上海市寶山區(qū)名校2024年中考三模數(shù)學(xué)試題含解析_第1頁
上海市寶山區(qū)名校2024年中考三模數(shù)學(xué)試題含解析_第2頁
上海市寶山區(qū)名校2024年中考三模數(shù)學(xué)試題含解析_第3頁
上海市寶山區(qū)名校2024年中考三模數(shù)學(xué)試題含解析_第4頁
上海市寶山區(qū)名校2024年中考三模數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

上海市寶山區(qū)名校2024年中考三模數(shù)學(xué)試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.若(x﹣1)0=1成立,則x的取值范圍是()A.x=﹣1 B.x=1 C.x≠0 D.x≠12.如圖,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以點(diǎn)C為圓心,CB長為半徑作弧,交AB于點(diǎn)D;再分別以點(diǎn)B和點(diǎn)D為圓心,大于BD的長為半徑作弧,兩弧相交于點(diǎn)E,作射線CE交AB于點(diǎn)F,則AF的長為()A.5 B.6 C.7 D.83.點(diǎn)P(4,﹣3)關(guān)于原點(diǎn)對稱的點(diǎn)所在的象限是()A.第四象限 B.第三象限 C.第二象限 D.第一象限4.下列各式計算正確的是()A. B. C. D.5.?dāng)?shù)據(jù)”1,2,1,3,1”的眾數(shù)是()A.1B.1.5C.1.6D.36.-10-4的結(jié)果是()A.-7B.7C.-14D.137.下列各式計算正確的是()A.a(chǎn)+3a=3a2 B.(–a2)3=–a6 C.a(chǎn)3·a4=a7 D.(a+b)2=a2–2ab+b28.如圖,已知點(diǎn)A,B分別是反比例函數(shù)y=(x<0),y=(x>0)的圖象上的點(diǎn),且∠AOB=90°,tan∠BAO=,則k的值為()A.2 B.﹣2 C.4 D.﹣49.我國古代數(shù)學(xué)著作《九章算術(shù)》卷七“盈不足”中有這樣一個問題:“今有共買物,人出八,盈三;人出七,不足四,問人數(shù)、物價各幾何?”意思是:幾個人合伙買一件物品,每人出8元,則余3元;若每人出7元,則少4元,問幾人合買?這件物品多少錢?若設(shè)有x人合買,這件物品y元,則根據(jù)題意列出的二元一次方程組為()A. B. C. D.10.如圖,在△ABC中,點(diǎn)D在BC上,DE∥AC,DF∥AB,下列四個判斷中不正確的是()A.四邊形AEDF是平行四邊形B.若∠BAC=90°,則四邊形AEDF是矩形C.若AD平分∠BAC,則四邊形AEDF是矩形D.若AD⊥BC且AB=AC,則四邊形AEDF是菱形二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,將△ABC放在每個小正方形的邊長為1的網(wǎng)格中,點(diǎn)A,點(diǎn)B,點(diǎn)C均落在格點(diǎn)上.(1)計算△ABC的周長等于_____.(2)點(diǎn)P、點(diǎn)Q(不與△ABC的頂點(diǎn)重合)分別為邊AB、BC上的動點(diǎn),4PB=5QC,連接AQ、PC.當(dāng)AQ⊥PC時,請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出線段AQ、PC,并簡要說明點(diǎn)P、Q的位置是如何找到的(不要求證明).___________________________.12.如圖,已知函數(shù)y=x+2的圖象與函數(shù)y=(k≠0)的圖象交于A、B兩點(diǎn),連接BO并延長交函數(shù)y=(k≠0)的圖象于點(diǎn)C,連接AC,若△ABC的面積為1.則k的值為_____.13.函數(shù)y=+的自變量x的取值范圍是_____.14.如圖,四邊形ABCD為矩形,H、F分別為AD、BC邊的中點(diǎn),四邊形EFGH為矩形,E、G分別在AB、CD邊上,則圖中四個直角三角形面積之和與矩形EFGH的面積之比為_____.15.已知二次函數(shù)f(x)=x2-3x+1,那么f(2)=_________.16.