2024屆浙江省金華、麗水市中考數(shù)學仿真試卷含解析_第1頁
2024屆浙江省金華、麗水市中考數(shù)學仿真試卷含解析_第2頁
2024屆浙江省金華、麗水市中考數(shù)學仿真試卷含解析_第3頁
2024屆浙江省金華、麗水市中考數(shù)學仿真試卷含解析_第4頁
2024屆浙江省金華、麗水市中考數(shù)學仿真試卷含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2024屆浙江省金華、麗水市中考數(shù)學仿真試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.設0<k<2,關于x的一次函數(shù)y=(k-2)x+2,當1≤x≤2時,y的最小值是()A.2k-2B.k-1C.kD.k+12.如圖,PA,PB分別與⊙O相切于A,B兩點,若∠C=65°,則∠P的度數(shù)為()A.65° B.130° C.50° D.100°3.光年天文學中的距離單位,1光年大約是9500000000000km,用科學記數(shù)法表示為A. B. C. D.4.如圖,在菱形ABCD中,∠A=60°,E是AB邊上一動點(不與A、B重合),且∠EDF=∠A,則下列結(jié)論錯誤的是()A.AE=BF B.∠ADE=∠BEFC.△DEF是等邊三角形 D.△BEF是等腰三角形5.已知是二元一次方程組的解,則的算術平方根為()A.±2 B. C.2 D.46.-3的相反數(shù)是()A. B.3 C. D.-37.下列計算正確的是()A.2x2-3x2=x2 B.x+x=x2 C.-(x-1)=-x+1 D.3+x=3x8.如圖,在?ABCD中,∠DAB的平分線交CD于點E,交BC的延長線于點G,∠ABC的平分線交CD于點F,交AD的延長線于點H,AG與BH交于點O,連接BE,下列結(jié)論錯誤的是()A.BO=OHB.DF=CEC.DH=CGD.AB=AE9.如圖,AB是定長線段,圓心O是AB的中點,AE、BF為切線,E、F為切點,滿足AE=BF,在上取動點G,國點G作切線交AE、BF的延長線于點D、C,當點G運動時,設AD=y,BC=x,則y與x所滿足的函數(shù)關系式為()A.正比例函數(shù)y=kx(k為常數(shù),k≠0,x>0)B.一次函數(shù)y=kx+b(k,b為常數(shù),kb≠0,x>0)C.反比例函數(shù)y=(k為常數(shù),k≠0,x>0)D.二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),a≠0,x>0)10.平面直角坐標系中,若點A(a,﹣b)在第三象限內(nèi),則點B(b,a)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.如圖,AB⊥BD,CD⊥BD,垂足分別為B、D,AC和BD相交于點E,EF⊥BD垂足為F.則下列結(jié)論錯誤的是()A.AEEC=BEED B.AE12.2018年10月24日港珠澳大橋全線通車,港珠澳大橋東起香港國際機場附近的香港口岸人工島,向西橫跨伶仃洋海域后連接珠海和澳門人工島,止于珠海洪灣,它是世界上最長的跨海大橋,被稱為“新世界七大奇跡之一”,港珠澳大橋總長度55000米,則數(shù)據(jù)55000用科學記數(shù)法表示為()A.55×105 B.5.5×104 C.0.55×105 D.5.5×105二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,已知△ABC中,AB=AC=5,BC=8,將△ABC沿射線BC方向平移m個單位得到△DEF,頂點A,B,C分別與D,E,F(xiàn)對應,若以A,D,E為頂點的三角形是等腰三角形,且AE為腰,則m的值是______.14.