版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
山東省德州市陵城一中2024屆高三二診模擬考試數(shù)學(xué)試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.給出下列三個(gè)命題:①“”的否定;②在中,“”是“”的充要條件;③將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象.其中假命題的個(gè)數(shù)是()A.0 B.1 C.2 D.32.在中,角的對(duì)邊分別為,若,則的形狀為()A.直角三角形 B.等腰非等邊三角形C.等腰或直角三角形 D.鈍角三角形3.已知函數(shù)的圖像上有且僅有四個(gè)不同的點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)在的圖像上,則實(shí)數(shù)的取值范圍是()A. B. C. D.4.已知集合A={0,1},B={0,1,2},則滿足A∪C=B的集合C的個(gè)數(shù)為()A.4 B.3 C.2 D.15.若的展開式中的常數(shù)項(xiàng)為-12,則實(shí)數(shù)的值為()A.-2 B.-3 C.2 D.36.國(guó)家統(tǒng)計(jì)局服務(wù)業(yè)調(diào)查中心和中國(guó)物流與采購(gòu)聯(lián)合會(huì)發(fā)布的2018年10月份至2019年9月份共12個(gè)月的中國(guó)制造業(yè)采購(gòu)經(jīng)理指數(shù)(PMI)如下圖所示.則下列結(jié)論中錯(cuò)誤的是()A.12個(gè)月的PMI值不低于50%的頻率為B.12個(gè)月的PMI值的平均值低于50%C.12個(gè)月的PMI值的眾數(shù)為49.4%D.12個(gè)月的PMI值的中位數(shù)為50.3%7.已知是雙曲線的左、右焦點(diǎn),若點(diǎn)關(guān)于雙曲線漸近線的對(duì)稱點(diǎn)滿足(為坐標(biāo)原點(diǎn)),則雙曲線的漸近線方程為()A. B. C. D.8.已知函數(shù)(表示不超過x的最大整數(shù)),若有且僅有3個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是()A. B. C. D.9.已知定義在上的偶函數(shù)滿足,且在區(qū)間上是減函數(shù),令,則的大小關(guān)系為()A. B.C. D.10.在中,分別為所對(duì)的邊,若函數(shù)有極值點(diǎn),則的范圍是()A. B.C. D.11.為計(jì)算,設(shè)計(jì)了如圖所示的程序框圖,則空白框中應(yīng)填入()A. B. C. D.12.已知是第二象限的角,,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,直線平面,垂足為,三棱錐的底面邊長(zhǎng)和側(cè)棱長(zhǎng)都為4,在平面內(nèi),是直線上的動(dòng)點(diǎn),則點(diǎn)到平面的距離為_______,點(diǎn)到直線的距離的最大值為_______.14.設(shè)滿足約束條件且的最小值為7,則=_________.15.已知是拋物線的焦點(diǎn),是上一點(diǎn),的延長(zhǎng)線交軸于點(diǎn).若為的中點(diǎn),則_________.16.已知等邊三角形的邊長(zhǎng)為1.,點(diǎn)、分別為線段、上的動(dòng)點(diǎn),則取值的集合為__________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過程或演算步驟。17.(12分)為了檢測(cè)某種零件的一條生產(chǎn)線的生產(chǎn)過程,從生產(chǎn)線上隨機(jī)抽取一批零件,根據(jù)其尺寸的數(shù)據(jù)得到如圖所示的頻率分布直方圖,若尺寸落在區(qū)間之外,則認(rèn)為該零件屬“不合格”的零件,其中,s分別為樣本平均數(shù)和樣本標(biāo)準(zhǔn)差,計(jì)算可得(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).