如圖,P是⊙O的直徑AB延長線上一點(diǎn),PC切⊙O于點(diǎn)C,PC=6,BC:AC=1:2,則AB的長為_____.三、解答題(共8題,共72分)17.(8分)解方程.18.(8分)在數(shù)學(xué)實(shí)踐活動課上,老師帶領(lǐng)同學(xué)們到附近的濕地公園測量園內(nèi)雕塑的高度.用測角儀在A處測得雕塑頂端點(diǎn)C′的仰角為30°,再往雕塑方向前進(jìn)4米至B處,測得仰角為45°.問:該雕塑有多高?(測角儀高度忽略不計,結(jié)果不取近似值.)19.(8分)如圖,拋物線與x軸交于點(diǎn)A,B,與軸交于點(diǎn)C,過點(diǎn)C作CD∥x軸,交拋物線的對稱軸于點(diǎn)D,連結(jié)BD,已知點(diǎn)A坐標(biāo)為(-1,0).求該拋物線的解析式;求梯形COBD的面積.20.(8分)如圖,輪船從點(diǎn)A處出發(fā),先航行至位于點(diǎn)A的南偏西15°且點(diǎn)A相距100km的點(diǎn)B處,再航行至位于點(diǎn)A的南偏東75°且與點(diǎn)B相距200km的點(diǎn)C處.(1)求點(diǎn)C與點(diǎn)A的距離(精確到1km);(2)確定點(diǎn)C相對于點(diǎn)A的方向.(參考數(shù)據(jù):2≈1.41421.(8分)已知關(guān)于x的一元二次方程有實(shí)數(shù)根.(1)求k的取值范圍;(2)若k為正整數(shù),且方程有兩個非零的整數(shù)根,求k的取值.22.(10分)如圖,拋物線y=ax2+bx+c(a>0)的頂點(diǎn)為M,直線y=m與拋物線交于點(diǎn)A,B,若△AMB為等腰直角三角形,我們把拋物線上A,B兩點(diǎn)之間的部分與線段AB圍成的圖形稱為該拋物線對應(yīng)的準(zhǔn)蝶形,線段AB稱為碟寬,頂點(diǎn)M稱為碟頂.(1)由定義知,取AB中點(diǎn)N,連結(jié)MN,MN與AB的關(guān)系是_____.(2)拋物線y=對應(yīng)的準(zhǔn)蝶形必經(jīng)過B(m,m),則m=_____,對應(yīng)的碟寬AB是_____.(3)拋物線y=ax2﹣4a﹣(a>0)對應(yīng)的碟寬在x軸上,且AB=1.①求拋物線的解析式;②在此拋物線的對稱軸上是否有這樣的點(diǎn)P(xp,yp),使得∠APB為銳角,若有,請求出yp的取值范圍.若沒有,請說明理由.23.(12分)如圖,在平面直角坐標(biāo)系中,矩形OCDE的三個頂點(diǎn)分別是C(3,0),D(3,4),E(0,4).點(diǎn)A在DE上,以A為頂點(diǎn)的拋物線過點(diǎn)C,且對稱軸x=1交x軸于點(diǎn)B.連接EC,AC.點(diǎn)P,Q為動點(diǎn),設(shè)運(yùn)動時間為t秒.(1)求拋物線的解析式.(2)在圖①中,若點(diǎn)P在線段OC上從點(diǎn)O向點(diǎn)C以1個單位/秒的速度運(yùn)動,同時,點(diǎn)Q在線段CE上從點(diǎn)C向點(diǎn)E以2個單位/秒的速度運(yùn)動,當(dāng)一個點(diǎn)到達(dá)終點(diǎn)時,另一個點(diǎn)隨之停止運(yùn)動.當(dāng)t為何值時,△PCQ為直角三角形?(3)在圖②中,若點(diǎn)P在對稱軸上從點(diǎn)A開始向點(diǎn)B以1個單位/秒的速度運(yùn)動,過點(diǎn)P做PF⊥AB,交AC于點(diǎn)F,過點(diǎn)F作FG⊥AD于點(diǎn)G,交拋物線于點(diǎn)Q,連接AQ,CQ.當(dāng)t為何值時,△ACQ的面積最大?最大值是多少?24.如圖,AM是△ABC的中線,D是線段AM上一點(diǎn)(不與點(diǎn)A重合).DE∥AB交AC于點(diǎn)F,CE∥AM,連結(jié)AE.(1)如圖1,當(dāng)點(diǎn)D與M重合時,求證:四邊形ABDE是平行四邊形;(2)如圖2,當(dāng)點(diǎn)D不與M重合時,(1)中的結(jié)論還成立嗎?請說明理由.(3)如圖3,延長BD交AC于點(diǎn)H,若BH⊥AC,且BH=AM.①求∠CAM的度數(shù);②當(dāng)FH=,DM=4時,求DH的長.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】試題解析:由題意可知:x-1≠0,

