




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
串講03平面向量知識(shí)網(wǎng)絡(luò)二、??碱}型三、知識(shí)梳理1.向量的概念(1)向量:既有大小又有方向的量叫做向量,向量的大小叫做向量的模.(2)零向量:長(zhǎng)度為0的向量,其方向是任意的.(3)單位向量:長(zhǎng)度等于1個(gè)單位的向量.(4)平行向量:方向相同或相反的非零向量,又叫共線向量,規(guī)定:0與任一向量共線.(5)相等向量:長(zhǎng)度相等且方向相同的向量.(6)相反向量:長(zhǎng)度相等且方向相反的向量.2.向量的線性運(yùn)算向量運(yùn)算定義法則(或幾何意義)運(yùn)算律加法求兩個(gè)向量和的運(yùn)算交換律:a+b=b+a;結(jié)合律:(a+b)+c=a+(b+c)減法求a與b的相反向量-b的和的運(yùn)算a-b=a+(-b)數(shù)乘求實(shí)數(shù)λ與向量a的積的運(yùn)算|λa|=|λ||a|,當(dāng)λ>0時(shí),λa與a的方向相同;當(dāng)λ<0時(shí),λa與a的方向相反;當(dāng)λ=0時(shí),λa=0λ(μa)=(λμ)a;(λ+μ)a=λa+μ_a;λ(a+b)=λa+λb3.向量的共線定理向量b與非零向量a共線的充要條件是有且只有一個(gè)實(shí)數(shù)λ,使得b=λa.4.平面向量基本定理如果是同一平面內(nèi)的兩個(gè)不共線向量,那么對(duì)于這一平面內(nèi)的任意向量,有且只有一對(duì)實(shí)數(shù),使.其中,不共線的向量叫做表示這一平面內(nèi)所有向量的一組基底.5.平面向量的坐標(biāo)運(yùn)算(1)向量加法、減法、數(shù)乘向量及向量的模設(shè),則,,,.(2)向量坐標(biāo)的求法①若向量的起點(diǎn)是坐標(biāo)原點(diǎn),則終點(diǎn)坐標(biāo)即為向量的坐標(biāo);②設(shè),則,.6.平面向量共線的坐標(biāo)表示設(shè),其中,.7.向量的夾角(1)定義:已知兩個(gè)非零向量a和b,作eq\o(OA,\s\up6(→))=a,eq\o(OB,\s\up6(→))=b,則∠AOB就是向量a與b的夾角.(2)范圍:設(shè)θ是向量a與b的夾角,則0°≤θ≤180°.(3)共線與垂直:若θ=0°,則a與b同向;若θ=180°,則a與b反向;若θ=90°,則a與b垂直.8.平面向量的數(shù)量積定義設(shè)兩個(gè)非零向量a,b的夾角為θ,則|a||b|·cosθ叫做a與b的數(shù)量積,記作a·b投影|a|cosθ叫做向量a在b方向上的投影,|b|cosθ叫做向量b在a方向上的投影幾何意義數(shù)量積a·b等于a的長(zhǎng)度|a|與b在a的方向上的投影|b|cosθ的乘積9.向量數(shù)量積的運(yùn)算律(1)a·b=b·a.(2)(λa)·b=λ(a·b)=a·(λb).(3)(a+b)·c=a·c+b·c.10.平面向量數(shù)量積的結(jié)論已知非零向量a=(x1,y1),b=(x2,y2),a與b的夾角為θ.結(jié)論幾何表示坐標(biāo)表示模|a|=eq\r(a·a)|a|=eq\r(xeq\o\al(2,1)+yeq\o\al(2,1))夾角cosθ=eq\f(a·b,|a||b|)cosθ=eq\f(x1x2+y1y2,\r(xeq\o\al(2,1)+yeq\o\al(2,1))\r(xeq\o\al(2,2)+yeq\o\al(2,2)))a⊥b的充要條件a·b=0x1x2+y1y2=0四、常考題型探究考點(diǎn)一向量的概念例1.設(shè)是非零向量,λ是非零實(shí)數(shù),下列結(jié)論中正確的是(
