河北省石家莊二中雄安校區(qū)2023-2024學年高考數(shù)學二模試卷含解析_第1頁
河北省石家莊二中雄安校區(qū)2023-2024學年高考數(shù)學二模試卷含解析_第2頁
河北省石家莊二中雄安校區(qū)2023-2024學年高考數(shù)學二模試卷含解析_第3頁
河北省石家莊二中雄安校區(qū)2023-2024學年高考數(shù)學二模試卷含解析_第4頁
河北省石家莊二中雄安校區(qū)2023-2024學年高考數(shù)學二模試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

河北省石家莊二中雄安校區(qū)2023-2024學年高考數(shù)學二模試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設數(shù)列是等差數(shù)列,,.則這個數(shù)列的前7項和等于()A.12 B.21 C.24 D.362.已知定點,,是圓上的任意一點,點關于點的對稱點為,線段的垂直平分線與直線相交于點,則點的軌跡是()A.橢圓 B.雙曲線 C.拋物線 D.圓3.函數(shù)的定義域為,集合,則()A. B. C. D.4.設i為數(shù)單位,為z的共軛復數(shù),若,則()A. B. C. D.5.若2m>2n>1,則()A. B.πm﹣n>1C.ln(m﹣n)>0 D.6.下列函數(shù)中,圖象關于軸對稱的為()A. B.,C. D.7.如圖是甲、乙兩位同學在六次數(shù)學小測試(滿分100分)中得分情況的莖葉圖,則下列說法錯誤的是()A.甲得分的平均數(shù)比乙大 B.甲得分的極差比乙大C.甲得分的方差比乙小 D.甲得分的中位數(shù)和乙相等8.已知雙曲線與雙曲線有相同的漸近線,則雙曲線的離心率為()A. B. C. D.9.已知命題,;命題若,則,下列命題為真命題的是()A. B. C. D.10.已知為非零向量,“”為“”的()A.充分不必要條件 B.充分必要條件C.必要不充分條件 D.既不充分也不必要條件11.已知集合,將集合的所有元素從小到大一次排列構成一個新數(shù)列,則()A.1194 B.1695 C.311 D.109512.對于正在培育的一顆種子,它可能1天后發(fā)芽,也可能2天后發(fā)芽,….下表是20顆不同種子發(fā)芽前所需培育的天數(shù)統(tǒng)計表,則這組種子發(fā)芽所需培育的天數(shù)的中位數(shù)是()發(fā)芽所需天數(shù)1234567種子數(shù)43352210A.2 B.3 C.3.5 D.4二、填空題:本題共4小題,每小題5分,共20分。13.在中,角的對邊分別為,且.若為鈍角,,則的面積為____________.14.若,則____.15.若x,y滿足,則的最小值為________.16.函數(shù)的值域為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)近幾年一種新奇水果深受廣大消費者的喜愛,一位農戶發(fā)揮聰明才智,把這種露天種植的新奇水果搬到了大棚里,收到了很好的經濟效益.根據(jù)資料顯示,產出的新奇水果的箱數(shù)x(單位:十箱)與成本y(單位:千元)的關系如下:x13412y51.522.58y與x可用回歸方程(其中,為常數(shù))進行模擬.(Ⅰ)若該農戶產出的該新奇水果的價格為150元/箱,試預測該新奇水果100箱的利潤是多少元.|.(Ⅱ)據(jù)統(tǒng)計,10月份的連續(xù)11天中該農戶每天為甲地配送的該新奇水果的箱數(shù)的頻率分布直方圖如圖所示.(i)若從箱數(shù)在內的天數(shù)中隨機抽取2天,估計恰有1天的水果箱數(shù)在內的概率;(ⅱ)求這11天該農戶每天為甲地配送的該新奇水果的箱數(shù)的平均值.(每組用該組區(qū)間的中點值作代表)參考數(shù)據(jù)與公式:設,則0.541.81.530.45線性回歸直線中,,.18.(12分)已知的內角的對邊分別為,且滿足.(1)求角的大小;(2)若的面積為,求的周長的最小值.19.(12分)已知函數(shù),.(1)當時,①求函數(shù)在點處的切線方程;②比較與的大小;(2)當時,若對時,,且有唯一零點,證明:.20.(12分)在直角坐標平面中,已知的頂點,,為平面內的動點,且.(1)求動點的軌跡的方程;(2)設過點且不垂直于軸的直線與交于,兩點,點關于軸的對稱點為,證明:直線過軸上的定點.21.(12分)已知函數(shù),,(1)討論的單調性;(2)若在定義域內有且僅有一個零點,且此時恒成立,求實數(shù)m的取值范圍.22.(10分)在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足bcosA﹣asinB=1.(1)求A;(2)已知a=2,B=,求△ABC的面積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