關于x的分式方程=2的解為正實數(shù),則實數(shù)a的取值范圍為_____.15.已知扇形AOB的半徑OA=4,圓心角為90°,則扇形AOB的面積為_________.16.如圖,矩形ABCD中,如果以AB為直徑的⊙O沿著滾動一周,點恰好與點C重合,那么的值等于________.(結(jié)果保留兩位小數(shù))17.已知一組數(shù)據(jù)1,2,0,﹣1,x,1的平均數(shù)是1,則這組數(shù)據(jù)的中位數(shù)為_____.18.計算:()﹣1﹣(5﹣π)0=_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)為上標保障我國海外維和部隊官兵的生活,現(xiàn)需通過A港口、B港口分別運送100噸和50噸生活物資.已知該物資在甲倉庫存有80噸,乙倉庫存有70噸,若從甲、乙兩倉庫運送物資到港口的費用(元/噸)如表所示:設從甲倉庫運送到A港口的物資為x噸,求總運費y(元)與x(噸)之間的函數(shù)關系式,并寫出x的取值范圍;求出最低費用,并說明費用最低時的調(diào)配方案.20.(6分)已知:如圖,在△ABC中,AB=BC,∠ABC=90°,點D、E分別是邊AB、BC的中點,點F、G是邊AC的三等分點,DF、EG的延長線相交于點H,連接HA、HC.(1)求證:四邊形FBGH是菱形;(2)求證:四邊形ABCH是正方形.21.(6分)如圖,AB是⊙O的直徑,點C在⊙O上,CE^AB于E,CD平分DECB,交過點B的射線于D,交AB于F,且BC=BD.(1)求證:BD是⊙O的切線;(2)若AE=9,CE=12,求BF的長.22.(8分)如圖,已知二次函數(shù)的圖象與軸交于,兩點在左側(cè)),與軸交于點,頂點為.(1)當時,求四邊形的面積;(2)在(1)的條件下,在第二象限拋物線對稱軸左側(cè)上存在一點,使,求點的坐標;(3)如圖2,將(1)中拋物線沿直線向斜上方向平移個單位時,點為線段上一動點,軸交新拋物線于點,延長至,且,若的外角平分線交點在新拋物線上,求點坐標.23.(8分)如圖,在⊙O的內(nèi)接四邊形ABCD中,∠BCD=120°,CA平分∠BCD.(1)求證:△ABD是等邊三角形;(2)若BD=3,求⊙O的半徑.24.(10分)先化簡再求值:÷(a﹣),其中a=2cos30°+1,b=tan45°.25.(10分)化簡:(x+7)(x-6)-(x-2)(x+1)26.(12分)如圖(1),已知點G在正方形ABCD的對角線AC上,GE⊥BC,垂足為點E,GF⊥CD,垂足為點F.(1)證明與推斷:①求證:四邊形CEGF是正方形;②推斷:的值為:(2)探究與證明:將正方形CEGF繞點C順時針方向旋轉(zhuǎn)α角(0°<α<45°),如圖(2)所示,試探究線段AG與BE之間的數(shù)量關系,并說明理由:(3)拓展與運用:正方形CEGF在旋轉(zhuǎn)過程中,當B,E,F(xiàn)三點在一條直線上時,如圖(3)所示,延長CG交AD于點H.若AG=6,GH=2,則BC=.27.(12分)某市旅游部門統(tǒng)計了今年“五?一”放假期間該市A、B、C、D四個旅游景區(qū)的旅游人數(shù),并繪制出如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖,根據(jù)圖中的信息解答下列問題:(1)求今年“五?一”放假期間該市這四個景點共接待游客的總?cè)藬?shù);(2)扇形統(tǒng)計圖中景點A所對應的圓心角的度數(shù)是多少,請直接補全條形統(tǒng)計圖;(3)根據(jù)預測,明年“五?一”放假期間將有90萬游客選擇到該市的這四個景點旅游,請你估計有多少人會選擇去景點D旅游?

