版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023-2024學年湖南省茶陵三中高三第四次模擬考試數(shù)學試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.盒中有6個小球,其中4個白球,2個黑球,從中任取個球,在取出的球中,黑球放回,白球則涂黑后放回,此時盒中黑球的個數(shù),則()A., B.,C., D.,2.一個超級斐波那契數(shù)列是一列具有以下性質(zhì)的正整數(shù):從第三項起,每一項都等于前面所有項之和(例如:1,3,4,8,16…).則首項為2,某一項為2020的超級斐波那契數(shù)列的個數(shù)為()A.3 B.4 C.5 D.63.將函數(shù)向左平移個單位,得到的圖象,則滿足()A.圖象關(guān)于點對稱,在區(qū)間上為增函數(shù)B.函數(shù)最大值為2,圖象關(guān)于點對稱C.圖象關(guān)于直線對稱,在上的最小值為1D.最小正周期為,在有兩個根4.若函數(shù)有兩個極值點,則實數(shù)的取值范圍是()A. B. C. D.5.函數(shù)的部分圖像大致為()A. B.C. D.6.設(shè)雙曲線的左右焦點分別為,點.已知動點在雙曲線的右支上,且點不共線.若的周長的最小值為,則雙曲線的離心率的取值范圍是()A. B. C. D.7.已知函數(shù)(,,),將函數(shù)的圖象向左平移個單位長度,得到函數(shù)的部分圖象如圖所示,則是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件8.集合,,則=()A. B.C. D.9.設(shè)集合,集合,則=()A. B. C. D.R10.不等式組表示的平面區(qū)域為,則()A., B.,C., D.,11.如圖所示,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,其中左視圖中三角形為等腰直角三角形,則該幾何體外接球的體積是()A. B.C. D.12.是的()條件A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要二、填空題:本題共4小題,每小題5分,共20分。13.平行四邊形中,,為邊上一點(不與重合),將平行四邊形沿折起,使五點均在一個球面上,當四棱錐體積最大時,球的表面積為________.14.正方體的棱長為2,是它的內(nèi)切球的一條弦(我們把球面上任意兩點之間的線段稱為球的弦),為正方體表面上的動點,當弦的長度最大時,的取值范圍是______.15.設(shè)實數(shù)滿足約束條件,則的最大值為______.16.一個算法的偽代碼如圖所示,執(zhí)行此算法,最后輸出的T的值為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)解關(guān)于的不等式;(2)若函數(shù)的圖象恒在直線的上方,求實數(shù)的取值范圍18.(12分)2019年是中華人民共和國成立70周年.為了讓人民了解建國70周年的風雨歷程,某地的民調(diào)機構(gòu)隨機選取了該地的100名市民進行調(diào)查,將他們的年齡分成6段:,,…,,并繪制了如圖所示的頻率分布直方圖.(1)現(xiàn)從年齡在,,內(nèi)的人員中按分層抽樣的方法抽取8人,再從這8人中隨機選取3人進行座談,用表示年齡在)內(nèi)的人數(shù),求的分布列和數(shù)學期望;(2)若用樣本的頻率代替概率,用隨機抽樣的方法從該地抽取20名市民進行調(diào)查,其中有名市民的年齡在的概率為.當最大時,求的值.19.(12分)在中,角所對的邊分別是,且.(1)求;(2)若,求.20.(12分)在中,.(Ⅰ)求角的大??;(Ⅱ)若,,求的值.21.(12分)已知拋物線與直線.(1)求拋物線C上的點到直線l距離的最小值;(2)設(shè)點是直線l上的動點,是定點,過點P作拋物線C的兩條切線,切點為A,B,求證A,Q,B共線;并在時求點P坐標.22.(10分)已知,,(1)求的最小正周期及單調(diào)遞增區(qū)間;(2)已知銳角的內(nèi)角,,的對邊分別為,,,且,,求邊上的高的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