)A.與的方向相反 B.與的方向相同C. D.【變式探究】判斷下列命題:①兩個(gè)有共同起點(diǎn)而且相等的非零向量,其終點(diǎn)必相同;②若,則與的方向相同或相反;③若,且,則.其中,正確的命題個(gè)數(shù)為(
)A.0 B.1 C.2 D.3考點(diǎn)二向量的加減法例2.化簡(jiǎn)得(
)A. B. C. D.【變式探究】.考點(diǎn)三向量的數(shù)乘運(yùn)算例3.已知向量,那么等于(
)A. B. C. D.【變式探究】化簡(jiǎn).考點(diǎn)四平行向量基本定理例4.在中,點(diǎn)為邊的中點(diǎn),記,則.【變式探究】已知,是兩個(gè)不共線的向量,與共線,則實(shí)數(shù).考點(diǎn)五向量的直角坐標(biāo)運(yùn)算例5.已知向量,,則等于()A. B.C. D.例6.已知向量,,則等于()A. B.C. D.【變式探究】已知向量,則下列結(jié)論正確的是(
)A. B.C.與同向 D.考點(diǎn)六向量平行的充要條件例7.已知平面向量,且,則(
)A. B. C.1 D.3【變式探究】已知向量,,若與共線,則實(shí)數(shù)(
)A. B. C.1 D.2考點(diǎn)七向量的坐標(biāo)公式例8.已知,則的中點(diǎn)坐標(biāo)是(
)A. B. C. D.例9.已知平面向量,,若,則實(shí)數(shù)(
)A. B. C.1 D.【變式探究】已知向量,若,則(
)A. B. C.0 D.3考點(diǎn)八向量數(shù)量積求模例10.已知向量,則.【變式探究】已知向量,若,則.考點(diǎn)九向量數(shù)量積求夾角例11.已知平面向量,則與的夾角為(
)A. B. C. D.【變式探究】已知,,若,則.考
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 酒水鑒定知識(shí)培訓(xùn)班課件
- 河道養(yǎng)護(hù)工作總結(jié)
- 收費(fèi)站應(yīng)急管理培訓(xùn)課程
- 2025年度財(cái)務(wù)部工作方案怎么寫
- 2025年企業(yè)疫情復(fù)工復(fù)產(chǎn)方案
- 2025年銷售人員個(gè)人下半年工作方案
- 教育小孩拒絕偷竊行為-教室演講
- 哈林花式籃球項(xiàng)目介紹
- 房地產(chǎn)項(xiàng)目投資策劃營(yíng)銷
- 廈門工學(xué)院《Unty游戲開發(fā)》2023-2024學(xué)年第二學(xué)期期末試卷
- 2025年北京市房山區(qū)高三一模政治試卷(含答案)
- 2025 年深入貫徹中央八項(xiàng)規(guī)定精神學(xué)習(xí)教育實(shí)施方案
- 《Python程序設(shè)計(jì)》全套教學(xué)課件
- 2025年空壓機(jī)行業(yè)發(fā)展戰(zhàn)略研究及投資潛力預(yù)測(cè)評(píng)估報(bào)告
- 2024年廣東惠州仲愷高新區(qū)招聘中學(xué)教師筆試真題
- 馬化騰的創(chuàng)業(yè)故事
- 院科兩級(jí)人員緊急替代程序與替代方案
- 高中主題班會(huì) 心懷感恩志存高遠(yuǎn)課件-高一上學(xué)期感恩教育主題班會(huì)
- 2024年晉城市城區(qū)城市建設(shè)投資經(jīng)營(yíng)有限公司招聘考試真題
- 社工證筆試題庫及答案
- 2025年湖北省初中學(xué)業(yè)水平考試數(shù)學(xué)模擬卷(二)(原卷版+解析版)
評(píng)論
0/150
提交評(píng)論