版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
線性代數(shù)難點(diǎn)解析(Analysisofdifficultiesinlinearalgebra)
Ananalysisofdifficultproblemsinlinearalgebra.Txt
Chapterdeterminant
I.emphasis
1.Understanding:thedefinitionofadeterminant,acofactor,
analgebraiccofactor.
2,grasp:determinantofthebasicnatureandinference.
3,theuseof:theuseofdeterminantpropertiesandcalculation
methodstocalculatethedeterminant,usingtheClemrulefor
solvingequations.
Two,difficulties
Theapplicationofdeterminantinthesolutionoflinear
equations,theinverseofmatrices,the1inearcorrelationof
vectorsandtheeigenvaluesofmatrices.
Threeimportantformula
1,ifAisamatrixofN,then,kA/=kn/A/
2,ifAandBarenordermatrix,is/AB/A/B/=,,,
3,ifAisamatrixofN,then,A*//A/n-1=
IfAisninvertiblematrix,then/A-l/A/-1/=
4,ifAisnordersquare,lambdaI(i=l,2,...N,A)isthe
characteristicvalueofA/PIlambda=I
Four,questionsandSolutions
1,thepropositionabouttheconceptandpropertyof
determinant
2,thecalculationofthedeterminant(method)
1)usedefined
2)reducetheorderofadeterminantaccordingtoarow(column)
3)thenatureofthedeterminant
Rows(columns)addedtothesamerow(column)tobeappliedto
theequalityoftheelementsofeachcolumn(row).
Doubleorminusthesameline(column)ofeachrow(column),
reducethedeterminant,orturnitintotheupper(lower)
triangledeterminant.
Third,successive(column)additionandsubtraction,and
simplifieddeterminant.
Breakthedeterminantintothesumanddifferenceofseveral
determinants.
4)recursivemethodisapplicabletothedeterminantwith
strongregularityandzeroelements
5)mathematicalinduction,moreusedtoprove
3,useClem'slawtosolvelinearequations
IfD=A//=0,thenAx=bhasauniquesolution,i.e.
X1=D1/D,x2=,D2/D,...Xn=Dn/D
WhereDjistochangethecoefficientsofXJintoconstantsin
D.
Note:theClemlawappliesonlytoequationswhosenumberof
equationsisequaltothenumberofunknowns.
4,usingthecoefficientdeterminantsolutionoftheproblem
ofdiscriminationofAequations
1)when,A/=0,Ax=0homogeneousequationswithnonzero
solution;non-homogeneousequationsAx=Bisnottheonly
solution(mayhavenosolution,mayalsohaveinfinitelymany
solutions)
2)when,A/=0,theequationAx=0onlyzerosolution;
non-homogeneousequationAx=Bistheonlysolution,this
solutioncanbecalculatedbytheClemrule
Secondchaptermatrix
I.emphasis
1.Understanding:thedefinitionandpropertiesofmatrices,
severalspecialmatrices(zeromatrix,upper(lower)
triangularmatrix,symmetricmatrix,diagonalmatrix,inverse
matrix,orthogonalmatrix,adjointmatrix,partitionedmatrix)
2,master:
1)matrixofvariousoperationsandrulesofoperation
2)themethodofjudginginvertiblematrixandinvertingmatrix
3)elementarytransformationmethodofmatrix
Two,difficulties
1、theelementarytransformationofinversematrixofmatrix
2,therelationbetweenelementarytransformationand
elementarymatrix
Three,theimportantformulaanddifficultyanalysis
1,linearoperation
1)theexchangelawisgenerallynotestablished,namelyABand
BA
2)somealgebraicidentitiescannotbeapplieddirectly,such
asA,BandC,allofwhicharenordermatrices
(A+B)2=A2+AB+BA+B2=A2+2AB+B2
(AB)2=(AB)(AB=A2B2)
(AB)k=AkBk
(A+B)(A-B=A2-B2)
AllofthesearesetuponlywhenAandBareexchanged,i.e.,
AB=BA.