x≠1

故選D.2、B【解析】試題分析:連接CD,∵在△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=1.∵作法可知BC=CD=4,CE是線段BD的垂直平分線,∴CD是斜邊AB的中線,∴BD=AD=4,∴BF=DF=2,∴AF=AD+DF=4+2=2.故選B.考點(diǎn):作圖—基本作圖;含30度角的直角三角形.3、C【解析】

由題意得點(diǎn)P的坐標(biāo)為(﹣4,3),根據(jù)象限內(nèi)點(diǎn)的符號特點(diǎn)可得點(diǎn)P1的所在象限.【詳解】∵設(shè)P(4,﹣3)關(guān)于原點(diǎn)的對稱點(diǎn)是點(diǎn)P1,∴點(diǎn)P1的坐標(biāo)為(﹣4,3),∴點(diǎn)P1在第二象限.故選C【點(diǎn)睛】本題主要考查了兩點(diǎn)關(guān)于原點(diǎn)對稱,這兩點(diǎn)的橫縱坐標(biāo)均互為相反數(shù);符號為(﹣,+)的點(diǎn)在第二象限.4、C【解析】

解:A.2a與2不是同類項,不能合并,故本選項錯誤;B.應(yīng)為,故本選項錯誤;C.,正確;D.應(yīng)為,故本選項錯誤.故選C.【點(diǎn)睛】本題考查冪的乘方與積的乘方;同底數(shù)冪的乘法.5、A【解析】

眾數(shù)指一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),根據(jù)眾數(shù)的定義就可以求解.【詳解】在這一組數(shù)據(jù)中1是出現(xiàn)次數(shù)最多的,故眾數(shù)是1.故選:A.【點(diǎn)睛】本題為統(tǒng)計題,考查眾數(shù)的意義.眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不止一個.6、C【解析】解:-10-4=-1.故選C.7、C【解析】

根據(jù)合并同類項、冪的乘方、同底數(shù)冪的乘法、完全平方公式逐項計算即可.【詳解】A.a+3a=4a,故不正確;B.(–a2)3=(-a)6,故不正確;C.a3·a4=a7,故正確;D.(a+b)2=a2+2ab+b2,故不正確;故選C.【點(diǎn)睛】本題考查了合并同類項、冪的乘方、同底數(shù)冪的乘法、完全平方公式,熟練掌握各知識點(diǎn)是解答本題的關(guān)鍵.8、D【解析】

首先過點(diǎn)A作AC⊥x軸于C,過點(diǎn)B作BD⊥x軸于D,易得△OBD∽△AOC,又由點(diǎn)A,B分別在反比例函數(shù)y=(x<0),y=(x>0)的圖象上,即可得S△OBD=,S△AOC=|k|,然后根據(jù)相似三角形面積的比等于相似比的平方,即可求出k的值【詳解】解:過點(diǎn)A作AC⊥x軸于C,過點(diǎn)B作BD⊥x軸于D,

