版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
安徽省合肥一中2024年高考沖刺模擬數(shù)學(xué)試題注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若向量,則()A.30 B.31 C.32 D.332.已知隨機(jī)變量滿(mǎn)足,,.若,則()A., B.,C., D.,3.若,則下列不等式不能成立的是()A. B. C. D.4.記為數(shù)列的前項(xiàng)和數(shù)列對(duì)任意的滿(mǎn)足.若,則當(dāng)取最小值時(shí),等于()A.6 B.7 C.8 D.95.過(guò)點(diǎn)的直線(xiàn)與曲線(xiàn)交于兩點(diǎn),若,則直線(xiàn)的斜率為()A. B.C.或 D.或6.已知函數(shù),關(guān)于的方程R)有四個(gè)相異的實(shí)數(shù)根,則的取值范圍是(
)A. B. C. D.7.已知橢圓內(nèi)有一條以點(diǎn)為中點(diǎn)的弦,則直線(xiàn)的方程為()A. B.C. D.8.設(shè)是定義在實(shí)數(shù)集上的函數(shù),滿(mǎn)足條件是偶函數(shù),且當(dāng)時(shí),,則,,的大小關(guān)系是()A. B. C. D.9.已知向量,且,則m=()A.?8 B.?6C.6 D.810.設(shè)不等式組表示的平面區(qū)域?yàn)?,若從圓:的內(nèi)部隨機(jī)選取一點(diǎn),則取自的概率為()A. B. C. D.11.若滿(mǎn)足約束條件則的最大值為()A.10 B.8 C.5 D.312.已知函數(shù)的圖像的一條對(duì)稱(chēng)軸為直線(xiàn),且,則的最小值為()A. B.0 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若復(fù)數(shù)(是虛數(shù)單位),則________14.已知,則展開(kāi)式中的系數(shù)為_(kāi)_15.已知二面角α﹣l﹣β為60°,在其內(nèi)部取點(diǎn)A,在半平面α,β內(nèi)分別取點(diǎn)B,C.若點(diǎn)A到棱l的距離為1,則△ABC的周長(zhǎng)的最小值為_(kāi)____.16.若變量,滿(mǎn)足約束條件則的最大值為_(kāi)_______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在四棱錐中,底面是直角梯形,,,,是正三角形,,是的中點(diǎn).(1)證明:;(2)求直線(xiàn)與平面所成角的正弦值.18.(12分)已知函數(shù).(1)若曲線(xiàn)在處的切線(xiàn)為,試求實(shí)數(shù),的值;(2)當(dāng)時(shí),若有兩個(gè)極值點(diǎn),,且,,若不等式恒成立,試求實(shí)數(shù)m的取值范圍.19.(12分)已知函數(shù)(,)滿(mǎn)足下列3個(gè)條件中的2個(gè)條件:①函數(shù)的周期為;②是函數(shù)的對(duì)稱(chēng)軸;③且在區(qū)間上單調(diào).(Ⅰ)請(qǐng)指出這二個(gè)條件,并求出函數(shù)的解析式;(Ⅱ)若,求函數(shù)的值域.20.(12分)在如圖所示的多面體中,平面平面,四邊形是邊長(zhǎng)為2的菱形,四邊形為直角梯形,四邊形為平行四邊形,且,,(1)若分別為,的中點(diǎn),求證:平面;(2)若,與平面所成角的正弦值,求二面角的余弦值.21.(12分)已知正實(shí)數(shù)滿(mǎn)足.(1)求的最小值.(2)證明:22.(10分)已知,,分別為內(nèi)角,,的對(duì)邊,若同時(shí)滿(mǎn)足下列四個(gè)條件中的三個(gè):①;②;③;④.(1)滿(mǎn)足有解三角形的序號(hào)組合有哪些?(2)在(1)所有組合中任選一組,并求對(duì)應(yīng)的面積.(若所選條件出現(xiàn)多種可能,則按計(jì)算的第一種可能計(jì)分)