3)A=0orB=0cannotbederivedfromAB=0
4)theAB=ACcannotbereachedbyB=C
5)A=IorA=0cannotbederivedfromA2=A
6)theA2=0cannotbereachedbyA=0
7)thedifferencebetweennumbermultiplicationmatrixand
numbermultiplicationdeterminant
2andinversematrix
1)(A-1)-1=A
2)(kA)-1=(1/k)A-1(k=0).
3)(AB)-1=B-1A-1
4)(A-1)T=(AT)-1
5)/A/A=-1,-1,
3,matrixtranspose
1)(AT)T=A
2)(kA)T=kAT,(kisanyrealnumber)
3)(AB)T=BTAT
4)(A+B)T=AT+BT
4adjointmatrix
1)A*A=AA*=/A/I(AB)*=B*A*
2)(A*)/A/n-2/A**=/=/A/n-1(n=2).
3)(kA)*=knTA*(A*)T=(AT)*
4)ifR(A)=n,thenR(A*)=n
IfR(A)=n-l,thenR(A*)=1
IfR(A)
5)ifAisreversible,(A*)-1=(1//A/A),-1(A*)=(A-l)
*,A*=/A/A-l
5,elementarytransformation(threekinds)
1)changethetwoline(column)
2)withK(k=0)multipliedbyarow(column)inallelements
3)theKofarow(column)ofelementsisdoubledtoanother
line(column)ofthecorrespondingelement
Note:theprimarytransformationisusedtofindtherank,and
therowandcolumntransformationscanbeusedtogether
Inversematrixcanonlybechangedbyroworcolumn
Thesolutionof1inearequationscanonlybechangedbyrow
transformation
6,elementarymatrix
1)amatrixobtainedbyelementarytransformationofaunit
matrix
2)theelementarymatrixPtakestheleft(right)A,andthe
resultingPA(AP)isAandmakesthesamerow(column)
transformationasP
3)elementarymatricesareinvertible,andtheirinverseisof
thesametypeasElementaryMatrices
E-lij=Eij,E(-1),I(k),=Ei(1/k),E(-1),ij(k),=Eij(-k)
Matrixequation7
1)anequationcontaininganunknownmatrix
2)thenecessaryandsufficientconditionsforthesolutionof
matrixequation
AX=Bhas<==>B,eachcolumncanberepresented1inearlybythe
columnvectorofA
<==>r(A)=r(A,B)
Four,questionsandSolutions
1.Propositionsontheconceptandnatureofmatrices
2,theoperationofthematrix(add,multiply,multiply,
transpose)
3,thematrixreversibledecision
NordermatrixA<==>arereversiblematrixofordernB,AB=BA=I
<==>/A/=0
<==>r(A)=n
Thecolumn(row)vectorsofthe<==>Aarelinearlyindependent
<==>Ax=0hasonlyzerosolutions
<==>anyB,Ax=bmakesauniquesolution
Theeigenvaluesof<==>Aarenotzero
4,matrixinversion
1)definethemethod:findB,makeAB=IorBA=I
2:AT=(1/)withthemethodofA*/A)
Note:usingthemethodofinverse,algebraiccofactorinline
typeshouldbeverticallywritteninA*,don'tomitthe
calculationofAij(-1)i+j,whenn>3,usuallywithelementary
transformationmethod.
3)elementarytransformationmethod:(A,I)onlyfor
transformation(I,AT)
4)blockmatrixmethod
5.SolvingmatrixequationAX=B
1)ifAisreversible,thenX=A-1BcanfirstfindA-l,andthen
multiplyA-IBtofindX
2)iftheAisreversible,theprimarytransformationmethod
canbeusedtodirectlyfindtheX
(A,B)(I,Xelementaryrowtransformation)
3)iftheAisnotinvertible,theunknownsequenceequation
canbesetup,andtheGausseliminationmethodisusedasa
ladderequationgroup,andthentheconstantsofeachcolumn
aresolvedrespectively.
