下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
第五講函數(shù)y=Asin(ωx+φ)的圖象及應用知識梳理知識點一用五點法畫y=Asin(ωx+φ)一個周期內(nèi)的簡圖用五點法畫y=Asin(ωx+φ)一個周期內(nèi)的簡圖時,要找五個關鍵點,如下表所示.x-eq\f(φ,ω)-eq\f(φ,ω)+eq\f(π,2ω)eq\f(π-φ,ω)eq\f(3π,2ω)-eq\f(φ,ω)eq\f(2π-φ,ω)ωx+φ0eq\f(π,2)πeq\f(3π,2)2πy=Asin(ωx+φ)0A0-A0知識點二函數(shù)y=sinx的圖象經(jīng)變換得到y(tǒng)=Asin(ωx+φ)的圖象的步驟如下知識點三簡諧振動y=Asin(ωx+φ)中的有關物理量y=Asin(ωx+φ)(A>0,ω>0),x∈[0,+∞)表示一個振動量時振幅周期頻率相位初相AT=eq\f(2π,ω)f=eq\f(1,T)=eq\f(ω,2π)ωx+φφ歸納拓展1.函數(shù)y=Asin(ωx+φ)+k圖象平移的規(guī)律:“左加右減,上加下減”.由函數(shù)y=Asin(ωx+φ1)的圖象變換為函數(shù)y=Asin(ωx+φ2)的圖象,是平移變換,當eq\f(φ2-φ1,ω)>0時,左移eq\f(φ2-φ1,ω)個單位,當eq\f(φ2-φ1,ω)<0時,右移eq\b\lc\|\rc\|(\a\vs4\al\co1(\f(φ2-φ1,ω)))個單位.2.函數(shù)y=Asin(ωx+φ)的單調(diào)區(qū)間的“長度”為eq\f(T,2).3.函數(shù)y=Asin(ωx+φ)圖象的對稱軸由ωx+φ=kπ+eq\f(π,2),k∈Z確定;對稱中心由ωx+φ=kπ,k∈Z確定其橫坐標.雙基自測題組一走出誤區(qū)1.判斷下列結(jié)論是否正確(請在括號中打“√”或“×”)(1)y=sinx的圖象是由y=sineq\b\lc\(\rc\)(\a\vs4\al\co1(x+\f(π,4)))的圖象向右平移eq\f(π,4)個單位長度得到的.(√)(2)利用圖象變換作圖時“先平移,后伸縮”與“先伸縮,后平移”中平移的長度一致.(×)(3)將函數(shù)y=sin2x的圖象向右平移eq\f(π,3)個單位長度,得到函數(shù)y=sineq\b\lc\(\rc\)(\a\vs4\al\co1(2x-\f(π,3)))的圖象.(×)(4)函數(shù)y=sinx的圖象上各點縱坐標不變,橫坐標縮短為原來的eq\f(1,2),所得圖象對應的函數(shù)解析式為y=sineq\f(1,2)x.(×)(5)函數(shù)y=Acos(ωx+φ)的最小正周期為T,那么函數(shù)圖象的兩個相鄰對稱中心之間的距離為eq\f(T,2).(√)題組二走進教材2.(必修1P239T2改編)(1)把y=sinx的圖象向右平移eq\f(π,3)個單位,得y=sineq\b\lc\(\rc\)(\a\vs4\al\co1(x-\f(π,3)))的圖象.(2)把y=sinx的圖象上所有點的縱坐標縮短到原來的eq\f(1,2)倍(橫坐標不變)得y=eq\f(1,2)sinx的圖象.(3)把y=sineq\b\lc\(\rc\)(\a\vs4\al\co1(x-\f(π,3)))的圖象上所有點的橫坐標縮短到原來的eq\f(1,2)倍(縱坐標不變)得y=sineq\b\lc\(\rc\)(\a\vs4\al\co1(2x-\f(π,3)))的圖象.(4)把y=sin2x的圖象向右平移eq\f(π,6)個單位,得y=sineq\b\lc\(\rc\)(\a\vs4\al\co1(2x-\f(π,3)))的圖象.3.(必修1P254T10改編)函數(shù)y=2sineq\b\lc\(\rc\)(\a\vs4\al\co1(2x-\f(π,4)))的振幅、頻率和初相分別為(C)A.2,eq\f(1,π),eq\f(π,4) B.2,eq\f(1,2π),eq\f(π,4)C.2,eq\f(1,π),-eq\f(π,4) D.2,eq\f(1,2π),-eq\f(π,4)[解析]由題意得A=2,T=eq\f(2π,2)=π,∴f=eq\f(1,T)=eq\f(1,π),φ=-eq\f(π,4).