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
先求出,再與相乘即可求出答案.【詳解】因?yàn)?所以.故選:C.【點(diǎn)睛】本題考查了平面向量的坐標(biāo)運(yùn)算,考查了學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.2、B【解析】
根據(jù)二項(xiàng)分布的性質(zhì)可得:,再根據(jù)和二次函數(shù)的性質(zhì)求解.【詳解】因?yàn)殡S機(jī)變量滿(mǎn)足,,.所以服從二項(xiàng)分布,由二項(xiàng)分布的性質(zhì)可得:,因?yàn)?,所以,由二次函?shù)的性質(zhì)可得:,在上單調(diào)遞減,所以.故選:B【點(diǎn)睛】本題主要考查二項(xiàng)分布的性質(zhì)及二次函數(shù)的性質(zhì)的應(yīng)用,還考查了理解辨析的能力,屬于中檔題.3、B【解析】
根據(jù)不等式的性質(zhì)對(duì)選項(xiàng)逐一判斷即可.【詳解】選項(xiàng)A:由于,即,,所以,所以,所以成立;選項(xiàng)B:由于,即,所以,所以,所以不成立;選項(xiàng)C:由于,所以,所以,所以成立;選項(xiàng)D:由于,所以,所以,所以,所以成立.故選:B.【點(diǎn)睛】本題考查不等關(guān)系和不等式,屬于基礎(chǔ)題.4、A【解析】
先令,找出的關(guān)系,再令,得到的關(guān)系,從而可求出,然后令,可得,得出數(shù)列為等差數(shù)列,得,可求出取最小值.【詳解】解法一:由,所以,由條件可得,對(duì)任意的,所以是等差數(shù)列,,要使最小,由解得,則.解法二:由賦值法易求得,可知當(dāng)時(shí),取最小值.故選:A【點(diǎn)睛】此題考查的是由數(shù)列的遞推式求數(shù)列的通項(xiàng),采用了賦值法,屬于中檔題.5、A【解析】
利用切割線(xiàn)定理求得,利用勾股定理求得圓心到弦的距離,從而求得,結(jié)合,求得直線(xiàn)的傾斜角為,進(jìn)而求得的斜率.【詳解】曲線(xiàn)為圓的上半部分,圓心為,半徑為.設(shè)與曲線(xiàn)相切于點(diǎn),則所以到弦的距離為,,所以,由于,所以直線(xiàn)的傾斜角為,斜率為.故選:A【點(diǎn)睛】本小題主要考查直線(xiàn)和圓的位置關(guān)系,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于中檔題.6、A【解析】=,當(dāng)時(shí)時(shí),單調(diào)遞減,時(shí),單調(diào)遞增,且當(dāng),當(dāng),
當(dāng)時(shí),恒成立,時(shí),單調(diào)遞增且,方程R)有四個(gè)相異的實(shí)數(shù)根.令=則,,即.7、C【解析】
設(shè),,則,,相減得到,解得答案.【詳解】設(shè),,設(shè)直線(xiàn)斜率為,則,,相減得到:,的中點(diǎn)為,即,故,直線(xiàn)的方程為:.故選:.【點(diǎn)睛】本題考查了橢圓內(nèi)點(diǎn)差法求直線(xiàn)方程,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.8、C【解析】∵y=f(x+1)是偶函數(shù),∴f(-x+1)=f(x+1),即函數(shù)f(x)關(guān)于x=1對(duì)稱(chēng).