(1)求樣本平均數(shù)的大??;(2)若一個(gè)零件的尺寸是100cm,試判斷該零件是否屬于“不合格”的零件.18.(12分)若函數(shù)為奇函數(shù),且時(shí)有極小值.(1)求實(shí)數(shù)的值與實(shí)數(shù)的取值范圍;(2)若恒成立,求實(shí)數(shù)的取值范圍.19.(12分)等差數(shù)列的公差為2,分別等于等比數(shù)列的第2項(xiàng),第3項(xiàng),第4項(xiàng).(1)求數(shù)列和的通項(xiàng)公式;(2)若數(shù)列滿足,求數(shù)列的前2020項(xiàng)的和.20.(12分)如圖,在多面體中,四邊形是菱形,,,,平面,,,是的中點(diǎn).(Ⅰ)求證:平面平面;(ⅠⅠ)求直線與平面所成的角的正弦值.21.(12分)隨著科技的發(fā)展,網(wǎng)絡(luò)已逐漸融入了人們的生活.網(wǎng)購(gòu)是非常方便的購(gòu)物方式,為了了解網(wǎng)購(gòu)在我市的普及情況,某調(diào)查機(jī)構(gòu)進(jìn)行了有關(guān)網(wǎng)購(gòu)的調(diào)查問卷,并從參與調(diào)查的市民中隨機(jī)抽取了男女各100人進(jìn)行分析,從而得到表(單位:人)經(jīng)常網(wǎng)購(gòu)偶爾或不用網(wǎng)購(gòu)合計(jì)男性50100女性70100合計(jì)(1)完成上表,并根據(jù)以上數(shù)據(jù)判斷能否在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為我市市民網(wǎng)購(gòu)與性別有關(guān)?(2)①現(xiàn)從所抽取的女市民中利用分層抽樣的方法抽取10人,再?gòu)倪@10人中隨機(jī)選取3人贈(zèng)送優(yōu)惠券,求選取的3人中至少有2人經(jīng)常網(wǎng)購(gòu)的概率;②將頻率視為概率,從我市所有參與調(diào)查的市民中隨機(jī)抽取10人贈(zèng)送禮品,記其中經(jīng)常網(wǎng)購(gòu)的人數(shù)為,求隨機(jī)變量的數(shù)學(xué)期望和方差.參考公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82822.(10分)已知函數(shù).(1)討論的單調(diào)性;(2)函數(shù),若對(duì)于,使得成立,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
結(jié)合不等式、三角函數(shù)的性質(zhì),對(duì)三個(gè)命題逐個(gè)分析并判斷其真假,即可選出答案.【詳解】對(duì)于命題①,因?yàn)?所以“”是真命題,故其否定是假命題,即①是假命題;對(duì)于命題②,充分性:中,若,則,由余弦函數(shù)的單調(diào)性可知,,即,即可得到,即充分性成立;必要性:中,,若,結(jié)合余弦函數(shù)的單調(diào)性可知,,即,可得到,即必要性成立.故命題②正確;對(duì)于命題③,將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度,可得到的圖象,即命題③是假命題.故假命題有①③.故選:C【點(diǎn)睛】本題考查了命題真假的判斷,考查了余弦函數(shù)單調(diào)性的應(yīng)用,考查了三角函數(shù)圖象的平移變換,考查了學(xué)生的邏輯推理能力,屬于基礎(chǔ)題.2、C【解析】
利用正弦定理將邊化角,再由,化簡(jiǎn)可得,最后分類討論可得;【詳解】解:因?yàn)樗运运运运援?dāng)時(shí),為直角三角形;當(dāng)時(shí)即,為等腰三角形;的形狀是等腰三角形或直角三角形故選:.【點(diǎn)睛】本題考查三角形形狀的判斷,考查正弦定理的運(yùn)用,考查學(xué)生分析解決問題的能力,屬于基礎(chǔ)題.3、A【解析】