Thethirdchapter,linearequations
I.emphasis
1,understanding:vectorvectoroperationsandvectorandthe
linearcombinationoflinearform,theconceptofmaximum
linearlyindependentgroup,theconceptoflineardependence
andlinearindependence,theconceptofvectorgrouprank,
conceptsandpropertiesoftherankofmatrix,theconceptof
solutionsisbased.
2,master:theoperationofthevectorandthelawofoperation,
thecalculationoftherankofthematrix,thestructureofthe
solutionofthehomogeneousandnon-homogeneouslinear
equations.
3,theuseof:1inearcorrelation,linearindependence
judgments,linearequations,thesolutionofthesolution,
homogeneousandnon-homogeneouslinearequationssolution.
Two,difficulties
Decisionoflinearcorrelationandlinearindependence.The
relationbetweentherankofavectorsetandtherankofa
matrix.Therelationbetweenlinearrepresentationandrankof
equationsandvectors.
Three.Analysisofkeyanddifficultpoints
1.Theconceptandoperationofn-dimensionalvectors
1)concept
2)operations
Ifalpha=(Al,A2),...(an)T,beta=(Bl,B2),...BN,T)
Addition:alpha+beta=(al+bl,a2+b2,...(an+bn)T
Numbermultiplication:k=ka2(KAI),…Kan,T)
Internalproduct:(alpha,beta)=albl+a2b2+,…+anbn=Alpha
Tbeta=betaTalpha
2,linearcombinationandlinearlist
3,linearcorrelationandlinearindependence
1)concept
2)thenecessaryandsufficientconditionoflinearcorrelation
andlinearindependence
Linearcorrelation
Alpha1,alpha2,...Linearcorrelationofalphas
<==>homogeneousequations(alpha1,alpha2,...(alphas)(xl,
X2),…(XS)T=0hasnonzerosolutions
Rankr<==>vectorgroup(alpha1,alpha2,...(alpha,s)less
thans(numberofvectors)
Thereisa<==>alphai(i=l,2,...(s)canbelinearlyexpressed
bytherestoftheS-1vectors
Special:nan-dimensionalvectorlinearcorrelation<==>,
alpha1,alpha2...N,alpha=0
N+ln-dimensionalvectorsarelinearlyrelated
Linearlyindependent
Alpha1,alpha2,...Alphasislinearlyindependent
<==>homogeneousequations(alpha1,alpha2,...(alphas)(xl,
X2),…(XS)T=0,onlyzerosolution
Rankr<==>vectorgroup(alpha1,alpha2,...(alphas)=s
(numberofvectors)
<==>everyvectoralphai(i=l,2,...S)cannotbelinearly
representedbytherestoftheS_1vectors
Importantconclusions
TheAandladdervectorsarelinearlyindependent
B,alpha1,alpha2,...Alphasislinearlyindependent,and
anypartofitisalphaII,alphai2,...Thealphaitmustbe
linearlyindependent,andanyofitsextendedgroupsmustbe
linearlyindependent.
ThevectorsofC,22orthogonal,nonzerovectorsmustbe
linearlyindependent.
4,therankofvectorgroupandtherankofmatrix
1)theconceptofmaximallinearlyindependentgroups
2)therankofavectorgroup
3)rankofamatrix
R(A)=R(AT)
TheR(A+B)=R(A)R(B)
TheR(kA)=R(A),k=0
TheR(AB)=min(R(A),R(B))
IfAisreversible,thenR(AB)=R(B);ifBisreversible,
thenR(AB)=R(A)
TheAism*n*Bnarray,Parray,AB=0,R(A)+R(B=n)
4)therelationbetweentherankofavectorsetandtherank
ofamatrix
RowrankofR(A)=A(rankofrowvectorgroupofmatrixA)
=rowrankofA(rankofcolumnvectorgroupofmatrixA)
Therankofthematrixandthevectorgroupareinvariantafter
elementarytransformation
Ifthevectorgroup(I)by(II)lineartable,R(I)=R(II).