根據(jù)等差數(shù)列的性質可得,由等差數(shù)列求和公式可得結果.【詳解】因為數(shù)列是等差數(shù)列,,所以,即,又,所以,,故故選:B【點睛】本題主要考查了等差數(shù)列的通項公式,性質,等差數(shù)列的和,屬于中檔題.2、B【解析】

根據(jù)線段垂直平分線的性質,結合三角形中位線定理、圓錐曲線和圓的定義進行判斷即可.【詳解】因為線段的垂直平分線與直線相交于點,如下圖所示:所以有,而是中點,連接,故,因此當在如下圖所示位置時有,所以有,而是中點,連接,故,因此,綜上所述:有,所以點的軌跡是雙曲線.故選:B【點睛】本題考查了雙曲線的定義,考查了數(shù)學運算能力和推理論證能力,考查了分類討論思想.3、A【解析】

根據(jù)函數(shù)定義域得集合,解對數(shù)不等式得到集合,然后直接利用交集運算求解.【詳解】解:由函數(shù)得,解得,即;又,解得,即,則.故選:A.【點睛】本題考查了交集及其運算,考查了函數(shù)定義域的求法,是基礎題.4、A【解析】

由復數(shù)的除法求出,然后計算.【詳解】,∴.故選:A.【點睛】本題考查復數(shù)的乘除法運算,考查共軛復數(shù)的概念,掌握復數(shù)的運算法則是解題關鍵.5、B【解析】

根據(jù)指數(shù)函數(shù)的單調性,結合特殊值進行辨析.【詳解】若2m>2n>1=20,∴m>n>0,∴πm﹣n>π0=1,故B正確;而當m,n時,檢驗可得,A、C、D都不正確,故選:B.【點睛】此題考查根據(jù)指數(shù)冪的大小關系判斷參數(shù)的大小,根據(jù)參數(shù)的大小判定指數(shù)冪或對數(shù)的大小關系,需要熟練掌握指數(shù)函數(shù)和對數(shù)函數(shù)的性質,結合特值法得出選項.6、D【解析】

圖象關于軸對稱的函數(shù)為偶函數(shù),用偶函數(shù)的定義及性質對選項進行判斷可解.【詳解】圖象關于軸對稱的函數(shù)為偶函數(shù);A中,,,故為奇函數(shù);B中,的定義域為,不關于原點對稱,故為非奇非偶函數(shù);C中,由正弦函數(shù)性質可知,為奇函數(shù);D中,且,,故為偶函數(shù).故選:D.【點睛】本題考查判斷函數(shù)奇偶性.判斷函數(shù)奇偶性的兩種方法:(1)定義法:對于函數(shù)的定義域內任意一個都有,則函數(shù)是奇函數(shù);都有,則函數(shù)是偶函數(shù)(2)圖象法:函數(shù)是奇(偶)函數(shù)函數(shù)圖象關于原點(軸)對稱.7、B【解析】

