甘肅泰安縣2024屆中考猜題數(shù)學(xué)試卷含解析_第1頁
甘肅泰安縣2024屆中考猜題數(shù)學(xué)試卷含解析_第2頁
甘肅泰安縣2024屆中考猜題數(shù)學(xué)試卷含解析_第3頁
甘肅泰安縣2024屆中考猜題數(shù)學(xué)試卷含解析_第4頁
甘肅泰安縣2024屆中考猜題數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

甘肅泰安縣2024屆中考猜題數(shù)學(xué)試卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.某市2017年國內(nèi)生產(chǎn)總值(GDP)比2016年增長了12%,由于受到國際金融危機的影響,預(yù)計2018比2017年增長7%,若這兩年GDP年平均增長率為%,則%滿足的關(guān)系是()A. B.C. D.2.如圖是將正方體切去一個角后形成的幾何體,則該幾何體的左視圖為()A. B. C. D.3.實數(shù)4的倒數(shù)是()A.4 B. C.﹣4 D.﹣4.下列四個圖形中,是中心對稱圖形但不是軸對稱圖形的是()A. B. C. D.5.某青年排球隊12名隊員年齡情況如下:年齡1819202122人數(shù)14322則這12名隊員年齡的眾數(shù)、中位數(shù)分別是()A.20,19 B.19,19 C.19,20.5 D.19,206.二次函數(shù)y=x2﹣6x+m的圖象與x軸有兩個交點,若其中一個交點的坐標(biāo)為(1,0),則另一個交點的坐標(biāo)為()A.(﹣1,0) B.(4,0) C.(5,0) D.(﹣6,0)7.如圖,已知直線a∥b∥c,直線m,n與a,b,c分別交于點A,C,E,B,D,F(xiàn),若AC=4,CE=6,BD=3,則DF的值是()A.4 B.4.5 C.5 D.5.58.下列各組單項式中,不是同類項的一組是()A.和 B.和 C.和 D.和39.有兩把不同的鎖和三把鑰匙,其中兩把鑰匙恰好分別能打開這兩把鎖,第三把鑰匙不能打開這兩把鎖,任意取出一把鑰匙去開任意的一把鎖,一次打開鎖的概率是()A. B. C. D.10.的倒數(shù)的絕對值是()A. B. C. D.11.在對某社會機構(gòu)的調(diào)查中收集到以下數(shù)據(jù),你認(rèn)為最能夠反映該機構(gòu)年齡特征的統(tǒng)計量是()年齡13141525283035其他人數(shù)30533171220923A.平均數(shù) B.眾數(shù) C.方差 D.標(biāo)準(zhǔn)差12.下列各數(shù)中,無理數(shù)是()A.0 B. C. D.π二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,直線y=2x+4與x,y軸分別交于A,B兩點,以O(shè)B為邊在y軸右側(cè)作等邊三角形OBC,將點C向左平移,使其對應(yīng)點C′恰好落在直線AB上,則點C′的坐標(biāo)為.14.如圖,等邊三角形ABC內(nèi)接于⊙O,若⊙O的半徑為2,則圖中陰影部分的面積等于_______.15.一位小朋友在粗糙不打滑的“Z”字形平面軌道上滾動一個半徑為10cm的圓盤,如圖所示,AB與CD水平,BC與水平面的夾角為60°,其中AB=60cm,CD=40cm,BC=40cm,那么該小朋友將圓盤從A點滾動到D點其圓心所經(jīng)過的路線長為____cm.16.拋物線y=2x2+4向左平移2個單位長度,得到新拋物線的表達(dá)式為_____.17.如圖,在矩形ABCD中,E、F分別是AD、CD的中點,沿著BE將△ABE折疊,點A剛好落在BF上,若AB=2,則AD=________.18.方程=1的解是___.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)某校航模小組借助無人飛機航拍校園,如圖,無人飛機從A處水平飛行至B處需10秒,A在地面C的北偏東12°方向,B在地面C的北偏東57°方向.已知無人飛機的飛行速度為4米/秒,求這架無人飛機的飛行高度.(結(jié)果精確到0.1米,參考數(shù)據(jù):sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)20.(6分)如圖已知△ABC,點D是AB上一點,連接CD,請用尺規(guī)在邊AC上求作點P,使得△PBC的面積與△DBC的面積相等(保留作圖痕跡,不寫做法)21.(6分)如圖1,在直角梯形ABCD中,AB⊥BC,AD∥BC,點P為DC上一點,且AP=AB,過點C作CE⊥BP交直線BP于E.(1)若ABBC=3(2)若AB=BC.①如圖2,當(dāng)點P與E重合時,求PDPC②如圖3,設(shè)∠DAP的平分線AF交直線BP于F,當(dāng)CE=1,PDPC22.(8分)先化簡,再求值:,其中,.23.(8分)如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點A,C分別在x軸,y軸的正半軸上,且OA=4,OC=3,若拋物線經(jīng)過O,A兩點,且頂點在BC邊上,對稱軸交BE于點F,點D,E的坐標(biāo)分別為(3,0),(0,1).(1)求拋物線的解析式;(2)猜想△EDB的形狀并加以證明;(3)點M在對稱軸右側(cè)的拋物線上,點N在x軸上,請問是否存在以點A,F(xiàn),M,N為頂點的四邊形是平行四邊形?若存在,請求出所有符合條件的點M的坐標(biāo);若不存在,請說明理由.24.(10分)如圖,AB是⊙O的直徑,點C在⊙O上,CE^AB于E,CD平分DECB,交過點B的射線于D,交AB于F,且BC=BD.(1)求證:BD是⊙O的切線;(2)若AE=9,CE=12,求BF的長.25.(10分)如圖,在平面直角坐標(biāo)系xOy中,已知點A(3,0),點B(0,3),點O為原點.動點C、D分別在直線AB、OB上,將△BCD沿著CD折疊,得△B'CD.(Ⅰ)如圖1,若CD⊥AB,點B'恰好落在點A處,求此時點D的坐標(biāo);(Ⅱ)如圖2,若BD=AC,點B'恰好落在y軸上,求此時點C的坐標(biāo);(Ⅲ)若點C的橫坐標(biāo)為2,點B'落在x軸上,求點B'的坐標(biāo)(直接寫出結(jié)果即可).26.(12分)“端午節(jié)”是我國的傳統(tǒng)佳節(jié),民間歷來有吃“粽子”的習(xí)俗.我市某食品廠為了解市民對去年銷量較好的肉餡粽、豆沙餡粽、紅棗餡粽、蛋黃餡粽(以下分別用A、B、C、D表示)這四種不同口味粽子的喜愛情況,在節(jié)前對某居民區(qū)市民進(jìn)行了抽樣調(diào)查,并將調(diào)查情況繪制成如下兩幅統(tǒng)計圖(尚不完整).請根據(jù)以上信息回答:(1)本次參加抽樣調(diào)查的居民有多少人?(2)將兩幅不完整的圖補充完整;(3)若居民區(qū)有8000人,請估計愛吃D粽的人數(shù);(4)若有外型完全相同的A、B、C、D粽各一個,煮熟后,小王吃了兩個.用列表或畫樹狀圖的方法,求他第二個吃到的恰好是C粽的概率.27.(12分)如圖,小明今年國慶節(jié)到青城山游玩,乘坐纜車,當(dāng)?shù)巧嚼|車的吊箱經(jīng)過點A到達(dá)點B時,它經(jīng)過了200m,纜車行駛的路線與水平夾角∠α=16°,當(dāng)纜車?yán)^續(xù)由點B到達(dá)點D時,它又走過了200m,纜車由點B到點D的行駛路線與水平面夾角∠β=42°,求纜車從點A到點D垂直上升的距離.(結(jié)果保留整數(shù))(參考數(shù)據(jù):sin16°≈0.27,cos16°≈0.77,sin42°≈0.66,cos42°≈0.74)

