里消耗數(shù)近似成正比例關(guān)系,即可預(yù)估她一天步行距離.【詳解】解:(1)由圖可得,4月5日的步行數(shù)為7689,步行距離為5.0公里,卡路里消耗為142千卡,燃燒脂肪18克;4月6日的步行數(shù)為15638,步行距離為1.0公里,卡路里消耗為234千卡,燃燒脂肪30克;(2)由圖可得,步行距離越大,燃燒脂肪越多;故答案為:步行距離越大,燃燒脂肪越多;(3)由圖可得,步

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論