北京豐臺區(qū)北京第十二中學2024屆高三第二次調研數學試卷含解析_第1頁
北京豐臺區(qū)北京第十二中學2024屆高三第二次調研數學試卷含解析_第2頁
北京豐臺區(qū)北京第十二中學2024屆高三第二次調研數學試卷含解析_第3頁
北京豐臺區(qū)北京第十二中學2024屆高三第二次調研數學試卷含解析_第4頁
北京豐臺區(qū)北京第十二中學2024屆高三第二次調研數學試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

北京豐臺區(qū)北京第十二中學2024屆高三第二次調研數學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,在直角梯形ABCD中,AB∥DC,AD⊥DC,AD=DC=2AB,E為AD的中點,若,則λ+μ的值為()A. B. C. D.2.已知,滿足條件(為常數),若目標函數的最大值為9,則()A. B. C. D.3.設,,,則的大小關系是()A. B. C. D.4.函數的最大值為,最小正周期為,則有序數對為()A. B. C. D.5.已知函數,其中,,其圖象關于直線對稱,對滿足的,,有,將函數的圖象向左平移個單位長度得到函數的圖象,則函數的單調遞減區(qū)間是()A. B.C. D.6.已知等比數列的各項均為正數,設其前n項和,若(),則()A.30 B. C. D.627.若復數在復平面內對應的點在第二象限,則實數的取值范圍是()A. B. C. D.8.在區(qū)間上隨機取一個實數,使直線與圓相交的概率為()A. B. C. D.9.已知函數,則下列結論錯誤的是()A.函數的最小正周期為πB.函數的圖象關于點對稱C.函數在上單調遞增D.函數的圖象可由的圖象向左平移個單位長度得到10.記個兩兩無交集的區(qū)間的并集為階區(qū)間如為2階區(qū)間,設函數,則不等式的解集為()A.2階區(qū)間 B.3階區(qū)間 C.4階區(qū)間 D.5階區(qū)間11.設,命題“存在,使方程有實根”的否定是()A.任意,使方程無實根B.任意,使方程有實根C.存在,使方程無實根D.存在,使方程有實根12.泰山有“五岳之首”“天下第一山”之稱,登泰山的路線有四條:紅門盤道徒步線路,桃花峪登山線路,天外村汽車登山線路,天燭峰登山線路.甲、乙、丙三人在聊起自己登泰山的線路時,發(fā)現三人走的線路均不同,且均沒有走天外村汽車登山線路,三人向其他旅友進行如下陳述:甲:我走紅門盤道徒步線路,乙走桃花峪登山線路;乙:甲走桃花峪登山線路,丙走紅門盤道徒步線路;丙:甲走天燭峰登山線路,乙走紅門盤道徒步線路;事實上,甲、乙、丙三人的陳述都只對一半,根據以上信息,可判斷下面說法正確的是()A.甲走桃花峪登山線路 B.乙走紅門盤道徒步線路C.丙走桃花峪登山線路 D.甲走天燭峰登山線路二、填空題:本題共4小題,每小題5分,共20分。13.(5分)函數的定義域是____________.14.如圖所示,在△ABC中,AB=AC=2,,,AE的延長線交BC邊于點F,若,則____.15.某四棱錐的三視圖如圖所示,那么此四棱錐的體積為______.16.已知實數,對任意,有,且,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)(選修4-4:坐標系與參數方程)在平面直角坐標系,已知曲線(為參數),在以原點為極點,軸的非負半軸為極軸建立的極坐標系中,直線的極坐標方程為.(1)求曲線的普通方程和直線的直角坐標方程;(2)過點且與直線平行的直線交于,兩點,求點到,的距離之積.18.(12分)已知點是拋物線的頂點,,是上的兩個動點,且.(1)判斷點是否在直線上?說明理由;(2)設點是△的外接圓的圓心,點到軸的距離為,點,求的最大值.19.(12分)有最大值,且最大值大于.(1)求的取值范圍;(2)當時,有兩個零點,證明:.(參考數據:)20.(12分)已知直線l的極坐標方程為,圓C的參數方程為(為參數).(1)請分別把直線l和圓C的方程化為直角坐標方程;(2)求直線l被圓截得的弦長.21.(12分)己知的內角的對邊分別為.設(1)求的值;(2)若,且,求的值.22.(10分)已知函數,.(1)當為何值時,軸為曲線的切線;(2)用表示、中的最大值,設函數,當時,討論零點的個數.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

建立平面直角坐標系,用坐標表示,利用,列出方程組求解即可.【詳解】建立如圖所示的平面直角坐標系,則D(0,0).不妨設AB=1,則CD=AD=2,所以C(2,0),A(0,2),B(1,2),E(0,1),∴(-2,2)=λ(-2,1)+μ(1,2),解得則.故選:B【點睛】本題主要考查了由平面向量線性運算的結果求參數,屬于中檔題.2、B【解析】