Inparticular,theequivalentvectorgroupshavethesamerank,
butthesamevectorsetsarenotnecessarilyequivalent.
5,theconceptandsolutionofthefundamentalsolution
1)concept
2)seekingthelaw
Astheelementaryrowtransformationintotrapezoidalmatrix
ofA,saideachnonzerorowinthefirstnonzerocoefficients
representtheunknownisthemainelement(atotalofR(A)is
amainelement,thentheotherremainingunknown)isafree
variable(atotalofn-R(A)a),thefreevariablesaccording
tostepaftertheassignment,thenyoucangetintothesolving
systemofbasicsolutions.
Thedeterminationofnonzerosolutionsfor6andhomogeneous
equations
1)letAbeam*nmatrix,andAx=0hasanonzerosolution,
andthenecessaryandsufficientconditionisR(A)<n,orA's
columnvectorislinearlyrelated.
2)ifAisnmatrix,Ax=0nonzerosolutionisnecessaryand
sufficientconditionsofA=0,
3)Ax=0,thesufficientconditionofnonzerosolutionism
<n,thatis,thenumberofequationsandthenumberofunknowns
7,thedeterminationofthesolutionsofnonhomogeneouslinear
equations
1)letAbethem*nmatrix,andAx=Bhasthenecessaryand
sufficientconditionthattherankofthecoefficientmatrix
Aisequaltotherankoftheaugmentedmatrix(Aincrease),
thatis,R(A)=R(A+)
2)letAbem*nmatrix,equationAx=b
Thereisauniquesolution<==>R(A)=R(A=n)
Thereareinfinitelymanysolutions<==>R(A)=R(A)
Thesolutionof<==>R(A)+l=r(A)
8,thestructureofsolutionsofnonhomogeneouslinear
equations
SuchasnlinearequationsAx=Bsolution,2,...T,ETAisthe
correspondinghomogeneousequationsAx=0basedsolutions,e
isasolutionofAx=B,KIl+k22+...+ktAx=Bt+zetaETA
isthegeneralsolution.
1)ifE1.2isAx=B,1-,zetazeta2=0Axsolution
2)ifeisAx=B,Ax=0isETAsolutionis+k=BorAxzeta
ETAsolution
3)ifAx=Bhasauniquesolution,thenAx=0hasonlyzero
solutions;conversely,whenAx=0hasonlyzerosolutions,Ax
=Bhasnoinfinitesolution(mayhavenosolutionandmayhave
onlyonesolution)
Four,questionsandSolutions
1.Propositionsabouttheconceptandpropertiesof
n-dimensionalvectors
2.Additionandmultiplicationofvectors
3,linearcorrelationandlinearindependenceproof
1)definitionmethod
LetKIalphal+k2alpha2+...+ks=s=0,thenmakeanidentical
deformationontheupperform(closetotheknowncondition)
B=CcangetAB=AC,soyoucanmultiplyaAontheupperform
bytheinformationoftheknowncondition
Secondly,theupperformisexpandedandtransformeddirectly
intohomogeneouslinearequationsbyknownconditions.Finally,
KIandK2areprovedbyanalysis,...TakethevalueofKSand
drawthedesiredconclusion.
2)usingarank(equaltothenumberofvectors)
3)thehomogeneousequationshaveonlyzerosolutions
4)reductiontoabsurdity
4,therankandthemaximallinearindependentgroupofthe
directionalsetaregiven
Byusingtheprimarytransformationmethod,thevectorgroup
istransformedintoamatrixandsolvedbyelementary
transformation.
5,therankofthematrix
Commonelementarytransformationmethod.
6,solvinghomogeneouslinearequationsandnon-homogeneous
linearequations
Thefourthchapterislinearspace
I.emphasis
1.Understandingtheconceptsoflinearspaces,bases,
dimensions,innerproduct,length,angleanddistance,
orthogonalvectorsandorthonormalbases,orthogonalmatrices
2,master:Rnandtheoperationrulesofthevector.
Calculationofinnerproduct,length,angleanddistance.