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】

先根據(jù)0<k<1判斷出k-1的符號,進而判斷出函數(shù)的增減性,根據(jù)1≤x≤1即可得出結(jié)論.【詳解】∵0<k<1,∴k-1<0,∴此函數(shù)是減函數(shù),∵1≤x≤1,∴當x=1時,y最小=1(k-1)+1=1k-1.故選A.【點睛】本題考查的是一次函數(shù)的性質(zhì),熟知一次函數(shù)y=kx+b(k≠0)中,當k<0,b>0時函數(shù)圖象經(jīng)過一、二、四象限是解答此題的關鍵.2、C【解析】試題分析:∵PA、PB是⊙O的切線,∴OA⊥AP,OB⊥BP,∴∠OAP=∠OBP=90°,又∵∠AOB=2∠C=130°,則∠P=360°﹣(90°+90°+130°)=50°.故選C.考點:切線的性質(zhì).3、C【解析】

科學記數(shù)法的表示形式為的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】解:將9500000000000km用科學記數(shù)法表示為.故選C.【點睛】本題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.4、D【解析】

連接BD,可得△ADE≌△BDF,然后可證得DE=DF,AE=BF,即可得△DEF是等邊三角形,然后可證得∠ADE=∠BEF.【詳解】連接BD,∵四邊形ABCD是菱形,

∴AD=AB,∠ADB=∠ADC,AB∥CD,

∵∠A=60°,

∴∠ADC=120°,∠ADB=60°,

同理:∠DBF=60°,

即∠A=∠DBF,

∴△ABD是等邊三角形,

∴AD=BD,

∵∠ADE+∠BDE=60°,∠BDE+∠BDF=∠EDF=60°,

∴∠ADE=∠BDF,

∵在△ADE和△BDF中,,

∴△ADE≌△BDF(ASA),

∴DE=DF,AE=BF,故A正確;

∵∠EDF=60°,

∴△EDF是等邊三角形,

∴C正確;

∴∠DEF=60°,

∴∠AED+∠BEF=120°,

∵∠AED+∠ADE=180°-∠A=120°,

∴∠ADE=∠BEF;

故B正確.

∵△ADE≌△BDF,

∴AE=BF,

同理:BE=CF,

但BE不一定等于BF.

故D錯誤.

故選D.【點睛】本題考查了菱形的性質(zhì)、等邊三角形的判定與性質(zhì)以及全等三角形的判定與性質(zhì),解題的關鍵是正確尋找全等三角形解決問題.5、C【解析】二元一次方程組的解和解二元一次方程組,求代數(shù)式的值,算術平方根.【分析】∵是二元一次方程組的解,∴,解得.∴.即的算術平方根為1.故選C.6、B【解析】

根據(jù)相反數(shù)的定義與方法解答.【詳解】解:-3的相反數(shù)為.故選:B.【點睛】本題考查相反數(shù)的定義與求法,熟練掌握方法是關鍵.7、C【解析】

根據(jù)合并同類項法則和去括號法則逐一判斷即可得.【詳解】解:A.2x2-3x2=-x2,故此選項錯誤;

B.x+x=2x,故此選項錯誤;

C.-(x-1)=-x+1,故此選項正確;

D.3與x不能合并,此選項錯誤;

故選C.【點睛】本題考查了整式的加減,熟練掌握運算法則是解題的關鍵.8、D【解析】解:∵四邊形ABCD是平行四邊形,∴AH∥BG,AD=BC,∴∠H=∠HBG.∵∠HBG=∠HBA,∴∠H=∠HBA,∴AH=AB.同理可證BG=AB,∴AH=BG.∵AD=BC,∴DH=CG,故C正確.∵AH=AB,∠OAH=∠OAB,∴OH=OB,故A正確.∵DF∥AB,∴∠DFH=∠ABH.∵∠H=∠ABH,∴∠H=∠DFH,∴DF=DH.同理可證EC=CG.∵DH=CG,∴DF=CE,故B正確.無法證明AE=AB,故選D.9、C【解析】