由目標函數的最大值為9,我們可以畫出滿足條件件為常數)的可行域,根據目標函數的解析式形式,分析取得最優(yōu)解的點的坐標,然后根據分析列出一個含參數的方程組,消參后即可得到的取值.【詳解】畫出,滿足的為常數)可行域如下圖:由于目標函數的最大值為9,可得直線與直線的交點,使目標函數取得最大值,將,代入得:.故選:.【點睛】如果約束條件中含有參數,我們可以先畫出不含參數的幾個不等式對應的平面區(qū)域,分析取得最優(yōu)解是哪兩條直線的交點,然后得到一個含有參數的方程(組,代入另一條直線方程,消去,后,即可求出參數的值.3、A【解析】

選取中間值和,利用對數函數,和指數函數的單調性即可求解.【詳解】因為對數函數在上單調遞增,所以,因為對數函數在上單調遞減,所以,因為指數函數在上單調遞增,所以,綜上可知,.故選:A【點睛】本題考查利用對數函數和指數函數的單調性比較大小;考查邏輯思維能力和知識的綜合運用能力;選取合適的中間值是求解本題的關鍵;屬于中檔題、??碱}型.4、B【解析】函數(為輔助角)∴函數的最大值為,最小正周期為故選B5、B【解析】

根據已知得到函數兩個對稱軸的距離也即是半周期,由此求得的值,結合其對稱軸,求得的值,進而求得解析式.根據圖像變換的知識求得的解析式,再利用三角函數求單調區(qū)間的方法,求得的單調遞減區(qū)間.【詳解】解:已知函數,其中,,其圖像關于直線對稱,對滿足的,,有,∴.再根據其圖像關于直線對稱,可得,.∴,∴.將函數的圖像向左平移個單位長度得到函數的圖像.令,求得,則函數的單調遞減區(qū)間是,,故選B.【點睛】本小題主要考查三角函數圖像與性質求函數解析式,考查三角函數圖像變換,考查三角函數單調區(qū)間的求法,屬于中檔題.6、B【解析】

根據,分別令,結合等比數列的通項公式,得到關于首項和公比的方程組,解方程組求出首項和公式,最后利用等比數列前n項和公式進行求解即可.【詳解】設等比數列的公比為,由題意可知中:.由,分別令,可得、,由等比數列的通項公式可得:,因此.故選:B【點睛】本題考查了等比數列的通項公式和前n項和公式的應用,考查了數學運算能力.7、B【解析】

復數,在復平面內對應的點在第二象限,可得關于a的不等式組,解得a的范圍.【詳解】,由其在復平面對應的點在第二象限,得,則.故選:B.【點睛】本題考查了復數的運算法則、幾何意義、不等式的解法,考查了推理能力與計算能力,屬于基礎題.8、D【解析】

利用直線與圓相交求出實數的取值范圍,然后利用幾何概型的概率公式可求得所求事件的概率.【詳解】由于直線與圓相交,則,解得.因此,所求概率為.故選:D.【點睛】本題考查幾何概型概率的計算,同時也考查了利用直線與圓相交求參數,考查計算能力,屬于基礎題.9、D【解析】

由可判斷選項A;當時,可判斷選項B;利用整體換元法可判斷選項C;可判斷選項D.【詳解】由題知,最小正周期,所以A正確;當時,,所以B正確;當時,,所以C正確;由的圖象向左平移個單位,得,所以D錯誤.故選:D.【點睛】本題考查余弦型函數的性質,涉及到周期性、對稱性、單調性以及圖象變換后的解析式等知識,是一道中檔題.10、D【解析】

可判斷函數為奇函數,先討論當且時的導數情況,再畫出函數大致圖形,將所求區(qū)間端點值分別看作對應常函數,再由圖形確定具體自變量范圍即可求解【詳解】當且時,.令得.可得和的變化情況如下表:令,則原不等式變?yōu)椋蓤D像知的解集為,再次由圖像得到的解集由5段分離的部分組成,所以解集為5階區(qū)間.故選:D【點睛】本題考查由函數的奇偶性,單調性求解對應自變量范圍,導數法研究函數增減性,數形結合思想,轉化與化歸思想,屬于難題11、A【解析】

只需將“存在”改成“任意”,有實根改成無實根即可.【詳解】由特稱命題的否定是全稱命題,知“存在,使方程有實根”的否定是“任意,使方程無實根”.故選:A【點睛】本題考查含有一個量詞的命題的否定,此類問題要注意在兩個方面作出變化:1.量詞,2.結論,是一道基礎題.12、D【解析】