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】分析:根據(jù)增長率為12%,7%,可表示出2017年的國內(nèi)生產(chǎn)總值,2018年的國內(nèi)生產(chǎn)總值;求2年的增長率,可用2016年的國內(nèi)生產(chǎn)總值表示出2018年的國內(nèi)生產(chǎn)總值,讓2018年的國內(nèi)生產(chǎn)總值相等即可求得所列方程.詳解:設(shè)2016年的國內(nèi)生產(chǎn)總值為1,∵2017年國內(nèi)生產(chǎn)總值(GDP)比2016年增長了12%,∴2017年的國內(nèi)生產(chǎn)總值為1+12%;∵2018年比2017年增長7%,∴2018年的國內(nèi)生產(chǎn)總值為(1+12%)(1+7%),∵這兩年GDP年平均增長率為x%,∴2018年的國內(nèi)生產(chǎn)總值也可表示為:,∴可列方程為:(1+12%)(1+7%)=.故選D.點睛:考查了由實際問題列一元二次方程的知識,當(dāng)必須的量沒有時,應(yīng)設(shè)其為1;注意2018年的國內(nèi)生產(chǎn)總值是在2017年的國內(nèi)生產(chǎn)總值的基礎(chǔ)上增加的,需先算出2016年的國內(nèi)生產(chǎn)總值.2、C【解析】看到的棱用實線體現(xiàn).故選C.3、B【解析】