故選C.4.(必修1P241T4改編)函數(shù)y=sineq\b\lc\(\rc\)(\a\vs4\al\co1(2x-\f(π,3)))在區(qū)間eq\b\lc\[\rc\](\a\vs4\al\co1(-\f(π,2),π))上的簡圖是(A)[解析]令x=0得y=sineq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(π,3)))=-eq\f(\r(3),2),排除B,D;由x=-eq\f(π,3)時,y=0,x=eq\f(π,6)時,y=0,排除C.故選A.題組三走向高考5.(2022·浙江卷)為了得到函數(shù)y=2sin3x的圖象,只要把函數(shù)y=2sineq\b\lc\(\rc\)(\a\vs4\al\co1(3x+\f(π,5)))圖象上所有的點(D)A.向左平移eq\f(π,5)個單位長度B.向右平移eq\f(π,5)個單位長度C.向左平移eq\f(π,15)個單位長度D.向右平移eq\f(π,15)個單位長度[解析]因為y=2sineq\b\lc\(\rc\)(\a\vs4\al\co1(3x+\f(π,5)))=2sineq\b\lc\[\rc\](\a\vs4\al\co1(3\b\lc\(\rc\)(\a\vs4\al\co1(x+\f(π,15))))),所以要得到函數(shù)y=2sin3x的圖象,只要把函數(shù)y=2sineq\b\lc\(\rc\)(\a\vs4\al\co1(3x+\f(π,5)))的圖象上所有的點向右平移eq\f(π,15)個單位長度.故選D.6.(2023·全國甲理,10,5分)函數(shù)y=f(x)的圖象由函數(shù)y=coseq\b\lc\(\rc\)(\a\vs4\al\co1(2x+\f(π,6)))的圖象向左平移eq\f(π,6)個單位長度得到,則y=f(x)的圖象與直線y=eq\f(1,2)x-eq\f(1,2)的交點個數(shù)為(C)A.1 B.2C.3 D.4[解析]函數(shù)y=coseq\b\lc\(\rc\)(\a\vs4\al\co1(2x+\f(π,6)))的圖象向左平移eq\f(π,6)個單位長度得y=coseq\b\lc\[\rc\](\a\vs4\al\co1(2\b\lc\(\rc\)(\a\vs4\al\co1(x+\f
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《心臟康復培訓》課件
- 小學一年級20以內(nèi)加減法混合運算
- 小學五年級數(shù)學小數(shù)乘除法計算練習題 集
- 二年級上冊21 雪孩子(教案)
- 2025年1月內(nèi)蒙古自治區(qū)普通高等學校招生考試適應性測試(八省聯(lián)考)歷史試題
- 《新地產(chǎn)營銷新機會》課件
- 混凝土路面施工協(xié)議書
- 口腔科護士的工作總結(jié)
- 育人為本點滴栽培班主任工作總結(jié)
- 浴室用品銷售工作總結(jié)
- 用戶界面測試
- 人工氣道濕化的護理培訓課件
- 電網(wǎng)適用的法律法規(guī)標準規(guī)范清單
- 讀書分享-給教師的一百條建議
- GB/T 4269.3-2000農(nóng)林拖拉機和機械、草坪和園藝動力機械操作者操縱機構(gòu)和其他顯示裝置用符號第3部分:草坪和園藝動力機械用符號
- GB/T 11618.1-2008銅管接頭第1部分:釬焊式管件
- 開工復工第一課
- 安徽省淮南市鳳臺縣基層診所醫(yī)療機構(gòu)衛(wèi)生院社區(qū)衛(wèi)生服務中心村衛(wèi)生室地址信息
- 旅游服務禮儀說課市公開課金獎市賽課一等獎課件
- 【線性代數(shù)自考練習題】滇西應用技術大學專升本真題匯總(附答案解析)
- 英語北京版四年級(上冊)單詞匯總
評論
0/150
提交評論