3.Use:theorthogonalityoftwovectors.
Two,difficulties
Propertiesandapplicationsoforthogonalmatrices.
Three.Analysisofkeyanddifficultpoints
1.Theconceptsandpropertiesoflinearspacesandbases
2,innerproduct,distanceandincludedangle
1)innerproduct:alpha=beta=albl+a2b2+…+anbn
2)length:"alpha"=(alpha,alpha)=al2+a22+(squareroot...
Thesquarerootof+an2)
3)distance:D="alphabeta”=[(al-bl)2+(A2-B2)2+...+
(an-bn)thesquarerootof2]
4:COS)angletheta=(alpha,beta)/("alpha""beta")
Theta=arccosE(alpha,beta)/("alpha""beta")]
5)orthogonalanglealphaandbetais90degrees,recordedas
analphabeta
Alphaandbetaalpha-beta=0orthogonal<==>
6)orthogonalvectorsets:anytwovectorsareperpendicular
toeachother
Anysetofnonzeroorthogonalvectorsmustbelinearly
independent
ThenumberofvectorsofanynonzeroorthogonalvectorsinRn
isnomorethann
3.Orthogonalizationofvectors
1)theconceptoforthonormalbasis
2)Schmidtorthogonalization(firstorthogonalization,re
integration)
4、orthogonalmatrix
1)concept
2)properties
IftheA/A/==>orthogonalarrayor-1=1
==>A-1isstillanorthogonalarray
==>ifBBT=I,AB=I(AB)T
==>Al=AT
3)thenordermatrixAisthenrowvectoroftheorthogonal
matrix<==>A,whichconstitutesasetofstandardorthogonal
basesofRn
Thencolumnvectorsof<==>Aconstituteasetofstandard
orthogonalbasesofRn
Four,questionsandSolutions
1,determinewhetheragivensetis1inearornot
Generally,itisdeterminedbythedefinitionandpropertyof
linearspace
2,findthebasisanddimensionoflinearspace
3,verifythatthen-dimensionalvectorsetisasetofstandard
orthogonalbasesofRn
Steps:1)thevectorsare22orthogonal,i.e.,theinnerproduct
iszero
2)eachvectorisaunitvector,thatis,thelengthis1
4,calculatetheinnerproductoftwovectors,theangleand
distancebetweenvectors
5,thedirectionofthestandardsetoforthogonal
Steps:1)tojudgethelinearcorrelationofvectors,only
linearlyindependentvectorscanbenormalized
2)orthogonalization(Schmidtorthogonalization)
3)standardVI=1///1//betabeta
6,provethepropositionaboutorthogonalmatrix
7.Thejudgmentoforthogonalmatrix
1)definitionmethod:ifAAT=In,==>Aisorthogonalmatrix
IfAATandInarenotorthogonalarray==>A
Thismethodismostlyusedfortheproofofabstractmatrix.
2)thenordermatrixAisthenrowvector(orcolumnvector)
oftheorthogonalmatrix<==>A,whichconstitutesasetof
standardorthogonalbasesofRn
Therow(column)vectorsof<==>Aareunitvectorsand22
orthogonal
Themethodisusedtogivethematrixofspecificvalues.
Thefifthchapteriseigenvalueandeigenvector
I.emphasis
1.Understanding:theconceptofeigenvaluesandeigenvectors
andtheirbasicproperties.
Theconceptandpropertyofsimilarmatrix,theconditionof
thematrixsimilartothediagonalmatrix.
Jordanmatrix.
2.Master:themethodofcomputingeigenvaluesand
eigenvectors.
Findasimilardiagonalmatrix.
Two,difficulties
Similaritydiagonalizationanditsapplications.