∴∠ACO=∠ODB=90°,

∴∠OBD+∠BOD=90°,

∵∠AOB=90°,

∴∠BOD+∠AOC=90°,

∴∠OBD=∠AOC,

∴△OBD∽△AOC,

又∵∠AOB=90°,tan∠BAO=,

∴=,

∴=,即,

解得k=±4,

又∵k<0,

∴k=-4,

故選:D.【點(diǎn)睛】此題考查了相似三角形的判定與性質(zhì)、反比例函數(shù)的性質(zhì)以及直角三角形的性質(zhì).解題時注意掌握數(shù)形結(jié)合思想的應(yīng)用,注意掌握輔助線的作法。9、D【解析】

根據(jù)題意可以找出題目中的等量關(guān)系,列出相應(yīng)的方程組,從而可以解答本題.【詳解】由題意可得:,故選D.【點(diǎn)睛】本題考查由實(shí)際問題抽象出二元一次方程組,解答本題的關(guān)鍵是明確題意,列出相應(yīng)的方程組.10、C【解析】A選項,∵在△ABC中,點(diǎn)D在BC上,DE∥AC,DF∥AB,∴DE∥AF,DF∥AE,∴四邊形AEDF是平行四邊形;即A正確;B選項,∵四邊形AEDF是平行四邊形,∠BAC=90°,∴四邊形AEDF是矩形;即B正確;C選項,因為添加條件“AD平分∠BAC”結(jié)合四邊形AEDF是平行四邊形只能證明四邊形AEDF是菱形,而不能證明四邊形AEDF是矩形;所以C錯誤;D選項,因為由添加的條件“AB=AC,AD⊥BC”可證明AD平分∠BAC,從而可通過證∠EAD=∠CAD=∠EDA證得AE=DE,結(jié)合四邊形AEDF是平行四邊形即可得到四邊形AEDF是菱形,所以D正確.故選C.二、填空題(本大題共6個小題,每小題3分,共18分)11、12連接DE與BC與交于點(diǎn)Q,連接DF與BC交于點(diǎn)M,連接GH與格線交于點(diǎn)N,連接MN與AB交于P.【解析】

(1)利用勾股定理求出AB,從而得到△ABC的周長;(2)取格點(diǎn)D,E,F(xiàn),G,H,連接DE與BC交于點(diǎn)Q;連接DF與BC交于點(diǎn)M;連接GH與格線交于點(diǎn)N;連接MN與AB交于點(diǎn)P;連接AP,CQ即為所求.【詳解】解:(1)∵AC=3,BC=4,∠C=90o,∴根據(jù)勾股定理得AB=5,∴△ABC的周長=5+4+3=12.(2)取格點(diǎn)D,E,F(xiàn),G,H,連接DE與BC交于點(diǎn)Q;連接DF與BC交于點(diǎn)M;連接GH與格線交于點(diǎn)N;連接MN與AB交于點(diǎn)P;連接AQ,CP即為所求。故答案為:(1)12;(2)連接DE與BC與交于點(diǎn)Q,連接DF與BC交于點(diǎn)M,連接GH與格線交于點(diǎn)N,連接MN與AB交于P.【點(diǎn)睛】本題涉及的知識點(diǎn)有:勾股定理,三角形中位線定理,軸對稱之線路最短問題.12、3【解析】

連接OA.根據(jù)反比例函數(shù)的對稱性可得OB=OC,那么S△OAB=S△OAC=S△ABC=2.求出直線y=x+2與y軸交點(diǎn)D的坐標(biāo).設(shè)A(a,a+2),B(b,b+2),則C(-b,-b-2),根據(jù)S△OAB=2,得出a-b=2

①.根據(jù)S△OAC=2,得出-a-b=2

②,①與②聯(lián)立,求出a、b的值,即可求解.【詳解】如圖,連接OA.由題意,可得OB=OC,∴S△OAB=S△OAC=S△ABC=2.設(shè)直線y=x+2與y軸交于點(diǎn)D,則D(0,2),設(shè)A(a,a+2),B(b,b+2),則C(-b,-b-2),∴S△OAB=×2×(a-b)=2,∴a-b=2