延長AD,BC交于點Q,連接OE,OF,OD,OC,OQ,由AE與BF為圓的切線,利用切線的性質(zhì)得到AE與EO垂直,BF與OF垂直,由AE=BF,OE=OF,利用HL得到直角三角形AOE與直角BOF全等,利用全等三角形的對應角相等得到∠A=∠B,利用等角對等邊可得出三角形QAB為等腰三角形,由O為底邊AB的中點,利用三線合一得到QO垂直于AB,得到一對直角相等,再由∠FQO與∠OQB為公共角,利用兩對對應角相等的兩三角形相似得到三角形FQO與三角形OQB相似,同理得到三角形EQO與三角形OAQ相似,由相似三角形的對應角相等得到∠QOE=∠QOF=∠A=∠B,再由切線長定理得到OD與OC分別為∠EOG與∠FOG的平分線,得到∠DOC為∠EOF的一半,即∠DOC=∠A=∠B,又∠GCO=∠FCO,得到三角形DOC與三角形OBC相似,同理三角形DOC與三角形DAO相似,進而確定出三角形OBC與三角形DAO相似,由相似得比例,將AD=x,BC=y代入,并將AO與OB換為AB的一半,可得出x與y的乘積為定值,即y與x成反比例函數(shù),即可得到正確的選項.【詳解】延長AD,BC交于點Q,連接OE,OF,OD,OC,OQ,∵AE,BF為圓O的切線,∴OE⊥AE,OF⊥FB,∴∠AEO=∠BFO=90°,在Rt△AEO和Rt△BFO中,∵,∴Rt△AEO≌Rt△BFO(HL),∴∠A=∠B,∴△QAB為等腰三角形,又∵O為AB的中點,即AO=BO,∴QO⊥AB,∴∠QOB=∠QFO=90°,又∵∠OQF=∠BQO,∴△QOF∽△QBO,∴∠B=∠QOF,同理可以得到∠A=∠QOE,∴∠QOF=∠QOE,根據(jù)切線長定理得:OD平分∠EOG,OC平分∠GOF,∴∠DOC=∠EOF=∠A=∠B,又∵∠GCO=∠FCO,∴△DOC∽△OBC,同理可以得到△DOC∽△DAO,∴△DAO∽△OBC,∴,∴AD?BC=AO?OB=AB2,即xy=AB2為定值,設k=AB2,得到y(tǒng)=,則y與x滿足的函數(shù)關系式為反比例函數(shù)y=(k為常數(shù),k≠0,x>0).故選C.【點睛】本題屬于圓的綜合題,涉及的知識有:相似三角形的判定與性質(zhì),切線長定理,直角三角形全等的判定與性質(zhì),反比例函數(shù)的性質(zhì),以及等腰三角形的性質(zhì),做此題是注意靈活運用所學知識.10、D【解析】分析:根據(jù)題意得出a和b的正負性,從而得出點B所在的象限.詳解:∵點A在第三象限,∴a<0,-b<0,即a<0,b>0,∴點B在第四象限,故選D.點睛:本題主要考查的是象限中點的坐標特點,屬于基礎題型.明確各象限中點的橫縱坐標的正負性是解題的關鍵.11、A【解析】

利用平行線的性質(zhì)以及相似三角形的性質(zhì)一一判斷即可.【詳解】解:∵AB⊥BD,CD⊥BD,EF⊥BD,∴AB∥CD∥EF∴△ABE∽△DCE,∴AEED=AB∵EF∥AB,∴EFAB∴ADDB=AEBF,故選項故選:A.【點睛】考查平行線的性質(zhì),相似三角形的判定和性質(zhì),平行線分線段成比例定理等知識,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.12、B【解析】

科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】將度55000用科學記數(shù)法表示為5.5×1.故選B.【點睛】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、或5或1.【解析】

根據(jù)以點A,D,E為頂點的三角形是等腰三角形分類討論即可.【詳解】解:如圖(1)當在△ADE中,DE=5,當AD=DE=5時為等腰三角形,此時m=5.(2)又AC=5,當平移m個單位使得E、C點重合,此時AE=ED=5,平移的長度m=BC=1,(3)可以AE、AD為腰使ADE為等腰三角形,設平移了m個單位:則AN=3,AC=,AD=m,得:,得m=,綜上所述:m為或5或1,所以答案:或5或1.【點睛】本題主要考查等腰三角形的性質(zhì),注意分類討論的完整性.14、a<2且a≠1【解析】

將a看做已知數(shù),表示出分式方程的解,根據(jù)解為非負數(shù)列出關于a的不等式,求出不等式的解集即可得到a的范圍.【詳解】分式方程去分母得:x+a-2a=2(x-1),解得:x=2-a,∵分式方程的解為正實數(shù),∴2-a>0,且2-a≠1,解得:a<2且a≠1.故答案為:a<2且a≠1.【點睛】分式方程的解.15、4π【解析】根據(jù)扇形的面積公式可得:扇形AOB的面積為,故答案為4π.16、3.1【解析】分析:由題意可知:BC的長就是⊙O的周長,列式即可得出結(jié)論.詳解:∵以AB為直徑的⊙O沿著滾動一周,點恰好與點C重合,∴BC的長就是⊙O的周長,∴π?AB=BC,∴=π≈3.1.故答案為3.1.點睛:本題考查了圓的周長以及線段的比.解題的關鍵是弄懂BC的長就是⊙O的周長.17、2【解析】

解:這組數(shù)據(jù)的平均數(shù)為2,

有(2+2+0-2+x+2)=2,

可求得x=2.

將這組數(shù)據(jù)從小到大重新排列后,觀察數(shù)據(jù)可知最中間的兩個數(shù)是2與2,

其平均數(shù)即中位數(shù)是(2+2)÷2=2.