可將問題轉(zhuǎn)化,求直線關(guān)于直線的對(duì)稱直線,再分別討論兩函數(shù)的增減性,結(jié)合函數(shù)圖像,分析臨界點(diǎn),進(jìn)一步確定的取值范圍即可【詳解】可求得直線關(guān)于直線的對(duì)稱直線為,當(dāng)時(shí),,,當(dāng)時(shí),,則當(dāng)時(shí),,單減,當(dāng)時(shí),,單增;當(dāng)時(shí),,,當(dāng),,當(dāng)時(shí),單減,當(dāng)時(shí),單增;根據(jù)題意畫出函數(shù)大致圖像,如圖:當(dāng)與()相切時(shí),得,解得;當(dāng)與()相切時(shí),滿足,解得,結(jié)合圖像可知,即,故選:A【點(diǎn)睛】本題考查數(shù)形結(jié)合思想求解函數(shù)交點(diǎn)問題,導(dǎo)數(shù)研究函數(shù)增減性,找準(zhǔn)臨界是解題的關(guān)鍵,屬于中檔題4、A【解析】
由可確定集合中元素一定有的元素,然后列出滿足題意的情況,得到答案.【詳解】由可知集合中一定有元素2,所以符合要求的集合有,共4種情況,所以選A項(xiàng).【點(diǎn)睛】考查集合并集運(yùn)算,屬于簡(jiǎn)單題.5、C【解析】
先研究的展開式的通項(xiàng),再分中,取和兩種情況求解.【詳解】因?yàn)榈恼归_式的通項(xiàng)為,所以的展開式中的常數(shù)項(xiàng)為:,解得,故選:C.【點(diǎn)睛】本題主要考查二項(xiàng)式定理的通項(xiàng)公式,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.6、D【解析】
根據(jù)圖形中的信息,可得頻率、平均值的估計(jì)、眾數(shù)、中位數(shù),從而得到答案.【詳解】對(duì)A,從圖中數(shù)據(jù)變化看,PMI值不低于50%的月份有4個(gè),所以12個(gè)月的PMI值不低于50%的頻率為,故A正確;對(duì)B,由圖可以看出,PMI值的平均值低于50%,故B正確;對(duì)C,12個(gè)月的PMI值的眾數(shù)為49.4%,故C正確,;對(duì)D,12個(gè)月的PMI值的中位數(shù)為49.6%,故D錯(cuò)誤故選:D.【點(diǎn)睛】本題考查頻率、平均值的估計(jì)、眾數(shù)、中位數(shù)計(jì)算,考查數(shù)據(jù)處理能力,屬于基礎(chǔ)題.7、B【解析】
先利用對(duì)稱得,根據(jù)可得,由幾何性質(zhì)可得,即,從而解得漸近線方程.【詳解】如圖所示:由對(duì)稱性可得:為的中點(diǎn),且,所以,因?yàn)?,所以,故而由幾何性質(zhì)可得,即,故漸近線方程為,故選B.【點(diǎn)睛】本題考查了點(diǎn)關(guān)于直線對(duì)稱點(diǎn)的知識(shí),考查了雙曲線漸近線方程,由題意得出是解題的關(guān)鍵,屬于中檔題.8、A【解析】
根據(jù)[x]的定義先作出函數(shù)f(x)的圖象,利用函數(shù)與方程的關(guān)系轉(zhuǎn)化為f(x)與g(x)=ax有三個(gè)不同的交點(diǎn),利用數(shù)形結(jié)合進(jìn)行求解即可.【詳解】當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,若有且僅有3個(gè)零點(diǎn),則等價(jià)為有且僅有3個(gè)根,即與有三個(gè)不同的交點(diǎn),作出函數(shù)和的圖象如圖,當(dāng)a=1時(shí),與有無(wú)數(shù)多個(gè)交點(diǎn),當(dāng)直線經(jīng)過點(diǎn)時(shí),即,時(shí),與有兩個(gè)交點(diǎn),當(dāng)直線經(jīng)過點(diǎn)時(shí),即時(shí),與有三個(gè)交點(diǎn),要使與有三個(gè)不同的交點(diǎn),則直線處在過和之間,即,故選:A.【點(diǎn)睛】利用函數(shù)零點(diǎn)的情況求參數(shù)值或取值范圍的方法(1)直接法:直接根據(jù)題設(shè)條件構(gòu)建關(guān)于參數(shù)的不等式,再通過解不等式確定參數(shù)的范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域(最值)問題加以解決;(3)數(shù)形結(jié)合法:先對(duì)解析式變形,在同一平面直角坐標(biāo)系中,畫出函數(shù)的圖象,然后數(shù)形結(jié)合求解.9、C【解析】