根據(jù)互為倒數(shù)的兩個數(shù)的乘積是1,求出實數(shù)4的倒數(shù)是多少即可.【詳解】解:實數(shù)4的倒數(shù)是:1÷4=.故選:B.【點睛】此題主要考查了一個數(shù)的倒數(shù)的求法,要熟練掌握,解答此題的關(guān)鍵是要明確:互為倒數(shù)的兩個數(shù)的乘積是1.4、D【解析】

根據(jù)軸對稱圖形與中心對稱圖形的概念判斷即可.【詳解】A、是軸對稱圖形,不是中心對稱圖形;B、是軸對稱圖形,不是中心對稱圖形;C、是軸對稱圖形,不是中心對稱圖形;D、不是軸對稱圖形,是中心對稱圖形.故選D.【點睛】本題考查的是中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.5、D【解析】

先計算出這個隊共有1+4+3+2+2=12人,然后根據(jù)眾數(shù)與中位數(shù)的定義求解.【詳解】這個隊共有1+4+3+2+2=12人,這個隊隊員年齡的眾數(shù)為19,中位數(shù)為=1.故選D.【點睛】本題考查了眾數(shù):在一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)叫這組數(shù)據(jù)的眾數(shù).也考查了中位數(shù)的定義.6、C【解析】

根據(jù)二次函數(shù)解析式求得對稱軸是x=3,由拋物線的對稱性得到答案.【詳解】解:由二次函數(shù)得到對稱軸是直線,則拋物線與軸的兩個交點坐標(biāo)關(guān)于直線對稱,∵其中一個交點的坐標(biāo)為,則另一個交點的坐標(biāo)為,故選C.【點睛】考查拋物線與x軸的交點坐標(biāo),解題關(guān)鍵是掌握拋物線的對稱性質(zhì).7、B【解析】試題分析:根據(jù)平行線分線段成比例可得,然后根據(jù)AC=1,CE=6,BD=3,可代入求解DF=1.2.故選B考點:平行線分線段成比例8、A【解析】

如果兩個單項式,它們所含的字母相同,并且相同字母的指數(shù)也分別相同,那么就稱這兩個單項式為同類項.【詳解】根據(jù)題意可知:x2y和2xy2不是同類項.故答案選:A.【點睛】本題考查了單項式與多項式,解題的關(guān)鍵是熟練的掌握單項式與多項式的相關(guān)知識點.9、B【解析】解:將兩把不同的鎖分別用A與B表示,三把鑰匙分別用A,B與C表示,且A鑰匙能打開A鎖,B鑰匙能打開B鎖,畫樹狀圖得:∵共有6種等可能的結(jié)果,一次打開鎖的有2種情況,∴一次打開鎖的概率為:.故選B.點睛:本題考查的是用列表法或樹狀圖法求概率.注意樹狀圖法與列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;注意概率=所求情況數(shù)與總情況數(shù)之比.10、D【解析】

直接利用倒數(shù)的定義結(jié)合絕對值的性質(zhì)分析得出答案.【詳解】解:?的倒數(shù)為?,則?的絕對值是:.故答案選:D.【點睛】本題考查了倒數(shù)的定義與絕對值的性質(zhì),解題的關(guān)鍵是熟練的掌握倒數(shù)的定義與絕對值的性質(zhì).11、B【解析】分析:根據(jù)平均數(shù)的意義,眾數(shù)的意義,方差的意義進(jìn)行選擇.詳解:由于14歲的人數(shù)是533人,影響該機構(gòu)年齡特征,因此,最能夠反映該機構(gòu)年齡特征的統(tǒng)計量是眾數(shù).故選B.點睛:本題主要考查統(tǒng)計的有關(guān)知識,主要包括平均數(shù)、中位數(shù)、眾數(shù)、方差的意義.反映數(shù)據(jù)集中程度的統(tǒng)計量有平均數(shù)、中位數(shù)、眾數(shù)、方差等,各有局限性,因此要對統(tǒng)計量進(jìn)行合理的選擇和恰當(dāng)?shù)倪\用.12、D【解析】