①.過A點(diǎn)作AM⊥x軸于點(diǎn)M,過C點(diǎn)作CN⊥x軸于點(diǎn)N,則S△OAM=S△OCN=k,∴S△OAC=S△OAM+S梯形AMNC-S△OCN=S梯形AMNC=2,∴(-b-2+a+2)(-b-a)=2,將①代入,得∴-a-b=2

②,①+②,得-2b=6,b=-3,①-②,得2a=2,a=1,∴A(1,3),∴k=1×3=3.故答案為3.【點(diǎn)睛】本題考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)問題,反比例函數(shù)的性質(zhì),反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,三角形的面積,待定系數(shù)法求函數(shù)的解析式等知識,綜合性較強(qiáng),難度適中.根據(jù)反比例函數(shù)的對稱性得出OB=OC是解題的突破口.13、x≥1且x≠3【解析】

根據(jù)二次根式的有意義和分式有意義的條件,列出不等式求解即可.【詳解】根據(jù)二次根式和分式有意義的條件可得:解得:且故答案為:且【點(diǎn)睛】考查自變量的取值范圍,掌握二次根式和分式有意義的條件是解題的關(guān)鍵.14、1:1【解析】

根據(jù)矩形性質(zhì)得出AD=BC,AD∥BC,∠D=90°,求出四邊形HFCD是矩形,得出△HFG的面積是CD×DH=S矩形HFCD,推出S△HFG=S△DHG+S△CFG,同理S△HEF=S△BEF+S△AEH,即可得出答案.【詳解】連接HF,∵四邊形ABCD為矩形,∴AD=BC,AD∥BC,∠D=90°∵H、F分別為AD、BC邊的中點(diǎn),∴DH=CF,DH∥CF,∵∠D=90°,∴四邊形HFCD是矩形,∴△HFG的面積是CD×DH=S矩形HFCD,即S△HFG=S△DHG+S△CFG,同理S△HEF=S△BEF+S△AEH,∴圖中四個直角三角形面積之和與矩形EFGH的面積之比是1:1,故答案為1:1.【點(diǎn)睛】本題考查了矩形的性質(zhì)和判定,三角形的面積,主要考查學(xué)生的推理能力.15、-1【解析】

根據(jù)二次函數(shù)的性質(zhì)將x=2代入二次函數(shù)解析式中即可.【詳解】f(x)=x2-3x+1f(2)=22-32+1=-1.故答案為-1.【點(diǎn)睛】本題考查的知識點(diǎn)是二次函數(shù)的性質(zhì),解題的關(guān)鍵是熟練的掌握二次函數(shù)的性質(zhì).16、1【解析】PC切⊙O于點(diǎn)C,則∠PCB=∠A,∠P=∠P,

∴△PCB∽△PAC,∴,∵BP=PC=3,

∴PC2=PB?PA,即36=3?PA,

∵PA=12

∴AB=12-3=1.故答案是:1.三、解答題(共8題,共72分)17、原分式方程無解.【解析】

根據(jù)解分式方程的方法可以解答本方程,去分母將分式方程化為整式方程,解整式方程,驗證.【詳解】方程兩邊乘(x﹣1)(x+2),得x(x+2)﹣(x﹣1)(x+2)=3即:x2+2x﹣x2﹣x+2=3整理,得x=1檢驗:當(dāng)x=1時,(x﹣1)(x+2)=0,∴原方程無解.【點(diǎn)睛】本題考查解分式方程,解題的關(guān)鍵是明確解放式方程的計算方法.18、該雕塑的高度為(2+2)米.【解析】

過點(diǎn)C作CD⊥AB,設(shè)CD=x,由∠CBD=45°知BD=CD=x米,根據(jù)tanA=列出關(guān)于x的方程,解之可得.【詳解】解:如圖,過點(diǎn)C作CD⊥AB,交AB延長線于點(diǎn)D,設(shè)CD=x米,∵∠CBD=45°,∠BDC=90°,∴BD=CD=x米,∵∠A=30°,AD=AB+BD=4+x,∴tanA=,即,解得:x=2+2,答:該雕塑的高度為(2+2)米.【點(diǎn)睛】本題主要考查解直角三角形的應(yīng)用-仰角俯角問題,解題的關(guān)鍵是根據(jù)題意構(gòu)建直角三角形,并熟練掌握三角函數(shù)的應(yīng)用.19、(1)(2)【解析】