可設(shè),根據(jù)在上為偶函數(shù)及便可得到:,可設(shè),,且,根據(jù)在上是減函數(shù)便可得出,從而得出在上單調(diào)遞增,再根據(jù)對(duì)數(shù)的運(yùn)算得到、、的大小關(guān)系,從而得到的大小關(guān)系.【詳解】解:因?yàn)椋?,又,設(shè),根據(jù)條件,,;若,,且,則:;在上是減函數(shù);;;在上是增函數(shù);所以,故選:C【點(diǎn)睛】考查偶函數(shù)的定義,減函數(shù)及增函數(shù)的定義,根據(jù)單調(diào)性定義判斷一個(gè)函數(shù)單調(diào)性的方法和過程:設(shè),通過條件比較與,函數(shù)的單調(diào)性的應(yīng)用,屬于中檔題.10、D【解析】試題分析:由已知可得有兩個(gè)不等實(shí)根.考點(diǎn):1、余弦定理;2、函數(shù)的極值.【方法點(diǎn)晴】本題考查余弦定理,函數(shù)的極值,涉及函數(shù)與方程思想思想、數(shù)形結(jié)合思想和轉(zhuǎn)化化歸思想,考查邏輯思維能力、等價(jià)轉(zhuǎn)化能力、運(yùn)算求解能力,綜合性較強(qiáng),屬于較難題型.首先利用轉(zhuǎn)化化歸思想將原命題轉(zhuǎn)化為有兩個(gè)不等實(shí)根,從而可得.11、A【解析】
根據(jù)程序框圖輸出的S的值即可得到空白框中應(yīng)填入的內(nèi)容.【詳解】由程序框圖的運(yùn)行,可得:S=0,i=0滿足判斷框內(nèi)的條件,執(zhí)行循環(huán)體,a=1,S=1,i=1滿足判斷框內(nèi)的條件,執(zhí)行循環(huán)體,a=2×(﹣2),S=1+2×(﹣2),i=2滿足判斷框內(nèi)的條件,執(zhí)行循環(huán)體,a=3×(﹣2)2,S=1+2×(﹣2)+3×(﹣2)2,i=3…觀察規(guī)律可知:滿足判斷框內(nèi)的條件,執(zhí)行循環(huán)體,a=99×(﹣2)99,S=1+2×(﹣2)+3×(﹣2)2+…+1×(﹣2)99,i=1,此時(shí),應(yīng)該不滿足判斷框內(nèi)的條件,退出循環(huán),輸出S的值,所以判斷框中的條件應(yīng)是i<1.故選:A.【點(diǎn)睛】本題考查了當(dāng)型循環(huán)結(jié)構(gòu),當(dāng)型循環(huán)是先判斷后執(zhí)行,滿足條件執(zhí)行循環(huán),不滿足條件時(shí)算法結(jié)束,屬于基礎(chǔ)題.12、D【解析】
利用誘導(dǎo)公式和同角三角函數(shù)的基本關(guān)系求出,再利用二倍角的正弦公式代入求解即可.【詳解】因?yàn)?由誘導(dǎo)公式可得,,即,因?yàn)?所以,由二倍角的正弦公式可得,,所以.故選:D【點(diǎn)睛】本題考查誘導(dǎo)公式、同角三角函數(shù)的基本關(guān)系和二倍角的正弦公式;考查運(yùn)算求解能力和知識(shí)的綜合運(yùn)用能力;屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
三棱錐的底面邊長(zhǎng)和側(cè)棱長(zhǎng)都為4,所以在平面的投影為的重心,利用解直角三角形,即可求出點(diǎn)到平面的距離;,可得點(diǎn)是以為直徑的球面上的點(diǎn),所以到直線的距離為以為直徑的球面上的點(diǎn)到的距離,最大距離為分別過和的兩個(gè)平行平面間距離加半徑,即可求出結(jié)論.【詳解】邊長(zhǎng)為,則中線長(zhǎng)為,點(diǎn)到平面的距離為,點(diǎn)是以為直徑的球面上的點(diǎn),所以到直線的距離為以為直徑的球面上的點(diǎn)到的距離,最大距離為分別過和的兩個(gè)平行平面間距離加半徑.又三棱錐的底面邊長(zhǎng)和側(cè)棱長(zhǎng)都為4,以下求過和的兩個(gè)平行平面間距離,分別取中點(diǎn),連,則,同理,分別過做,直線確定平面,直線確定平面,則,同理,為所求,,,所以到直線最大距離為.故答案為:;.【點(diǎn)睛】本題考查空間中的距離、正四面體的結(jié)構(gòu)特征,考查空間想象能力,屬于較難題.14、3【解析】