利用無理數(shù)定義判斷即可.【詳解】解:π是無理數(shù),故選:D.【點睛】此題考查了無理數(shù),弄清無理數(shù)的定義是解本題的關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、(﹣2,2)【解析】試題分析:∵直線y=2x+4與y軸交于B點,∴x=0時,得y=4,∴B(0,4).∵以O(shè)B為邊在y軸右側(cè)作等邊三角形OBC,∴C在線段OB的垂直平分線上,∴C點縱坐標(biāo)為2.將y=2代入y=2x+4,得2=2x+4,解得x=﹣2.所以C′的坐標(biāo)為(﹣2,2).考點:2.一次函數(shù)圖象上點的坐標(biāo)特征;2.等邊三角形的性質(zhì);3.坐標(biāo)與圖形變化-平移.14、【解析】

分析:題圖中陰影部分為弓形與三角形的和,因此求出扇形AOC的面積即可,所以關(guān)鍵是求圓心角的度數(shù).本題考查組合圖形的求法.扇形面積公式等.詳解:連結(jié)OC,∵△ABC為正三角形,∴∠AOC==120°,∵,∴圖中陰影部分的面積等于∴S扇形AOC=即S陰影=cm2.故答案為.點睛:本題考查了等邊三角形性質(zhì),扇形的面積,三角形的面積等知識點的應(yīng)用,關(guān)鍵是求出∠AOC的度數(shù),主要考查學(xué)生綜合運用定理進(jìn)行推理和計算的能力.15、【解析】試題解析:如下圖,畫出圓盤滾動過程中圓心移動路線的分解圖象.可以得出圓盤滾動過程中圓心走過的路線由線段OO1,線段O1O2,圓弧,線段O3O4四部分構(gòu)成.其中O1E⊥AB,O1F⊥BC,O2C⊥BC,O3C⊥CD,O4D⊥CD.∵BC與AB延長線的夾角為60°,O1是圓盤在AB上滾動到與BC相切時的圓心位置,∴此時⊙O1與AB和BC都相切.則∠O1BE=∠O1BF=60度.此時Rt△O1BE和Rt△O1BF全等,在Rt△O1BE中,BE=cm.∴OO1=AB-BE=(60-)cm.∵BF=BE=cm,∴O1O2=BC-BF=(40-)cm.∵AB∥CD,BC與水平夾角為60°,∴∠BCD=120度.又∵∠O2CB=∠O3CD=90°,∴∠O2CO3=60度.則圓盤在C點處滾動,其圓心所經(jīng)過的路線為圓心角為60°且半徑為10cm的圓?。嗟拈L=×2π×10=πcm.∵四邊形O3O4DC是矩形,∴O3O4=CD=40cm.綜上所述,圓盤從A點滾動到D點,其圓心經(jīng)過的路線長度是:(60-)+(40-)+π+40=(140-+π)cm.16、y=2(x+2)2+1【解析】試題解析:∵二次函數(shù)解析式為y=2x2+1,∴頂點坐標(biāo)(0,1)向左平移2個單位得到的點是(-2,1),可設(shè)新函數(shù)的解析式為y=2(x-h)2+k,代入頂點坐標(biāo)得y=2(x+2)2+1,故答案為y=2(x+2)2+1.點睛:函數(shù)圖象的平移,用平移規(guī)律“左加右減,上加下減”直接代入函數(shù)解析式求得平移后的函數(shù)解析式.17、【解析】如圖,連接EF,∵點E、點F是AD、DC的中點,∴AE=ED,CF=DF=CD=AB=1,由折疊的性質(zhì)可得AE=A′E,∴A′E=DE,在Rt△EA′F和Rt△EDF中,,∴Rt△EA′F≌Rt△EDF(HL),∴A′F=DF=1,∴BF=BA′+A′F=AB+DF=2+1=3,在Rt△BCF中,BC=.∴AD=BC=2.點睛:本題考查了翻折變換的知識,解答本題的關(guān)鍵是連接EF,證明Rt△EA′F≌Rt△EDF,得出BF的長,再利用勾股定理解答即可.18、x=﹣4【解析】