(1)將A坐標(biāo)代入拋物線解析式,求出a的值,即可確定出解析式.(2)拋物線解析式令x=0求出y的值,求出OC的長,根據(jù)對稱軸求出CD的長,令y=0求出x的值,確定出OB的長,根據(jù)梯形面積公式即可求出梯形COBD的面積.【詳解】(1)將A(―1,0)代入中,得:0=4a+4,解得:a=-1.∴該拋物線解析式為.(2)對于拋物線解析式,令x=0,得到y(tǒng)=2,即OC=2,∵拋物線的對稱軸為直線x=1,∴CD=1.∵A(-1,0),∴B(2,0),即OB=2.∴.20、(1)173;(2)點(diǎn)C位于點(diǎn)A的南偏東75°方向.【解析】試題分析:(1)作輔助線,過點(diǎn)A作AD⊥BC于點(diǎn)D,構(gòu)造直角三角形,解直角三角形即可.(2)利用勾股定理的逆定理,判定△ABC為直角三角形;然后根據(jù)方向角的定義,即可確定點(diǎn)C相對于點(diǎn)A的方向.試題解析:解:(1)如答圖,過點(diǎn)A作AD⊥BC于點(diǎn)D.由圖得,∠ABC=75°﹣10°=60°.在Rt△ABD中,∵∠ABC=60°,AB=100,∴BD=50,AD=503.∴CD=BC﹣BD=200﹣50=1.在Rt△ACD中,由勾股定理得:AC=AD答:點(diǎn)C與點(diǎn)A的距離約為173km.(2)在△ABC中,∵AB2+AC2=1002+(1003)2=40000,BC2=2002=40000,∴AB2+AC2=BC2.∴∠BAC=90°.∴∠CAF=∠BAC﹣∠BAF=90°﹣15°=75°.答:點(diǎn)C位于點(diǎn)A的南偏東75°方向.考點(diǎn):1.解直角三角形的應(yīng)用(方向角問題);2.銳角三角函數(shù)定義;3.特殊角的三角函數(shù)值;4.勾股定理和逆定理.21、(1);(2)k=1【解析】

(1)根據(jù)一元二次方程2x2+4x+k﹣1=0有實(shí)數(shù)根,可得出△≥0,解不等式即可得出結(jié)論;(2)分別把k的正整數(shù)值代入方程2x2+4x+k﹣1=0,根據(jù)解方程的結(jié)果進(jìn)行分析解答.【詳解】(1)由題意得:△=16﹣8(k﹣1)≥0,∴k≤1.(2)∵k為正整數(shù),∴k=1,2,1.當(dāng)k=1時,方程2x2+4x+k﹣1=0變?yōu)椋?x2+4x=0,解得:x=0或x=-2,有一個根為零;當(dāng)k=2時,方程2x2+4x+k﹣1=0變?yōu)椋?x2+4x+1=0,解得:x=,無整數(shù)根;當(dāng)k=1時,方程2x2+4x+k﹣1=0變?yōu)椋?x2+4x+2=0,解得:x1=x2=-1,有兩個非零的整數(shù)根.綜上所述:k=1.【點(diǎn)睛】本題考查了一元二次方程根的判別式:(1)△>0?方程有兩個不相等的實(shí)數(shù)根;(2)△=0?方程有兩個相等的實(shí)數(shù)根;(1)△<0?方程沒有實(shí)數(shù)根.22、(1)MN與AB的關(guān)系是:MN⊥AB,MN=AB,(2)2,4;(2)①y=x2﹣2;②在此拋物線的對稱軸上有這樣的點(diǎn)P,使得∠APB為銳角,yp的取值范圍是yp<﹣2或yp>2.【解析】