根據(jù)約束條件畫出可行域,再把目標(biāo)函數(shù)轉(zhuǎn)化為,對(duì)參數(shù)a分類討論,當(dāng)時(shí)顯然不滿足題意;當(dāng)時(shí),直線經(jīng)過可行域中的點(diǎn)A時(shí),截距最小,即z有最小值,再由最小值為7,得出結(jié)果;當(dāng)時(shí),的截距沒有最小值,即z沒有最小值;當(dāng)時(shí),的截距沒有最大值,即z沒有最小值,綜上可得出結(jié)果.【詳解】根據(jù)約束條件畫出可行域如下:由,可得出交點(diǎn),由可得,當(dāng)時(shí)顯然不滿足題意;當(dāng)即時(shí),由可行域可知當(dāng)直線經(jīng)過可行域中的點(diǎn)A時(shí),截距最小,即z有最小值,即,解得或(舍);當(dāng)即時(shí),由可行域可知的截距沒有最小值,即z沒有最小值;當(dāng)即時(shí),根據(jù)可行域可知的截距沒有最大值,即z沒有最小值.綜上可知滿足條件時(shí).故答案為:3.【點(diǎn)睛】本題主要考查線性規(guī)劃問題,約束條件和目標(biāo)函數(shù)中都有參數(shù),要對(duì)參數(shù)進(jìn)行討論.15、【解析】
由題意可得,又由于為的中點(diǎn),且點(diǎn)在軸上,所以可得點(diǎn)的橫坐標(biāo),代入拋物線方程中可求點(diǎn)的縱坐標(biāo),從而可求出點(diǎn)的坐標(biāo),再利用兩點(diǎn)間的距離公式可求得結(jié)果.【詳解】解:因?yàn)槭菕佄锞€的焦點(diǎn),所以,設(shè)點(diǎn)的坐標(biāo)為,因?yàn)闉榈闹悬c(diǎn),而點(diǎn)的橫坐標(biāo)為0,所以,所以,解得,所以點(diǎn)的坐標(biāo)為所以,故答案為:【點(diǎn)睛】此題考查拋物線的性質(zhì),中點(diǎn)坐標(biāo)公式,屬于基礎(chǔ)題.16、【解析】
根據(jù)題意建立平面直角坐標(biāo)系,設(shè)三角形各點(diǎn)的坐標(biāo),依題意求出,,,的表達(dá)式,再進(jìn)行數(shù)量積的運(yùn)算,最后求和即可得出結(jié)果.【詳解】解:以的中點(diǎn)為坐標(biāo)原點(diǎn),所在直線為軸,線段的垂直平分線為軸建立平面直角坐標(biāo)系,如圖所示,則,,,,則,,,設(shè),,,即點(diǎn)的坐標(biāo)為,則,,,所以故答案為:【點(diǎn)睛】本題考查平面向量的坐標(biāo)表示和線性運(yùn)算,以及平面向量基本定理和數(shù)量積的運(yùn)算,是中檔題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過程或演算步驟。17、(1)66.5(2)屬于【解析】
(1)利用頻率分布直方圖的平均數(shù)公式求解;(2)求出,即可判斷得解.【詳解】(1)(2)所以該零件屬于“不合格”的零件【點(diǎn)睛】本題主要考查頻率分布圖中平均數(shù)的計(jì)算和應(yīng)用,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.18、(1),;(2)【解析】
(1)由奇函數(shù)可知在定義域上恒成立,由此建立方程,即可求出實(shí)數(shù)的值;對(duì)函數(shù)進(jìn)行求導(dǎo),,通過導(dǎo)數(shù)求出,若,則恒成立不符合題意,當(dāng),可證明,此時(shí)時(shí)有極小值.(2)可知,進(jìn)而得到,令,通過導(dǎo)數(shù)可知在上為單調(diào)減函數(shù),由可得,從而可求實(shí)數(shù)的取值范圍.【詳解】(1)由函數(shù)為奇函數(shù),得在定義域上恒成立,所以,化簡(jiǎn)可得,所以.則,令,則.故當(dāng)時(shí),;當(dāng)時(shí),,故在上遞減,在上遞增,若,則恒成立,單調(diào)遞增,無(wú)極值點(diǎn);所以,解得,取,則又函數(shù)的圖象在區(qū)間上連續(xù)不間斷,故由函數(shù)零點(diǎn)存在性定理知在區(qū)間上,存在為函數(shù)的零點(diǎn),為極小值,所以,的取值范圍是.(2)由滿足,代入,消去可得.構(gòu)造函數(shù),所以,當(dāng)時(shí),,即恒成立,故在上為單調(diào)減函數(shù),其中.則可轉(zhuǎn)化為,故,由,設(shè),可得當(dāng)時(shí),則在上遞增,故.綜上,的取值范圍是.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了利用導(dǎo)數(shù)求函數(shù)的最值,考查了奇函數(shù)的定義,考查了轉(zhuǎn)化的思想.對(duì)于恒成立的問題,常轉(zhuǎn)化為求的最小值,使;對(duì)于恒成立的問題,常轉(zhuǎn)化為求的最大值,使.19、(1),;(2).【解析】