分式方程去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗即可得到分式方程的解.【詳解】去分母得:3+2x=x﹣1,解得:x=﹣4,經(jīng)檢驗x=﹣4是分式方程的解.【點睛】此題考查了解分式方程,利用了轉(zhuǎn)化的思想,解分式方程注意要檢驗.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、29.8米.【解析】

作,,根據(jù)題意確定出與的度數(shù),利用銳角三角函數(shù)定義求出與的長度,由求出的長度,即可求出的長度.【詳解】解:如圖,作,,由題意得:米,米,則米,答:這架無人飛機的飛行高度為米.【點睛】此題考查了解直角三角形的應(yīng)用﹣仰角俯角問題,熟練掌握銳角三角函數(shù)定義是解本題的關(guān)鍵.20、見解析【解析】

三角形的面積相等即同底等高,所以以BC為兩個三角形的公共底邊,在AC邊上尋找到與D到BC距離相等的點即可.【詳解】作∠CDP=∠BCD,PD與AC的交點即P.【點睛】本題考查了三角形面積的靈活計算,還可以利用三角形的全等來進(jìn)行解題.21、(1)證明見解析;(2)①32【解析】

(1)過點A作AF⊥BP于F,根據(jù)等腰三角形的性質(zhì)得到BF=BP,易證Rt△ABF∽Rt△BCE,根據(jù)相似三角形的性質(zhì)得到ABBC=BF(2)①延長BP、AD交于點F,過點A作AG⊥BP于G,證明△ABG≌△BCP,根據(jù)全等三角形的性質(zhì)得BG=CP,設(shè)BG=1,則PG=PC=1,BC=AB=5,在Rt△ABF中,由射影定理知,AB2=BG·BF=5,即可求出BF=5,PF=5-1-1=3,即可求出PDPC②延長BF、AD交于點G,過點A作AH⊥BE于H,證明△ABH≌△BCE,根據(jù)全等三角形的性質(zhì)得BG=CP,設(shè)BH=BP=CE=1,又PDPC=PGPB=74,得到PG=7AH=AB2【詳解】解:(1)過點A作AF⊥BP于F∵AB=AP∴BF=BP,∵Rt△ABF∽Rt△BCE∴AB∴BP=32(2)①延長BP、AD交于點F,過點A作AG⊥BP于G∵AB=BC∴△ABG≌△BCP(AAS)∴BG=CP設(shè)BG=1,則PG=PC=1∴BC=AB=5在Rt△ABF中,由射影定理知,AB2=BG·BF=5∴BF=5,PF=5-1-1=3∴PD②延長BF、AD交于點G,過點A作AH⊥BE于H∵AB=BC∴△ABH≌△BCE(AAS)設(shè)BH=BP=CE=1∵PDPC∴PG=72,BG=∵AB2=BH·BG∴AB=222∴AH=∵AF平分∠PAD,AH平分∠BAP∴∠FAH=∠BAD=45°∴△AFH為等腰直角三角形∴AF=【點睛】考查等腰三角形的性質(zhì),勾股定理,射影定理,平行線分線段成比例定理等,解題的關(guān)鍵是作出輔助線.難度較大.22、1【解析】分析:先把小括號內(nèi)的通分,按照分式的減法和分式的除法法則進(jìn)行化簡,再把字母的值代入運算即可.詳解:原式

當(dāng)x=-1、y=2時,

原式=-(-1)2+2×22

=-1+8

=1.點睛:本題主要考查分式的化簡求值,解題的關(guān)鍵是掌握分式的混合運算順序和運算法則.23、(1)y=﹣x2+3x;(2)△EDB為等腰直角三角形;證明見解析;(3)(,2)或(,﹣2).【解析】