(1)直接利用等腰直角三角形的性質(zhì)分析得出答案;(2)利用已知點(diǎn)為B(m,m),代入拋物線解析式進(jìn)而得出m的值,即可得出AB的值;(2)①根據(jù)題意得出拋物線必過(2,0),進(jìn)而代入求出答案;②根據(jù)y=x2﹣2的對稱軸上P(0,2),P(0,﹣2)時,∠APB為直角,進(jìn)而得出答案.【詳解】(1)MN與AB的關(guān)系是:MN⊥AB,MN=AB,如圖1,∵△AMB是等腰直角三角形,且N為AB的中點(diǎn),∴MN⊥AB,MN=AB,故答案為MN⊥AB,MN=AB;(2)∵拋物線y=對應(yīng)的準(zhǔn)蝶形必經(jīng)過B(m,m),∴m=m2,解得:m=2或m=0(不合題意舍去),當(dāng)m=2則,2=x2,解得:x=±2,則AB=2+2=4;故答案為2,4;(2)①由已知,拋物線對稱軸為:y軸,∵拋物線y=ax2﹣4a﹣(a>0)對應(yīng)的碟寬在x軸上,且AB=1.∴拋物線必過(2,0),代入y=ax2﹣4a﹣(a>0),得,9a﹣4a﹣=0,解得:a=,∴拋物線的解析式是:y=x2﹣2;②由①知,如圖2,y=x2﹣2的對稱軸上P(0,2),P(0,﹣2)時,∠APB為直角,∴在此拋物線的對稱軸上有這樣的點(diǎn)P,使得∠APB為銳角,yp的取值范圍是yp<﹣2或yp>2.【點(diǎn)睛】此題主要考查了二次函數(shù)綜合以及等腰直角三角形的性質(zhì),正確應(yīng)用等腰直角三角形的性質(zhì)是解題關(guān)鍵.23、(1)y=﹣x2+2x+3;(2)當(dāng)t=或t=時,△PCQ為直角三角形;(3)當(dāng)t=2時,△ACQ的面積最大,最大值是1.【解析】

(1)根據(jù)拋物線的對稱軸與矩形的性質(zhì)可得點(diǎn)A的坐標(biāo),根據(jù)待定系數(shù)法可得拋物線的解析式;(2)先根據(jù)勾股定理可得CE,再分兩種情況:當(dāng)∠QPC=90°時;當(dāng)∠PQC=90°時;討論可得△PCQ為直角三角形時t的值;(3)根據(jù)待定系數(shù)法可得直線AC的解析式,根據(jù)S△ACQ=S△AFQ+S△CPQ可得S△ACQ==﹣(t﹣2)2+1,依此即可求解.【詳解】解:(1)∵拋物線的對稱軸為x=1,矩形OCDE的三個頂點(diǎn)分別是C(3,0),D(3,4),E(0,4),點(diǎn)A在DE上,∴點(diǎn)A坐標(biāo)為(1,4),設(shè)拋物線的解析式為y=a(x﹣1)2+4,把C(3,0)代入拋物線的解析式,可得a(3﹣1)2+4=0,解得a=﹣1.故拋物線的解析式為y=﹣(x﹣1)2+4,即y=﹣x2+2x+3;(2)依題意有:OC=3,OE=4,∴CE===5,當(dāng)∠QPC=90°時,∵cos∠QPC=,∴,解得t=;當(dāng)∠PQC=90°時,∵cos∠QCP=,∴,解得t=.∴當(dāng)t=或t=時,△PCQ為直角三角形;(3)∵A(1,4),C(3,0),設(shè)直線AC的解析式為y=kx+b,則有:,解得.故直線AC的解析式為y=﹣2x+2.∵P(1,4﹣t),將y=4﹣t代入y=﹣2x+2中,得x=1+,∴Q點(diǎn)的橫坐標(biāo)為1+,將x=1+代入y=﹣(x﹣1)2+4中,得y=4﹣.∴Q點(diǎn)的縱坐標(biāo)為4﹣,∴QF=(4﹣)﹣(4﹣t)=t﹣,∴

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論