Three.Analysisofkeyanddifficultpoints
1.Conceptsandpropertiesofeigenvaluesandeigenvectorsof
matrices
1)concept
Note:iflambdaistheeigenvaluesofA,thenI-A=0/lambda,
lambda,soI-Aisnotinvertiblematrix
IfafeatureisnotA/I-A/lambdavalueisnotequalto0,
sothelambdaI-Aisaninvertiblematrix
Inparticular,the0istheeigenvaluesofA/A/0<==>A=<==>
irreversible
ThebasicsolutionofAx=0isthe1inearlyindependent
characteristicvectoroflambda=0
FornorderA,ifR(A)=1,thenlambda1=sigmaaii,lambda
2=lambda3=...Lambda=n=0
2)properties
IfXIandX2arecharacteristicvectorscorrespondingtothe
characteristicvaluelambdaI,thenthelinearcombinationof
XI(klxl+k2x2)andX2(nonzero)isstillthecharacteristic
vectoroflambdaI.TheeigenvectorsoflambdaIarenotunique,
andinturn,afeaturevectorcanonlybelongtooneeigenvalue.
Thecharacteristicvectorsofdifferenteigenvaluesare
linearlyindependent,andwhenlambdaIistheKheavy
eigenvaluesofA,AbelongstolambdaI,andthenumberof
linearlyindependenteigenvectorsisnotmorethank.
Thesumofeigenvaluesisequaltothesumofelementsonthe
principaldiagonalofamatrix,andtheproductofthe
eigenvaluesisequaltothevalueofthedeterminantofthe
matrixA.
2,theconceptandpropertyofsimilarmatrix
1)concept
2)properties
IfA~B==>AT~BT
==>Al~B-l(ifAandBarereversible)
==>Ak?Bk(kispositiveinteger)
==>/I-A/lambda=lambda/I-B/AandB,whichhavethesame
characteristicvalue
==>/A/B/,=A,B,andatthesametimereversibleor
irreversible
==>r(A)=R(B)
3.Thenecessaryandsufficientconditionsforthe
diagonalizationofmatrices
1)theconceptofsimilardiagonalization
2)sufficientandnecessarycondition
Aissimilartodiagonalarray.<==>Ahasnlinearlyindependent
eigenvectors
Ineacheigenvalueof<==>A,thenumberoflinearlyindependent
eigenvectorsisexactlyequaltotheeigenvaluesofthe
eigenvalues
3)thesufficientconditionthatAissimilartoadiagonal
matrixisthatAhasndifferenteigenvalues
4,symmetrymatrixsimilarity
1)therealsymmetricmatrixmustbediagonalization
2)characteristics
Theeigenvaluesareal1realnumbers,andthefeaturevectors
arerealvectors
Theeigenvectorsofdifferenteigenvaluesareorthogonalto
eachother
TheKeigenvaluesmusthaveKlinearlyindependenteigenvectors,
ormustber(lambdaI-A)=n-k
Four,questionsandSolutions
1.Themethodoffindingeigenvaluesandeigenvectors
1)pairofabstractmatrices
Basedonthedefinitionandpropertiesofeigenvaluesand
eigenvectors,theeigenvaluevaluesarederived.
2)pairofdigitalmatrices
FromthecharacteristicequationofI-A/lambda=0for
eigenvaluelambdaI(shouldben,containingheavyroot)
Solvingthehomogeneousequationgroup(lambdaI-A)x=0,and
itsbasicsolutionisthelinearlyindependentcharacteristic
vectorcorrespondingtolambda.
2,todeterminewhetherAcanbediagonalization
1)method:nordermatrixAfeaturevectornlinearindependent
diagonalization<==>A
Methodtwo:foranyoftheeigenvaluesofthenordersquare
A,I(setasakiradical)hasN-R(lambdail-A)=ki
2)theprocedureoftransformingAintodiagonalmatrices
First,findtheeigenvaluesofA1,lambda2,...An.
Second,thecorrespondinglinearindependenteigenvectorsxl,
x2,...Xn.
1.
StructureinvertiblematrixP=(xl,X2)...Xn),isP1AP[lambda
=2...]