∵當(dāng)x≥1時(shí),為減函數(shù),∵f(log32)=f(2-log32)=f()且==log34,log34<<3,∴b>a>c,
故選C9、D【解析】
由已知向量的坐標(biāo)求出的坐標(biāo),再由向量垂直的坐標(biāo)運(yùn)算得答案.【詳解】∵,又,∴3×4+(﹣2)×(m﹣2)=0,解得m=1.故選D.【點(diǎn)睛】本題考查平面向量的坐標(biāo)運(yùn)算,考查向量垂直的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題.10、B【解析】
畫(huà)出不等式組表示的可行域,求得陰影部分扇形對(duì)應(yīng)的圓心角,根據(jù)幾何概型概率計(jì)算公式,計(jì)算出所求概率.【詳解】作出中在圓內(nèi)部的區(qū)域,如圖所示,因?yàn)橹本€(xiàn),的傾斜角分別為,,所以由圖可得取自的概率為.故選:B【點(diǎn)睛】本小題主要考查幾何概型的計(jì)算,考查線(xiàn)性可行域的畫(huà)法,屬于基礎(chǔ)題.11、D【解析】
畫(huà)出可行域,將化為,通過(guò)平移即可判斷出最優(yōu)解,代入到目標(biāo)函數(shù),即可求出最值.【詳解】解:由約束條件作出可行域如圖,化目標(biāo)函數(shù)為直線(xiàn)方程的斜截式,.由圖可知當(dāng)直線(xiàn)過(guò)時(shí),直線(xiàn)在軸上的截距最大,有最大值為3.故選:D.【點(diǎn)睛】本題考查了線(xiàn)性規(guī)劃問(wèn)題.一般第一步畫(huà)出可行域,然后將目標(biāo)函數(shù)轉(zhuǎn)化為的形式,在可行域內(nèi)通過(guò)平移找到最優(yōu)解,將最優(yōu)解帶回到目標(biāo)函數(shù)即可求出最值.注意畫(huà)可行域時(shí),邊界線(xiàn)的虛實(shí)問(wèn)題.12、D【解析】
運(yùn)用輔助角公式,化簡(jiǎn)函數(shù)的解析式,由對(duì)稱(chēng)軸的方程,求得的值,得出函數(shù)的解析式,集合正弦函數(shù)的最值,即可求解,得到答案.【詳解】由題意,函數(shù)為輔助角,由于函數(shù)的對(duì)稱(chēng)軸的方程為,且,即,解得,所以,又由,所以函數(shù)必須取得最大值和最小值,所以可設(shè),,所以,當(dāng)時(shí),的最小值,故選D.【點(diǎn)睛】本題主要考查了正弦函數(shù)的圖象與性質(zhì),其中解答中利用三角恒等變換的公式,化簡(jiǎn)函數(shù)的解析式,合理利用正弦函數(shù)的對(duì)稱(chēng)性與最值是解答的關(guān)鍵,著重考查了分析問(wèn)題和解答問(wèn)題的能力,屬于中檔試題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
直接根據(jù)復(fù)數(shù)的代數(shù)形式四則運(yùn)算法則計(jì)算即可.【詳解】,.【點(diǎn)睛】本題主要考查復(fù)數(shù)的代數(shù)形式四則運(yùn)算法則的應(yīng)用.14、1.【解析】
由題意求定積分得到的值,再根據(jù)乘方的意義,排列組合數(shù)的計(jì)算公式,求出展開(kāi)式中的系數(shù).【詳解】∵已知,則,
它表示4個(gè)因式的乘積.
故其中有2個(gè)因式取,一個(gè)因式取,剩下的一個(gè)因式取1,可得的項(xiàng).
故展開(kāi)式中的系數(shù).
故答案為:1.【點(diǎn)睛】本題主要考查求定積分,乘方的意義,排列組合數(shù)的計(jì)算公式,屬于中檔題.15、【解析】