根據(jù)古典概型概率計算公式,計算出概率并求得數(shù)學期望,由此判斷出正確選項.【詳解】表示取出的為一個白球,所以.表示取出一個黑球,,所以.表示取出兩個球,其中一黑一白,,表示取出兩個球為黑球,,表示取出兩個球為白球,,所以.所以,.故選:C【點睛】本小題主要考查離散型隨機變量分布列和數(shù)學期望的計算,屬于中檔題.2、A【解析】
根據(jù)定義,表示出數(shù)列的通項并等于2020.結(jié)合的正整數(shù)性質(zhì)即可確定解的個數(shù).【詳解】由題意可知首項為2,設(shè)第二項為,則第三項為,第四項為,第五項為第n項為且,則,因為,當?shù)闹悼梢詾?;即?個這種超級斐波那契數(shù)列,故選:A.【點睛】本題考查了數(shù)列新定義的應(yīng)用,注意自變量的取值范圍,對題意理解要準確,屬于中檔題.3、C【解析】
由輔助角公式化簡三角函數(shù)式,結(jié)合三角函數(shù)圖象平移變換即可求得的解析式,結(jié)合正弦函數(shù)的圖象與性質(zhì)即可判斷各選項.【詳解】函數(shù),則,將向左平移個單位,可得,由正弦函數(shù)的性質(zhì)可知,的對稱中心滿足,解得,所以A、B選項中的對稱中心錯誤;對于C,的對稱軸滿足,解得,所以圖象關(guān)于直線對稱;當時,,由正弦函數(shù)性質(zhì)可知,所以在上的最小值為1,所以C正確;對于D,最小正周期為,當,,由正弦函數(shù)的圖象與性質(zhì)可知,時僅有一個解為,所以D錯誤;綜上可知,正確的為C,故選:C.【點睛】本題考查了三角函數(shù)式的化簡,三角函數(shù)圖象平移變換,正弦函數(shù)圖象與性質(zhì)的綜合應(yīng)用,屬于中檔題.4、A【解析】試題分析:由題意得有兩個不相等的實數(shù)根,所以必有解,則,且,∴.考點:利用導(dǎo)數(shù)研究函數(shù)極值點【方法點睛】函數(shù)極值問題的常見類型及解題策略(1)知圖判斷函數(shù)極值的情況.先找導(dǎo)數(shù)為0的點,再判斷導(dǎo)數(shù)為0的點的左、右兩側(cè)的導(dǎo)數(shù)符號.(2)已知函數(shù)求極值.求f′(x)―→求方程f′(x)=0的根―→列表檢驗f′(x)在f′(x)=0的根的附近兩側(cè)的符號―→下結(jié)論.(3)已知極值求參數(shù).若函數(shù)f(x)在點(x0,y0)處取得極值,則f′(x0)=0,且在該點左、右兩側(cè)的導(dǎo)數(shù)值符號相反.5、A【解析】
根據(jù)函數(shù)解析式,可知的定義域為,通過定義法判斷函數(shù)的奇偶性,得出,則為偶函數(shù),可排除選項,觀察選項的圖象,可知代入,解得,排除選項,即可得出答案.【詳解】解:因為,所以的定義域為,則,∴為偶函數(shù),圖象關(guān)于軸對稱,排除選項,且當時,,排除選項,所以正確.故選:A.【點睛】本題考查由函數(shù)解析式識別函數(shù)圖象,利用函數(shù)的奇偶性和特殊值法進行排除.6、A【解析】
依題意可得即可得到,從而求出雙曲線的離心率的取值范圍;【詳解】解:依題意可得如下圖象,所以則所以所以所以,即故選:A【點睛】本題考查雙曲線的簡單幾何性質(zhì),屬于中檔題.7、B【解析】
先根據(jù)圖象求出函數(shù)的解析式,再由平移知識得到的解析式,然后分別找出和的等價條件,即可根據(jù)充分條件,必要條件的定義求出.【詳解】設(shè),根據(jù)圖象可知,,再由,取,∴.將函數(shù)的圖象向右平移個單位長度,得到函數(shù)的圖象,∴.,,令,則,顯然,∴是的必要不充分條件.故選:B.【點睛】本題主要考查利用圖象求正(余)弦型函數(shù)的解析式,三角函數(shù)的圖形變換,二倍角公式的應(yīng)用,充分條件,必要條件的定義的應(yīng)用,意在考查學生的數(shù)學運算能力和邏輯推理能力,屬于中檔題.8、C【解析】