(1)由條件可求得拋物線的頂點坐標(biāo)及A點坐標(biāo),利用待定系數(shù)法可求得拋物線解析式;(2)由B、D、E的坐標(biāo)可分別求得DE、BD和BE的長,再利用勾股定理的逆定理可進(jìn)行判斷;(3)由B、E的坐標(biāo)可先求得直線BE的解析式,則可求得F點的坐標(biāo),當(dāng)AF為邊時,則有FM∥AN且FM=AN,則可求得M點的縱坐標(biāo),代入拋物線解析式可求得M點坐標(biāo);當(dāng)AF為對角線時,由A、F的坐標(biāo)可求得平行四邊形的對稱中心,可設(shè)出M點坐標(biāo),則可表示出N點坐標(biāo),再由N點在x軸上可得到關(guān)于M點坐標(biāo)的方程,可求得M點坐標(biāo).【詳解】解:(1)在矩形OABC中,OA=4,OC=3,∴A(4,0),C(0,3),∵拋物線經(jīng)過O、A兩點,∴拋物線頂點坐標(biāo)為(2,3),∴可設(shè)拋物線解析式為y=a(x﹣2)2+3,把A點坐標(biāo)代入可得0=a(4﹣2)2+3,解得a=﹣,∴拋物線解析式為y=﹣(x﹣2)2+3,即y=﹣x2+3x;(2)△EDB為等腰直角三角形.證明:由(1)可知B(4,3),且D(3,0),E(0,1),∴DE2=32+12=10,BD2=(4﹣3)2+32=10,BE2=42+(3﹣1)2=20,∴DE2+BD2=BE2,且DE=BD,∴△EDB為等腰直角三角形;(3)存在.理由如下:設(shè)直線BE解析式為y=kx+b,把B、E坐標(biāo)代入可得,解得,∴直線BE解析式為y=x+1,當(dāng)x=2時,y=2,∴F(2,2),①當(dāng)AF為平行四邊形的一邊時,則M到x軸的距離與F到x軸的距離相等,即M到x軸的距離為2,∴點M的縱坐標(biāo)為2或﹣2,在y=﹣x2+3x中,令y=2可得2=﹣x2+3x,解得x=,∵點M在拋物線對稱軸右側(cè),∴x>2,∴x=,∴M點坐標(biāo)為(,2);在y=﹣x2+3x中,令y=﹣2可得﹣2=﹣x2+3x,解得x=,∵點M在拋物線對稱軸右側(cè),∴x>2,∴x=,∴M點坐標(biāo)為(,﹣2);②當(dāng)AF為平行四邊形的對角線時,∵A(4,0),F(xiàn)(2,2),∴線段AF的中點為(3,1),即平行四邊形的對稱中心為(3,1),設(shè)M(t,﹣t2+3t),N(x,0),則﹣t2+3t=2,解得t=,∵點M在拋物線對稱軸右側(cè),∴x>2,∵t>2,∴t=,∴M點坐標(biāo)為(,2);綜上可知存在滿足條件的點M,其坐標(biāo)為(,2)或(,﹣2).【點睛】本題為二次函數(shù)的綜合應(yīng)用,涉及矩形的性質(zhì)、待定系數(shù)法、勾股定理及其逆定理、平行四邊形的性質(zhì)、方程思想及分類討論思想等知識.在(1)中求得拋物線的頂點坐標(biāo)是解題的關(guān)鍵,注意拋物線頂點式的應(yīng)用,在(2)中求得△EDB各邊的長度是解題的關(guān)鍵,在(3)中確定出M點的縱坐標(biāo)是解題的關(guān)鍵,注意分類討論.本題考查知識點較多,綜合性較強,難度較大.24、(1)證明見解析;(2)1.【解析】試題分析:(1)根據(jù)垂直的定義可得∠CEB=90°,然后根據(jù)角平分線的性質(zhì)和等腰三角形的性質(zhì),判斷出∠1=∠D,從而根據(jù)平行線的判定得到CE∥BD,根據(jù)平行線的性質(zhì)得∠DBA=∠CEB,由此可根據(jù)切線的判定得證結(jié)果;(2)連接AC,由射影定理可得CE試題解析:(1)證明:∵CE⊥AB,∴∠CEB=90∵CD平分∠ECB,BC=BD,∴∠1=∠2,∠2=∠D.∴∠1=∠D.∴CE∥BD.∴∠DBA=∠CEB=90∵AB是⊙O的直徑,∴BD是⊙O的切線.(2)連接AC,∵AB是⊙O直徑,∴∠ACB=90∵CE⊥AB,可得CE∴在Rt△CEB中,∠CEB=90°,由勾股定理得BC=∴BD=BC=20.∵∠1=∠D,∠EFC=∠BFD,∴△EFC∽△BFD.∴.∴1220∴BF=1.考點:切線的判定,相似三角形,勾股定理25、(1)D(0,);(1)C(11﹣6,11﹣18);(3)B'(1+,0),(1﹣,0).【解析】

(1)設(shè)OD為x,則BD=AD=3,在RT△ODA中應(yīng)用勾股定理即可求解;(1)由題意易證△BDC∽△BOA,再利用A、B坐標(biāo)及BD=AC可求解出BD長度,再由特

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論