作A關(guān)于平面α和β的對(duì)稱(chēng)點(diǎn)M,N,交α和β與D,E,連接MN,AM,AN,DE,根據(jù)對(duì)稱(chēng)性三角形ADC的周長(zhǎng)為AB+AC+BC=MB+BC+CN,當(dāng)四點(diǎn)共線(xiàn)時(shí)長(zhǎng)度最短,結(jié)合對(duì)稱(chēng)性和余弦定理求解.【詳解】作A關(guān)于平面α和β的對(duì)稱(chēng)點(diǎn)M,N,交α和β與D,E,連接MN,AM,AN,DE,根據(jù)對(duì)稱(chēng)性三角形ABC的周長(zhǎng)為AB+AC+BC=MB+BC+CN,當(dāng)M,B,C,N共線(xiàn)時(shí),周長(zhǎng)最小為MN設(shè)平面ADE交l于,O,連接OD,OE,顯然OD⊥l,OE⊥l,∠DOE=60°,∠MOA+∠AON=240°,OA=1,∠MON=120°,且OM=ON=OA=1,根據(jù)余弦定理,故MN2=1+1﹣2×1×1×cos120°=3,故MN.故答案為:.【點(diǎn)睛】此題考查求空間三角形邊長(zhǎng)的最值,關(guān)鍵在于根據(jù)幾何性質(zhì)找出對(duì)稱(chēng)關(guān)系,結(jié)合解三角形知識(shí)求解.16、7【解析】
畫(huà)出不等式組表示的平面區(qū)域,數(shù)形結(jié)合,即可容易求得目標(biāo)函數(shù)的最大值.【詳解】作出不等式組所表示的平面區(qū)域,如下圖陰影部分所示.觀察可知,當(dāng)直線(xiàn)過(guò)點(diǎn)時(shí),有最大值,.故答案為:.【點(diǎn)睛】本題考查二次不等式組與平面區(qū)域、線(xiàn)性規(guī)劃,主要考查推理論證能力以及數(shù)形結(jié)合思想,屬基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見(jiàn)證明;(2)【解析】
(1)設(shè)是的中點(diǎn),連接、,先證明是平行四邊形,再證明平面,即(2)以為坐標(biāo)原點(diǎn),的方向?yàn)檩S的正方向,建空間直角坐標(biāo)系,分別計(jì)算各個(gè)點(diǎn)坐標(biāo),計(jì)算平面法向量,利用向量的夾角公式得到直線(xiàn)與平面所成角的正弦值.【詳解】(1)證明:設(shè)是的中點(diǎn),連接、,是的中點(diǎn),,,,,,,是平行四邊形,,,,,,,,由余弦定理得,,,,平面,,;(2)由(1)得平面,,平面平面,過(guò)點(diǎn)作,垂足為,平面,以為坐標(biāo)原點(diǎn),的方向?yàn)檩S的正方向,建立如圖的空間直角坐標(biāo)系,則,,,,設(shè)是平面的一個(gè)法向量,則,,令,則,,,直線(xiàn)與平面所成角的正弦值為.【點(diǎn)睛】本題考查了線(xiàn)面垂直,線(xiàn)線(xiàn)垂直,利用空間直角坐標(biāo)系解決線(xiàn)面夾角問(wèn)題,意在考查學(xué)生的空間想象能力和計(jì)算能力.18、(1);(2).【解析】
(1)根據(jù)題意,求得的值,根據(jù)切點(diǎn)在切線(xiàn)上以及斜率等于,構(gòu)造方程組求得的值;(2)函數(shù)有兩個(gè)極值點(diǎn),等價(jià)于方程的兩個(gè)正根,,不等式恒成立,等價(jià)于恒成立,,令,求出導(dǎo)數(shù),判斷單調(diào)性,即可得到的范圍,即的范圍.【詳解】(1)由題可知,,,聯(lián)立可得.(2)當(dāng)時(shí),,,有兩個(gè)極值點(diǎn),,且,,是方程的兩個(gè)正根,,,不等式恒成立,即恒成立,,由,,得,,令,,在上是減函數(shù),,故.【點(diǎn)睛】該題考查的是有關(guān)導(dǎo)數(shù)的問(wèn)題,涉及到的知識(shí)點(diǎn)有導(dǎo)數(shù)的幾何意義,函數(shù)的極值點(diǎn)的個(gè)數(shù),構(gòu)造新函數(shù),應(yīng)用導(dǎo)數(shù)研究函數(shù)的值域得到參數(shù)的取值范圍,屬于較難題目.19、(Ⅰ)只有①②成立,;(Ⅱ).【解析】