先化簡集合A,B,結(jié)合并集計算方法,求解,即可.【詳解】解得集合,所以,故選C.【點睛】本道題考查了集合的運算,考查了一元二次不等式解法,關(guān)鍵化簡集合A,B,難度較?。?、D【解析】試題分析:由題,,,選D考點:集合的運算10、D【解析】
根據(jù)題意,分析不等式組的幾何意義,可得其表示的平面區(qū)域,設(shè),分析的幾何意義,可得的最小值,據(jù)此分析選項即可得答案.【詳解】解:根據(jù)題意,不等式組其表示的平面區(qū)域如圖所示,其中,,
設(shè),則,的幾何意義為直線在軸上的截距的2倍,
由圖可得:當過點時,直線在軸上的截距最大,即,當過點原點時,直線在軸上的截距最小,即,故AB錯誤;
設(shè),則的幾何意義為點與點連線的斜率,由圖可得最大可到無窮大,最小可到無窮小,故C錯誤,D正確;故選:D.【點睛】本題考查本題考查二元一次不等式的性質(zhì)以及應(yīng)用,關(guān)鍵是對目標函數(shù)幾何意義的認識,屬于基礎(chǔ)題.11、C【解析】
作出三視圖所表示幾何體的直觀圖,可得直觀圖為直三棱柱,并且底面為等腰直角三角形,即可求得外接球的半徑,即可得外接球的體積.【詳解】如圖為幾何體的直觀圖,上下底面為腰長為的等腰直角三角形,三棱柱的高為4,其外接球半徑為,所以體積為.故選:C【點睛】本題考查三視圖還原幾何體的直觀圖、球的體積公式,考查空間想象能力、運算求解能力,求解時注意球心的確定.12、B【解析】
利用充分條件、必要條件與集合包含關(guān)系之間的等價關(guān)系,即可得出。【詳解】設(shè)對應(yīng)的集合是,由解得且對應(yīng)的集合是,所以,故是的必要不充分條件,故選B。【點睛】本題主要考查充分條件、必要條件的判斷方法——集合關(guān)系法。設(shè),如果,則是的充分條件;如果B則是的充分不必要條件;如果,則是的必要條件;如果,則是的必要不充分條件。二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
依題意可得、、、四點共圓,即可得到,從而得到三角形為正三角形,利用余弦定理可得,且,要使四棱錐體積最大,當且僅當面面時體積取得最大值,利用正弦定理求出的外接圓的半徑,再又可證面,則外接球的半徑,即可求出球的表面積;【詳解】解:依題意可得、、、四點共圓,所以因為,所以,,所以三角形為正三角形,則,,利用余弦定理得即,解得,則所以,當面面時,取得最大,所以的外接圓的半徑,又面面,,且面面,面所以面,所以外接球的半徑所以故答案為:【點睛】本題考查多面體的外接球的相關(guān)計算,正弦定理、余弦定理的應(yīng)用,屬于中檔題.14、【解析】
由弦的長度最大可知為球的直徑.由向量的線性運用表示出,即可由范圍求得的取值范圍.【詳解】連接,如下圖所示:設(shè)球心為,則當弦的長度最大時,為球的直徑,由向量線性運算可知正方體的棱長為2,則球的半徑為1,,所以,而所以,即故答案為:.【點睛】本題考查了空間向量線性運算與數(shù)量積的運算,正方體內(nèi)切球性質(zhì)應(yīng)用,屬于中檔題.15、【解析】
試題分析:作出不等式組所表示的平面區(qū)域如圖,當直線過點時,最大,且考點:線性規(guī)劃.16、【解析】
由程序中的變量、各語句的作用,結(jié)合流程圖所給的順序,模擬程序的運行,即可得到答案.【詳解】根據(jù)題中的程序框圖可得:,執(zhí)行循環(huán)體,,不滿足條件,執(zhí)行循環(huán)體,,此時,滿足條件,退出循環(huán),輸出的值為.故答案為:【點睛】本題主要考查了程序和算法,依次寫出每次循環(huán)得到的,的值是解題的關(guān)鍵,屬于基本知識的考查.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)零點分段法分,,三種情況討論即可;(2)只需找到的最小值即可.【詳解】(1)由.若時,,解得;若時,,解得;若時,,解得;故不等式的解集為.(2)由,有,得,故實數(shù)的取值范圍為.【點睛】本題考查絕對值不等式的解法以及不等式恒成立問題,考查學生的運算能力,是一道基礎(chǔ)題.18、(1)分布列見解析,(1)【解析】