甲乙丙三人陳述中都提到了甲的路線,由題意知這三句中一定有一個是正確另外兩個錯誤的,再分情況討論即可.【詳解】若甲走的紅門盤道徒步線路,則乙,丙描述中的甲的去向均錯誤,又三人的陳述都只對一半,則乙丙的另外兩句話“丙走紅門盤道徒步線路”,“乙走紅門盤道徒步線路”正確,與“三人走的線路均不同”矛盾.故甲的另一句“乙走桃花峪登山線路”正確,故丙的“乙走紅門盤道徒步線路”錯誤,“甲走天燭峰登山線路”正確.乙的話中“甲走桃花峪登山線路”錯誤,“丙走紅門盤道徒步線路”正確.綜上所述,甲走天燭峰登山線路,乙走桃花峪登山線路,丙走紅門盤道徒步線路故選:D【點睛】本題主要考查了判斷與推理的問題,重點是找到三人中都提到的內容進行分類討論,屬于基礎題型.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

要使函數有意義,則,即,解得,故函數的定義域是.14、【解析】

過點做,可得,,由可得,可得,代入可得答案.【詳解】解:如圖,過點做,易得:,,,故,可得:,同理:,,可得,,由,可得,可得:,可得:,,故答案為:.【點睛】本題主要考查平面向量的線性運算和平面向量的數量積,由題意作出是解題的關鍵.15、【解析】

利用三視圖判斷幾何體的形狀,然后通過三視圖的數據求解幾何體的體積.【詳解】如圖:此四棱錐的高為,底面是長為,寬為2的矩形,所以體積.所以本題答案為.【點睛】本題考查幾何體與三視圖的對應關系,幾何體體積的求法,考查空間想象能力與計算能力.解決本類題目的關鍵是準確理解幾何體的定義,真正把握幾何體的結構特征,可以根據條件構建幾何模型,在幾何模型中進行判斷.16、-1【解析】

由二項式定理及展開式系數的求法得,又,所以,令得:,所以,得解.【詳解】由,且,則,又,所以,令得:,所以,故答案為:.【點睛】本題考查了二項式定理及展開式系數的求法,意在考查學生對這些知識的理解掌握水平.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)曲線:,直線的直角坐標方程;(2)1.【解析】試題分析:(1)先根據三角函數平方關系消參數得曲線化為普通方程,再根據將直線的極坐標方程化為直角坐標方程;(2)根據題意設直線參數方程,代入C方程,利用參數幾何意義以及韋達定理得點到,的距離之積試題解析:(1)曲線化為普通方程為:,由,得,所以直線的直角坐標方程為.(2)直線的參數方程為(為參數),代入化簡得:,設兩點所對應的參數分別為,則,.18、(1)不在,證明見詳解;(2)【解析】

(1)假設直線方程,并于拋物線方程聯立,結合韋達定理,計算,可得,然后驗證可得結果.(2)分別計算線段中垂線的方程,然后聯立,根據(1)的條件可得點的軌跡方程,然后可得焦點,結合拋物線定義可得,計算可得結果.【詳解】(1)設直線方程,根據題意可知直線斜率一定存在,則則由所以將代入上式化簡可得,所以則直線方程為,所以直線過定點,所以可知點不在直線上.(2)設線段的中點為線段的中點為則直線的斜率為,直線的斜率為可知線段的中垂線的方程為由,所以上式化簡為即線段的中垂線的方程為同理可得:線段的中垂線的方程為則由(1)可知:所以即,所以點軌跡方程為焦點為,所以當三點共線時,有最大所以【點睛】本題考查直線于拋物線的綜合應用,第(1)問中難點在于計算處,第(2)問中關鍵在于得到點的軌跡方程,直線與圓錐曲線的綜合常常要聯立方程,結合韋達定理,屬難題.19、(1);(2)證明見解析.【解析】

(1)求出函數的定義域為,,分和兩種情況討論,分析函數的單調性,求出函數的最大值,即可得出關于實數的不等式,進而可求得實數的取值范圍;(2)利用導數分析出函數在上遞增,在上遞減,可得出,由,構造函數,證明出,進而得出,再由函數在區(qū)間上的單調性可證得結論.【詳解】(1)函數的定義域為,且.當時,對任意的,,此時函數在上為增函數,函數為最大值;當時,令,得.當時,,此時函數單調遞增;當時,,此時函數單調遞減.所以,函數在處取得極大值,亦即最大值,即,解得.綜上所述,實數的取值范圍是;(2)當時,,定義域為,,當時,;當時,.所以,函數的單調遞增區(qū)間為,單調遞減區(qū)間為.由于函數有兩個零點、且,,,構造函數,其中,,令,,當時,,所以,函數在區(qū)間上單調遞減,則,則.所以,函數在區(qū)間上單調遞減,,,即,即,,且,而函數在上為減函數,所以,,因此,.【點睛】本題考查利用函數的最值求參數,同時也考查了利用導數證明函數不等式,利用所證不等式的結構構造新函數是解答的關鍵,考查推理能力與計算能力,屬于難題.20、(1).x2+y2=1.(2)16【解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論