故答案是:2.18、1【解析】

分別根據(jù)負整數(shù)指數(shù)冪,0指數(shù)冪的化簡計算出各數(shù),即可解題【詳解】解:原式=2﹣1=1,故答案為1.【點睛】此題考查負整數(shù)指數(shù)冪,0指數(shù)冪的化簡,難度不大三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)y=﹣8x+2560(30≤x≤1);(2)把甲倉庫的全部運往A港口,再從乙倉庫運20噸往A港口,乙倉庫的余下的全部運往B港口.【解析】試題分析:(1)設從甲倉庫運x噸往A港口,根據(jù)題意得從甲倉庫運往B港口的有(1﹣x)噸,從乙倉庫運往A港口的有噸,運往B港口的有50﹣(1﹣x)=(x﹣30)噸,再由等量關系:總運費=甲倉庫運往A港口的費用+甲倉庫運往B港口的費用+乙倉庫運往A港口的費用+乙倉庫運往B港口的費用列式并化簡,即可得總運費y(元)與x(噸)之間的函數(shù)關系式;由題意可得x≥0,8-x≥0,x-30≥0,100-x≥0,即可得出x的取值;(2)因為所得的函數(shù)為一次函數(shù),由增減性可知:y隨x增大而減少,則當x=1時,y最小,并求出最小值,寫出運輸方案.試題解析:(1)設從甲倉庫運x噸往A港口,則從甲倉庫運往B港口的有(1﹣x)噸,從乙倉庫運往A港口的有噸,運往B港口的有50﹣(1﹣x)=(x﹣30)噸,所以y=14x+20+10(1﹣x)+8(x﹣30)=﹣8x+2560,x的取值范圍是30≤x≤1.(2)由(1)得y=﹣8x+2560y隨x增大而減少,所以當x=1時總運費最小,當x=1時,y=﹣8×1+2560=1920,此時方案為:把甲倉庫的全部運往A港口,再從乙倉庫運20噸往A港口,乙倉庫的余下的全部運往B港口.考點:一次函數(shù)的應用.20、(1)見解析(2)見解析【解析】

(1)由三角形中位線知識可得DF∥BG,GH∥BF,根據(jù)菱形的判定的判定可得四邊形FBGH是菱形;

(2)連結(jié)BH,交AC于點O,利用平行四邊形的對角線互相平分可得OB=OH,OF=OG,又AF=CG,所以OA=OC.再根據(jù)對角線互相垂直平分的平行四邊形得證四邊形ABCH是菱形,再根據(jù)一組鄰邊相等的菱形即可求解.【詳解】(1)∵點F、G是邊AC的三等分點,

∴AF=FG=GC.

又∵點D是邊AB的中點,

∴DH∥BG.

同理:EH∥BF.

∴四邊形FBGH是平行四邊形,

連結(jié)BH,交AC于點O,

∴OF=OG,

∴AO=CO,

∵AB=BC,

∴BH⊥FG,

∴四邊形FBGH是菱形;

(2)∵四邊形FBGH是平行四邊形,

∴BO=HO,F(xiàn)O=GO.

又∵AF=FG=GC,

∴AF+FO=GC+GO,即:AO=CO.

∴四邊形ABCH是平行四邊形.

∵AC⊥BH,AB=BC,

∴四邊形ABCH是正方形.【點睛】本題考查正方形的判定,菱形的判定和性質(zhì),三角形的中位線,熟練掌握正方形的判定和性質(zhì)是解題的關鍵.21、(1)證明見解析;(2)1.【解析】試題分析:(1)根據(jù)垂直的定義可得∠CEB=90°,然后根據(jù)角平分線的性質(zhì)和等腰三角形的性質(zhì),判斷出∠1=∠D,從而根據(jù)平行線的判定得到CE∥BD,根據(jù)平行線的性質(zhì)得∠DBA=∠CEB,由此可根據(jù)切線的判定得證結(jié)果;(2)連接AC,由射影定理可得CE試題解析:(1)證明:∵CE⊥AB,∴∠CEB=90∵CD平分∠ECB,BC=BD,∴∠1=∠2,∠2=∠D.∴∠1=∠D.∴CE∥BD.∴∠DBA=∠CEB=90∵AB是⊙O的直徑,∴BD是⊙O的切線.(2)連接AC,∵AB是⊙O直徑,∴∠ACB=90∵CE⊥AB,可得CE∴在Rt△CEB中,∠CEB=90°,由勾股定理得BC=∴BD=BC=20.∵∠1=∠D,∠EFC=∠BFD,∴△EFC∽△BFD.∴.∴1220∴BF=1.考點:切線的判定,相似三角形,勾股定理22、(1)4;(2),;(3).【解析】