(1)根據(jù)頻率分布直方圖及抽取總?cè)藬?shù),結(jié)合各組頻率值即可求得各組抽取的人數(shù);的可能取值為0,1,1,由離散型隨機變量概率求法即可求得各概率值,即可得分布列;由數(shù)學期望公式即可求得其數(shù)學期望.(1)先求得年齡在內(nèi)的頻率,視為概率.結(jié)合二項分布的性質(zhì),表示出,令,化簡后可證明其單調(diào)性及取得最大值時的值.【詳解】(1)按分層抽樣的方法拉取的8人中,年齡在的人數(shù)為人,年齡在內(nèi)的人數(shù)為人.年齡在內(nèi)的人數(shù)為人.所以的可能取值為0,1,1.所以,,,所以的分市列為011.(1)設(shè)在抽取的10名市民中,年齡在內(nèi)的人數(shù)為,服從二項分布.由頻率分布直方圖可知,年齡在內(nèi)的頻率為,所以,所以.設(shè),若,則,;若,則,.所以當時,最大,即當最大時,.【點睛】本題考差了離散型隨機變量分布列及數(shù)學期望的求法,二項分布的綜合應(yīng)用,屬于中檔題.19、(1)(2)【解析】
(1)根據(jù)正弦定理到,得到答案.(2)計算,再利用余弦定理計算得到答案.【詳解】(1)由,可得,因為,所以,所以.(2),又因為,所以.因為,所以,即.【點睛】本題考查了正弦定理和余弦定理,意在考查學生的計算能力.20、(1);(2).【解析】試題分析:(1)由正弦定理得到.消去公因式得到所以.進而得到角A;(2)結(jié)合三角形的面積公式,和余弦定理得到,聯(lián)立兩式得到.解析:(I)因為,所以,由正弦定理,得.又因為,,所以.又因為,所以.(II)由,得,由余弦定理,得,即,因為,解得.因為,所以.21、(1);(2)證明見解析,或【解析】
(1)根據(jù)點到直線的公式結(jié)合二次函數(shù)的性質(zhì)即可求出;(2)設(shè),,,,表示出直線,的方程,利用表示出,,即可求定點的坐標.【詳解】(1)設(shè)拋物線上點的坐標為,則,時取等號),則拋物線上的點到直線距離的最小值;(2)設(shè),,,,,,直線,的方程為分別為,,由兩條直線都經(jīng)過點點得,為方程的兩根,,直線的方程為,,,,,共線.又,,,解,,點,是直線上的動點,時,,時,,,或.【點睛】本題考查拋物線的方程的求法,考查直線方程的求法,考查直線過定點的解法,意在考查學生對這些知識的理解掌握水平和分析推理能力.22、(1)的最小正周期為:;函數(shù)單
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024物業(yè)租賃中的讓與擔保 甲方與乙方合同范本
- 2025年度體育賽事代理合同終止及賽事推廣合作協(xié)議4篇
- 2025年度商鋪物業(yè)管理與應(yīng)急響應(yīng)預(yù)案合同4篇
- 2025年度變壓器租賃及電力設(shè)備租賃期滿續(xù)租合同3篇
- 2024藝人廣告代言服務(wù)合同范本
- 2025年度主題餐廳投資合作協(xié)議范本3篇
- 2025年度水果種植基地與電商平臺合作合同3篇
- 2024跨境電子商務(wù)融資代建合同
- 2025年度安全生產(chǎn)信息化服務(wù)合同范本3篇
- 2025年度新能源汽車充電站車棚建設(shè)與運營承包合同4篇
- 2024高考復(fù)習必背英語詞匯3500單詞
- 消防控制室值班服務(wù)人員培訓方案
- 《貴州旅游介紹》課件2
- 2024年中職單招(護理)專業(yè)綜合知識考試題庫(含答案)
- 無人機應(yīng)用平臺實施方案
- 挪用公款還款協(xié)議書范本
- 事業(yè)單位工作人員年度考核登記表(醫(yī)生個人總結(jié))
- 盾構(gòu)隧道施工數(shù)字化與智能化系統(tǒng)集成
- 【企業(yè)盈利能力探析文獻綜述2400字】
- 2019年醫(yī)養(yǎng)結(jié)合項目商業(yè)計劃書
- 2023年店鋪工程主管年終業(yè)務(wù)工作總結(jié)
評論
0/150
提交評論