由平均數(shù)、方差公式和極差、中位數(shù)概念,可得所求結論.【詳解】對于甲,;對于乙,,故正確;甲的極差為,乙的極差為,故錯誤;對于甲,方差.5,對于乙,方差,故正確;甲得分的中位數(shù)為,乙得分的中位數(shù)為,故正確.故選:.【點睛】本題考查莖葉圖的應用,考查平均數(shù)和方差等概念,培養(yǎng)計算能力,意在考查學生對這些知識的理解掌握水平,屬于基礎題.8、C【解析】

由雙曲線與雙曲線有相同的漸近線,列出方程求出的值,即可求解雙曲線的離心率,得到答案.【詳解】由雙曲線與雙曲線有相同的漸近線,可得,解得,此時雙曲線,則曲線的離心率為,故選C.【點睛】本題主要考查了雙曲線的標準方程及其簡單的幾何性質的應用,其中解答中熟記雙曲線的幾何性質,準確運算是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.9、B【解析】解:命題p:?x>0,ln(x+1)>0,則命題p為真命題,則¬p為假命題;取a=﹣1,b=﹣2,a>b,但a2<b2,則命題q是假命題,則¬q是真命題.∴p∧q是假命題,p∧¬q是真命題,¬p∧q是假命題,¬p∧¬q是假命題.故選B.10、B【解析】

由數(shù)量積的定義可得,為實數(shù),則由可得,根據(jù)共線的性質,可判斷;再根據(jù)判斷,由等價法即可判斷兩命題的關系.【詳解】若成立,則,則向量與的方向相同,且,從而,所以;若,則向量與的方向相同,且,從而,所以.所以“”為“”的充分必要條件.故選:B【點睛】本題考查充分條件和必要條件的判定,考查相等向量的判定,考查向量的模、數(shù)量積的應用.11、D【解析】

確定中前35項里兩個數(shù)列中的項數(shù),數(shù)列中第35項為70,這時可通過比較確定中有多少項可以插入這35項里面即可得,然后可求和.【詳解】時,,所以數(shù)列的前35項和中,有三項3,9,27,有32項,所以.故選:D.【點睛】本題考查數(shù)列分組求和,掌握等差數(shù)列和等比數(shù)列前項和公式是解題基礎.解題關鍵是確定數(shù)列的前35項中有多少項是中的,又有多少項是中的.12、C【解析】

根據(jù)表中數(shù)據(jù),即可容易求得中位數(shù).【詳解】由圖表可知,種子發(fā)芽天數(shù)的中位數(shù)為,故選:C.【點睛】本題考查中位數(shù)的計算,屬基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

轉化為,利用二倍角公式可求解得,結合余弦定理可得b,再利用面積公式可得解.【詳解】因為,所以.又因為,且為銳角,所以.由余弦定理得,即,解得,所以故答案為:【點睛】本題考查了正弦定理和余弦定理的綜合應用,考查了學生綜合分析,轉化劃歸,數(shù)學運算的能力,屬于中檔題.14、【解析】

由,得出,根據(jù)兩角和與差的正弦公式和余弦公式化簡,再利用齊次式即可求出結果.【詳解】因為,所以,所以.故答案為:.【點睛】本題考查三角函數(shù)化簡求值,利用二倍角正切公式、兩角和與差的正弦公式和余弦公式,以及運用齊次式求值,屬于對公式的考查以及對計算能力的考查.15、5【解析】

先作出可行域,再做直線,平移,找到使直線在y軸上截距最小的點,代入即得。【詳解】作出不等式組表示的平面區(qū)域,如圖,令,則,作出直線,平移直線,由圖可得,當直線經過C點時,直線在y軸上的截距最小,由,可得,因此的最小值為.故答案為:4【點睛】本題考查不含參數(shù)的線性規(guī)劃問題,是基礎題。16、【解析】

利用配方法化簡式子,可得,然后根據(jù)觀察法,可得結果.【詳解】函數(shù)的定義域為所以函數(shù)的值域為故答案為:【點睛】本題考查的是用配方法求函數(shù)的值域問題,屬基礎題。三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)1131;(Ⅱ)(i);(ⅱ)125箱【解析】

