2024微軟人工智能系統(tǒng)強(qiáng)化學(xué)習(xí)_第1頁(yè)
2024微軟人工智能系統(tǒng)強(qiáng)化學(xué)習(xí)_第2頁(yè)
2024微軟人工智能系統(tǒng)強(qiáng)化學(xué)習(xí)_第3頁(yè)
2024微軟人工智能系統(tǒng)強(qiáng)化學(xué)習(xí)_第4頁(yè)
2024微軟人工智能系統(tǒng)強(qiáng)化學(xué)習(xí)_第5頁(yè)
已閱讀5頁(yè),還剩38頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1 signal

observation&reward

RealworldenvironmentAgent historyinfo

simulatorEachtimesteptAgentanaction????Worldupdatesgivenactionat,emitsobservationandAgentreceivesobservationandUseexperiencetoguidefuturedecisions(exploit)signal

observation&reward

RealworldenvironmentAgent historyinfo

simulatorHistory???=(??1,...,????,????,AgentchoosesactionbasedonhistoryisinformationassumedtodeterminewhathappensnextFunctionhistory=(???)Stateisifandonlyif p(????+1|,????)=p(????+1|???,????)Goalselectactionstomaximizetotalexpectedfuturerewardbalancingimmediate&long-termrewardsπdetermineshowtheagentchoosesactionsDeterministicpolicyStochasticpolicyfunctionexpecteddiscountedsumfuturerewardsunderapolicyπ initializeenvPolicymodelinitializeenvPolicymodelinitializepolicyPolicyinferenceinitializepolicyRolloutdataRolloutdataPolicyupdateUpdatepolicyUpdatepolicyHessel,Matteo,etal."Rainbow:Combiningimprovementsindeepreinforcementlearning."——給PPO帶來(lái)真正的性能上提升以及將policy約束在trustregion內(nèi)的效果,都不是通過(guò)PPO論文中提出的對(duì)新的policy和原policy的比值進(jìn)行裁切(clip)帶來(lái)的,而是通過(guò)code-level的一些技巧帶來(lái)的。Engstrom,Logan,etal."Implementationmattersindeeppolicygradients:AcasestudyonPPOandTRPO."Liang,Eric,etal."Rayrllib:Acomposableandscalablereinforcementlearninglibrary."Liang,Eric,etal."Rayrllib:Acomposableandscalablereinforcementlearninglibrary."新算法新算法新架構(gòu) 難以復(fù)用的強(qiáng)化學(xué)習(xí)代碼

可擴(kuò)展性的強(qiáng)化學(xué)習(xí)框架 TrainingDataMLModelTrainingDataMLModelTrainingsignalθ

observation&reward

RealworldenvironmentAgent historyinfo

simulator面臨的問(wèn)題面臨的問(wèn)題新的需求Horgan,Dan,etal."Distributedprioritizedexperiencereplay."可能傳輸大量的數(shù)據(jù)可能傳輸大量的數(shù)據(jù)GPUCPU面臨的問(wèn)題面臨的問(wèn)題可能的解決方案 通用的RL算法針對(duì)Env開發(fā)支持分布式Star數(shù)目RepoACME+Reverb2.1k/deepmind/acmeELF2k/facebookresearch/ELFRay+RLlib16.4k/ray-project/rayGym24.5k/openai/gymBaselines11.6k/openai/baselinesTorchBeast553/facebookresearch/torchbeastSeedRL617/google-research/seed_rlTianshuo?3.2k/thu-ml/tianshouKeras-RL5.1k/keras-rl/keras-rlRayisafastandsimpleframeworkforbuildingandrunningdistributedapplications./ray-project/ray Rayisafastandsimpleframeworkforbuildingandrunningdistributedapplications.AprocessexecutingtheuserprogramAstatelessprocessthatexecutesremotefunctionsinvokedbyadriverAstatefulprocessthatexecutesDistributedobjectIn-memorydistributedstoragetostoretheinputs/outputs,orstatelesscomputation.ImplementtheobjectstoreviasharedmemoryUseApacheArrowasdataformatsDistributedschedulerSubmittedfirsttolocalschedulerGlobalschedulerconsiderseachloadandconstraintstoschedulingdecisionsGlobalControlAkey-valuestorewithpub-subfunctionalityRLlibisanopen-sourcelibraryforreinforcementlearningthatoffersbothhighscalabilityandaunifiedAPIforavarietyofapplications.RayRayRLlib/ray-project/ray/tree/master/rllib distributedschedulerisanaturalfitforthehierarchicalcontrolmodel,asnestedcomputationcanbeimplementedinRaywithnocentraltaskschedulingbottleneck.Hierarchicalcontrol Actors/Workers RunscriptRemotedecoratorforruninremote InitrayRemotedecoratorforruninremoteInitrayExecutethetrainerandactorinremoteExecutethetrainerandactorinremoteStartthreadforasyncStartthreadforasynctrainingsignal

observation&reward

RealworldenvironmentAgent historyinfo

simulatorPolicyGraphPolicyModelPolicyOptimizerPolicyGraphPolicyModelPolicyOptimizerThepolicyoptimizerisresponsiblefortheperformance-criticaltasksofdistributedsampling,parameterupdates,andmanagingPolicyGraphPolicyModelPolicyOptimizerPseudocodeforfourRLlibpolicyoptimizerstepmethods.Eachstep()operatesalocalpolicygraphandarrayofremoteevaluatorreplicas. Serializationanddeserializationarebottlenecksinparallelanddistributedcomputing,especiallyinmachinelearningapplicationswithlargeobjectsandlargequantitiesofdata.Goalsefficientwithlargenumericaldata(e.g.NumpyandPandasdataframes)AsasPicklePythontypesCompatiblewithsharedmemory(allowingmultipleprocessestousethesamewithoutcopyingit)Deserializationshouldbeextremelylanguageindependent Makingdeserializationfastisimportant.AnobjectmaybeserializedonceandthendeserializedmanytimesAcommonpatternisformanyobjectstobeserializedinparallelandthenaggregatedanddeserializedoneatatimeonasingleworkermakingdeserializationthebottleneckDeserializationisfastandbarelyvisibleUsingonlytheschema,cancomputetheoffsetseachvalueinthedatablobwithoutscanningthroughthedatablob(unlikePickle,thisiswhatenablesfastdeserialization)copyingorotherwiseconvertinglargearraysandothervaluesduringdeserializat

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論