Lambdan
3.Thedeterminantisobtainedbyeigenvalueandsimilarity
matrix
1)/A/lambda1=lambda2...Lambdan,wherelambda1,lambda
2,...LambdanistheNeigenvalueofA
2)ifA~B/A/B/=,,
4,theuseofsimilardiagonalizationAn
IfthereisaA",invertiblematrixP,theP-1AP=lambda,
then
A=PandAn=PPllambda,lambdaNP1
Whichissimilartoastandardtype:A
5.Theproofofeigenvaluesandeigenvectors
Thesixthchapter,therealtwotimes
I.emphasis
1.Understanding:theconceptofthetwotype,therelation
betweenthetwotypesofsymmetricmatrices,theconceptof
matrixcontract,theconceptofstandardtypeandstandard
standardtype,theconceptofpositivedefinitetypetwoand
theconceptofpositivedefinitematrix.
2:graspthesymmetrymatrixfromthetwoorderandfindthe
twoformfromthesymmetricmatrix.
TherelationshipbetweenthecontractandtakingWestvariable
transformation.
Thejudgementofpositivedefinitetwotypeandpositive
definitematrix.
3,application:orthogonaltransformationmethod,matching
methodandprimarytransformationmethod,twotimesfor
standardtype,fromstandardtypetostandard,standardtype.
Two,difficulties
Thetwotypeisstandardtype.
Three.Analysisofkeyanddifficultpoints
Theconceptsof1andtwotypesandtheirstandardtypes
1)twotimes
Thematrixofthetwotypeisunique,andthequadraticmatrix
shouldbewrittenimmediatelybythetwotype.Onthecontrary,
theChodeMisymmetrymatrixhastobeconstructedtwotimes.
2)thestandardformofthetwotype
Concept
Positiveandnegativeinertialindex,R(f),=r(A)=p+q
Whentheorthogonaltransformationisthestandardtype,the
squarecoefficientofthestandardtypemustbetheNeigenvalue
ofthematrixA,andthemethoddoesnothavethisproperty.
3)inertiatheorem
Thepositiveandnegativeinertialindexofthetwotypeisthe
onlycon
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版房地產(chǎn)反擔(dān)保抵押合同附件十3篇
- 二零二五年度綠色物流鋼材運(yùn)輸服務(wù)合同2篇
- 二零二五年度車(chē)輛租賃與車(chē)輛銷(xiāo)售服務(wù)合同2篇
- 二零二五年度高端商務(wù)汽車(chē)租賃服務(wù)合同協(xié)議2篇
- 二零二五版冷鏈物流訂餐服務(wù)合同范本與質(zhì)量保證2篇
- 二零二五年擔(dān)保合同范本修訂要點(diǎn)與執(zhí)行建議6篇
- 二零二五版房產(chǎn)抵押投資合作合同范本3篇
- 二零二五版物流運(yùn)輸企業(yè)勞動(dòng)合同范本與司機(jī)權(quán)益保障服務(wù)合同3篇
- 二零二五年度房地產(chǎn)經(jīng)紀(jì)服務(wù)合同補(bǔ)充協(xié)議2篇
- 二零二五版12333職業(yè)培訓(xùn)補(bǔ)貼政策合同3篇
- 上海紐約大學(xué)自主招生面試試題綜合素質(zhì)答案技巧
- 辦公家具項(xiàng)目實(shí)施方案、供貨方案
- 2022年物流服務(wù)師職業(yè)技能競(jìng)賽理論題庫(kù)(含答案)
- 危化品安全操作規(guī)程
- 連鎖遺傳和遺傳作圖
- DB63∕T 1885-2020 青海省城鎮(zhèn)老舊小區(qū)綜合改造技術(shù)規(guī)程
- 高邊坡施工危險(xiǎn)源辨識(shí)及分析
- 中海地產(chǎn)設(shè)計(jì)管理程序
- 簡(jiǎn)譜視唱15942
- 《城鎮(zhèn)燃?xì)庠O(shè)施運(yùn)行、維護(hù)和搶修安全技術(shù)規(guī)程》(CJJ51-2006)
- 項(xiàng)目付款審核流程(visio流程圖)
評(píng)論
0/150
提交評(píng)論