(Ⅰ)根據(jù)參考數(shù)據(jù)得到和,代入得到回歸直線方程,,再代入求成本,最后代入利潤公式;(Ⅱ)(?。┦紫确謩e計算水果箱數(shù)在和內的天數(shù),再用編號列舉基本事件的方法求概率;(ⅱ)根據(jù)頻率分布直方圖直接計算結果.【詳解】(Ⅰ)根據(jù)題意,,所以,所以.又,所以.所以時,(千元),即該新奇水果100箱的成本為8314元,故該新奇水果100箱的利潤.(Ⅱ)(i)根據(jù)頻率分布直方圖,可知水果箱數(shù)在內的天數(shù)為設這兩天分別為a,b,水果箱數(shù)在內的天數(shù)為,設這四天分別為A,B,C,D,所以隨機抽取2天的基本結果為,,,,,,,,,,,,,,,共15種.滿足恰有1天的水果箱數(shù)在內的結果為,,,,,,,,共8種,所以估計恰有1天的水果箱數(shù)在內的概率為.(ⅱ)這11天該農戶每天為甲地配送的該新奇水果的箱數(shù)的平均值為(箱).【點睛】本題考查考查回歸直線方程,統(tǒng)計,概率,均值的綜合問題,意在考查分析數(shù)據(jù),應用數(shù)據(jù),解決問題的能力,屬于中檔題型.18、(1)(2)【解析】

(1)因為,所以,由余弦定理得,化簡得,可得,解得,又因為,所以.(6分)(2)因為,所以,則(當且僅當時,取等號).由(1)得(當且僅當時,取等號),解得.所以(當且僅當時,取等號),所以的周長的最小值為.19、(1)①見解析,②見解析;(2)見解析【解析】

(1)①把代入函數(shù)解析式,求出函數(shù)的導函數(shù)得到,再求出,利用直線方程的點斜式求函數(shù)在點處的切線方程;②令,利用導數(shù)研究函數(shù)的單調性,可得當時,;當時,;當時,.(2)由題意,,在上有唯一零點.利用導數(shù)可得當時,在上單調遞減,當,時,在,上單調遞增,得到.由在恒成立,且有唯一解,可得,得,即.令,則,再由在上恒成立,得在上單調遞減,進一步得到在上單調遞增,由此可得.【詳解】解:(1)①當時,,,,又,切線方程為,即;②令,則,在上單調遞減.又,當時,,即;當時,,即;當時,,即.證明:(2)由題意,,而,令,解得.,,在上有唯一零點.當時,,在上單調遞減,當,時,,在,上單調遞增..在恒成立,且有唯一解,,即,消去,得,即.令,則,在上恒成立,在上單調遞減,又,,.在上單調遞增,.【點睛】本題考查利用導數(shù)研究過曲線上某點處的切線方程,考查利用導數(shù)研究函數(shù)的單調性,考查邏輯思維能力與推理論證能力,屬難題.20、(1)();(2)證明見解析.【解析】

(1)設點,分別用表示、表示和余弦定理表示,將表示為、的方程,再化簡即可;(2)設直線方程代入的軌跡方程,得,設點,,,表示出直線,取,得,即可證明直線過軸上的定點.【詳解】(1)設,由已知,∴,∴(),化簡得點的軌跡的方程為:();(2)由(1)知,過點的直線的斜率為0時與無交點,不合題意故可設直線的方程為:(),代入的方程得:.設,,則,,.∴直線:.令,得.直線過軸上的定點.【點睛】本題主要考查軌跡方程的求法、余弦定理的應用和利用直線和圓錐曲線的位置關系求定點問題,考查學生的計算能力,屬于中檔題.21、(1)時,在上單調遞增,時,在上遞減,在上遞增.(2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論