(1)根據(jù)題意同時(shí)利用等差、等比數(shù)列的通項(xiàng)公式即可求得數(shù)列和的通項(xiàng)公式;(2)求出數(shù)列的通項(xiàng)公式,再利用錯(cuò)位相減法即可求得數(shù)列的前2020項(xiàng)的和.【詳解】(1)依題意得:,所以,所以解得設(shè)等比數(shù)列的公比為,所以又(2)由(1)知,因?yàn)棰佼?dāng)時(shí),②由①②得,,即,又當(dāng)時(shí),不滿足上式,.數(shù)列的前2020項(xiàng)的和設(shè)③,則④,由③④得:,所以,所以.【點(diǎn)睛】本題考查等差數(shù)列和等比數(shù)列的通項(xiàng)公式、性質(zhì),錯(cuò)位相減法求和,考查學(xué)生的邏輯推理能力,化歸與轉(zhuǎn)化能力及綜合運(yùn)用數(shù)學(xué)知識(shí)解決問題的能力.考查的核心素養(yǎng)是邏輯推理與數(shù)學(xué)運(yùn)算.是中檔題.20、(Ⅰ)詳見解析;(Ⅱ).【解析】試題分析:(Ⅰ)連接交于,得,所以面,又,得面,即可利用面面平行的判定定理,證得結(jié)論;(Ⅱ)如圖,以O(shè)為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,求的平面的一個(gè)法向量,利用向量和向量夾角公式,即可求解與平面所成角的正弦值.試題解析:(Ⅰ)連接BD交AC于O,易知O是BD的中點(diǎn),故OG//BE,BE面BEF,OG在面BEF外,所以O(shè)G//面BEF;又EF//AC,AC在面BEF外,AC//面BEF,又AC與OG相交于點(diǎn)O,面ACG有兩條相交直線與面BEF平行,故面ACG∥面BEF;(Ⅱ)如圖,以O(shè)為坐標(biāo)原點(diǎn),分別以O(shè)C、OD、OF為x、y、z軸建立空間直角坐標(biāo)系,則,,,,,,,設(shè)面ABF的法向量為,依題意有,,令,,,,,直線AD與面ABF成的角的正弦值是.21、(Ⅰ
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 體育場(chǎng)館廣告牌施工協(xié)議
- 2025版跨境電子商務(wù)平臺(tái)用戶隱私保護(hù)合同3篇
- 2025年度溫州二手房交易市場(chǎng)風(fēng)險(xiǎn)防控合作協(xié)議3篇
- 城市環(huán)境衛(wèi)生分層管理辦法
- 2025版電子商務(wù)平臺(tái)用戶行為分析合同6篇
- 2024年茶葉生產(chǎn)設(shè)備升級(jí)與購(gòu)買合同
- 2025年度勞動(dòng)密集型產(chǎn)業(yè)勞動(dòng)合同3篇
- DB1331T 096-2024 雄安新區(qū)市政公用工程綠色評(píng)價(jià)標(biāo)準(zhǔn)
- 2024年鉆石購(gòu)銷合同樣本3篇
- 2025版酒店品牌戰(zhàn)略規(guī)劃與委托管理協(xié)議3篇
- 壓縮映射原理的性質(zhì)和應(yīng)用
- 四年級(jí)寒假語(yǔ)文實(shí)踐作業(yè)
- 項(xiàng)目進(jìn)場(chǎng)計(jì)劃及臨建方案
- 蒸汽管道設(shè)計(jì)表(1)
- 通信設(shè)施產(chǎn)權(quán)歸屬
- 提撈采油安全操作規(guī)程
- 京劇英語(yǔ)介紹PPT課件
- in、ing對(duì)比辨音練習(xí).doc
- 關(guān)于廣州番禺龍沙國(guó)際港口物流園龍沙碼頭二期工程可行性研
- 酒店管理權(quán)限權(quán)限表——酒店管理人員折扣權(quán)限匯總表2016(葉予舜)
- 北京市海淀區(qū)2021-2022學(xué)年七年級(jí)第一學(xué)期期末考試語(yǔ)文試卷[附答案]
評(píng)論
0/150
提交評(píng)論