(1)過點D作DE⊥x軸于點E,求出二次函數(shù)的頂點D的坐標,然后求出A、B、C的坐標,然后根據(jù)即可得出結(jié)論;(2)設點是第二象限拋物線對稱軸左側(cè)上一點,將沿軸翻折得到,點,連接,過點作于,過點作軸于,證出,列表比例式,并找出關于t的方程即可得出結(jié)論;(3)判斷點D在直線上,根據(jù)勾股定理求出DH,即可求出平移后的二次函數(shù)解析式,設點,,過點作于,于,軸于,根據(jù)勾股定理求出AG,聯(lián)立方程即可求出m、n,從而求出結(jié)論.【詳解】解:(1)過點D作DE⊥x軸于點E當時,得到,頂點,∴DE=1由,得,;令,得;,,,,OC=3.(2)如圖1,設點是第二象限拋物線對稱軸左側(cè)上一點,將沿軸翻折得到,點,連接,過點作于,過點作軸于,由翻折得:,;,,軸,,,,由勾股定理得:,,,,,,,解得:(不符合題意,舍去),;,.(3)原拋物線的頂點在直線上,直線交軸于點,如圖2,過點作軸于,;由題意,平移后的新拋物線頂點為,解析式為,設點,,則,,,過點作于,于,軸于,,,、分別平分,,,點在拋物線上,,根據(jù)題意得:解得:【點睛】此題考查的是二次函數(shù)的綜合大題,難度較大,掌握二次函數(shù)平移規(guī)律、二次函數(shù)的圖象及性質(zhì)、相似三角形的判定及性質(zhì)和勾股定理是解決此題的關鍵.23、(1)詳見解析;(2).【解析】

(1)因為AC平分∠BCD,∠BCD=120°,根據(jù)角平分線的定義得:∠ACD=∠ACB=60°,根據(jù)同弧所對的圓周角相等,得∠ACD=∠ABD,∠ACB=∠ADB,∠ABD=∠ADB=60°.根據(jù)三個角是60°的三角形是等邊三角形得△ABD是等邊三角形.(2)作直徑DE,連結(jié)BE,由于△ABD是等邊三角形,則∠BAD=60°,由同弧所對的圓周角相等,得∠BED=∠BAD=60°.根據(jù)直徑所對的圓周角是直角得,∠EBD=90°,則∠EDB=30°,進而得到DE=2BE.設EB=x,則ED=2x,根據(jù)勾股定理列方程求解即可.【詳解】解:(1)∵∠BCD=120°,CA平分∠BCD,∴∠ACD=∠ACB=60°,由圓周角定理得,∠ADB=∠ACB=60°,∠ABD=∠ACD=60°,∴△ABD是等邊三角形;(2)連接OB、OD,作OH⊥BD于H,則DH=BD=,∠BOD=2∠BAD=120°,∴∠DOH=60°,在Rt△ODH中,OD==,∴⊙O的半徑為.【點睛】本題是一道圓的簡單證明題,以圓的內(nèi)接四邊形為背景,圓的內(nèi)接四邊形的對角互補,在圓中往往通過連結(jié)直徑構(gòu)造直角三角形,再通過三角函數(shù)或勾股定理來求解線段的長度.24、;【解析】

先根據(jù)分式的混合運算順序和運算法則化簡原式,再由特殊銳角的三角函數(shù)值得出a和b的值,代入計算可得.【詳解】原式=÷(﹣)===,當a=2cos30°+1=2×+1=+1,b=tan45°=1時,原式=.【點睛】本題主要考查分式的化簡求值,在化簡的過程中要注意運算順序和分式的化簡.化簡的最后結(jié)果分子、分母要進行約分,注意運算的結(jié)果要化成最簡分式或整式,也考查了特殊銳角的三角函數(shù)值.25、2x-40.【解析】

原式利用多項式乘以多項式法則計算,去括號合并即可.【詳解】解:原式=x2-6x+7x-42-x2-x+

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論