(Ⅰ)依次討論①②成立,①③成立,②③成立,計(jì)算得到只有①②成立,得到答案.(Ⅱ)得到,得到函數(shù)值域.【詳解】(Ⅰ)由①可得,;由②得:,;由③得,,,;若①②成立,則,,,若①③成立,則,,不合題意,若②③成立,則,,與③中的矛盾,所以②③不成立,所以只有①②成立,.(Ⅱ)由題意得,,所以函數(shù)的值域?yàn)?【點(diǎn)睛】本題考查了三角函數(shù)的周期,對(duì)稱(chēng)軸,單調(diào)性,值域,表達(dá)式,意在考查學(xué)生對(duì)于三角函數(shù)知識(shí)的綜合應(yīng)用.20、(1)見(jiàn)解析(2)【解析】試題分析:(1)第(1)問(wèn),轉(zhuǎn)化成證明平面,再轉(zhuǎn)化成證明和.(2)第(2)問(wèn),先利用幾何法找到與平面所成角,再根據(jù)與平面所成角的正弦值為求出再建立空間直角坐標(biāo)系,求出二面角的余弦值.試題解析:(1)連接,因?yàn)樗倪呅螢榱庑?,所?因?yàn)槠矫嫫矫妫矫嫫矫?,平面,,所以平?又平面,所以.因?yàn)?,所?因?yàn)椋云矫?因?yàn)榉謩e為,的中點(diǎn),所以,所以平面(2)設(shè),由(1)得平面.由,,得,.過(guò)點(diǎn)作,與的延長(zhǎng)線(xiàn)交于點(diǎn),取的中點(diǎn),連接,,如圖所示,又,所以為等邊三角形,所以,又平面平面,平面平面,平面,故平面.因?yàn)闉槠叫兴倪呅?,所以,所以平?又因?yàn)?,所以平?因?yàn)?,所以平面平?由(1),得平面,所以平面,所以.因?yàn)?,所以平面,所以是與平面所成角.因?yàn)?,,所以平面,平面,因?yàn)?,所以平面平?所以,,解得.在梯形中,易證,分別以,,的正方向?yàn)檩S,軸,軸的正方向建立空間直角坐標(biāo)系.則,,,,,,由,及,得,所以,,.設(shè)平面的一個(gè)法向量為,由得令,得m=(3,1,2)設(shè)平面的一個(gè)法向量為,由得令,得.所以又因?yàn)槎娼鞘氢g角,所以二面角的余弦值是.21、(1);(2)見(jiàn)解析【解析】
(1)利用乘“1”法,結(jié)合基本不等式求得結(jié)果.(2)直接利用基本不等式及乘“1”法,證明即可.【詳解】(1)因?yàn)椋砸驗(yàn)?,所以(?dāng)且僅當(dāng),即時(shí)等號(hào)成立),所以(2)證明:因?yàn)?,所以故(?dāng)且僅當(dāng)時(shí),等號(hào)成立)【點(diǎn)睛】本題考查了基本不等式的應(yīng)用,考查了乘“1”法的技巧,考查了推理論證能力,屬于中檔題.22、(1)①,③,④或②,③,④;(2).【解析】
(1)由①可求得的值,由②可求出角的值,結(jié)合題意得出,推出矛盾,可得出①②不能同時(shí)成為的條
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 個(gè)體倉(cāng)庫(kù)租賃與承包管理協(xié)議2024版范例版
- 水電暖工程2025年度質(zhì)量保證合同2篇
- 2025年度苗木產(chǎn)業(yè)鏈上下游協(xié)同發(fā)展合作協(xié)議4篇
- 現(xiàn)代學(xué)?;顒?dòng)室空間設(shè)計(jì)美學(xué)與功能融合
- 安全用電信箱在遠(yuǎn)程教育中的應(yīng)用與優(yōu)勢(shì)
- 2024物流行業(yè)綠色發(fā)展及環(huán)保合同
- 文案策劃與評(píng)改的五大技巧
- 2025年度5G網(wǎng)絡(luò)基礎(chǔ)設(shè)施建設(shè)與運(yùn)營(yíng)合同4篇
- 個(gè)性化顧問(wèn)合作全新合同2024版一
- 提升小學(xué)生道德素養(yǎng)的課堂創(chuàng)新方法
- 乳腺癌的綜合治療及進(jìn)展
- 美的MBS精益管理體系
- 中國(guó)高血壓防治指南(2024年修訂版)解讀課件
- 2024安全員知識(shí)考試題(全優(yōu))
- 中國(guó)大百科全書(shū)(第二版全32冊(cè))08
- 第六單元 中華民族的抗日戰(zhàn)爭(zhēng) 教學(xué)設(shè)計(jì) 2024-2025學(xué)年統(tǒng)編版八年級(jí)歷史上冊(cè)
- (正式版)SH∕T 3548-2024 石油化工涂料防腐蝕工程施工及驗(yàn)收規(guī)范
- 知識(shí)庫(kù)管理規(guī)范大全
- 弘揚(yáng)教育家精神爭(zhēng)做四有好老師心得10篇
- 采油廠聯(lián)合站的安全管理對(duì)策
- 苗醫(yī)行業(yè)現(xiàn)狀分析
評(píng)論
0/150
提交評(píng)論