2023-2024學(xué)年江西省南昌石埠中學(xué)畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第1頁
2023-2024學(xué)年江西省南昌石埠中學(xué)畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第2頁
2023-2024學(xué)年江西省南昌石埠中學(xué)畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第3頁
2023-2024學(xué)年江西省南昌石埠中學(xué)畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第4頁
2023-2024學(xué)年江西省南昌石埠中學(xué)畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第5頁
已閱讀5頁,還剩23頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年江西省南昌石埠中學(xué)畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖1,點P從△ABC的頂點A出發(fā),沿A﹣B﹣C勻速運動,到點C停止運動.點P運動時,線段AP的長度y與運動時間x的函數(shù)關(guān)系如圖2所示,其中D為曲線部分的最低點,則△ABC的面積是()A.10 B.12 C.20 D.242.如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,⊙O的半徑為6,∠ADC=60°,則劣弧AC的長為()A.2π B.4π C.5π D.6π3.如圖,空心圓柱體的左視圖是()A. B. C. D.4.某射手在同一條件下進(jìn)行射擊,結(jié)果如下表所示:射擊次數(shù)(n)102050100200500……擊中靶心次數(shù)(m)8194492178451……擊中靶心頻率(mn0.800.950.880.920.890.90……由此表推斷這個射手射擊1次,擊中靶心的概率是()A.0.6 B.0.7 C.0.8 D.0.95.下列實數(shù)中,最小的數(shù)是()A. B. C.0 D.6.如圖,△ABC為鈍角三角形,將△ABC繞點A按逆時針方向旋轉(zhuǎn)120°得到△AB′C′,連接BB′,若AC′∥BB′,則∠CAB′的度數(shù)為()A.45° B.60° C.70° D.90°7.如圖,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,點E是△ABC的內(nèi)心,過點E作EF∥AB交AC于點F,則EF的長為()A. B. C. D.8.已知x2+mx+25是完全平方式,則m的值為()A.10 B.±10 C.20 D.±209.學(xué)校為創(chuàng)建“書香校園”購買了一批圖書.已知購買科普類圖書花費10000元,購買文學(xué)類圖書花費9000元,其中科普類圖書平均每本的價格比文學(xué)類圖書平均每本的價格貴5元,且購買科普書的數(shù)量比購買文學(xué)書的數(shù)量少100本.求科普類圖書平均每本的價格是多少元?若設(shè)科普類圖書平均每本的價格是x元,則可列方程為()A.﹣=100 B.﹣=100C.﹣=100 D.﹣=10010.如圖,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分別與⊙O相切于E,F(xiàn),G三點,過點D作⊙O的切線交BC于點M,切點為N,則DM的長為()A. B. C. D.11.在一個不透明的袋子中裝有除顏色外其余均相同的m個小球,其中5個黑球,從袋中隨機(jī)摸出一球,記下其顏色,這稱為依次摸球試驗,之后把它放回袋中,攪勻后,再繼續(xù)摸出一球.以下是利用計算機(jī)模擬的摸球試驗次數(shù)與摸出黑球次數(shù)的列表:摸球試驗次數(shù)100100050001000050000100000摸出黑球次數(shù)46487250650082499650007根據(jù)列表,可以估計出m的值是()A.5 B.10 C.15 D.2012.如圖,矩形ABCD中,AB=3,AD=,將矩形ABCD繞點B按順時針方向旋轉(zhuǎn)后得到矩形EBGF,此時恰好四邊形AEHB為菱形,連接CH交FG于點M,則HM=()A. B.1 C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在菱形ABCD中,于E,,,則菱形ABCD的面積是______.14.已知xy=3,那么的值為______.15.用48米長的竹籬笆在空地上,圍成一個綠化場地,現(xiàn)有兩種設(shè)計方案,一種是圍成正方形的場地;另一種是圍成圓形場地.現(xiàn)請你選擇,圍成________(圓形、正方形兩者選一)場在面積較大.16.我國經(jīng)典數(shù)學(xué)著作《九章算術(shù)》中有這樣一道名題,就是“引葭赴岸”問題,(如圖)題目是:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,適與岸齊,問水深,葭長各幾何?”題意是:有一正方形池塘,邊長為一丈,有棵蘆葦長在它的正中央,高出水面部分有一尺長,把蘆葦拉向岸邊,恰好碰到岸沿,問水深和蘆葦長各是多少?(小知識:1丈=10尺)如果設(shè)水深為x尺,則蘆葦長用含x的代數(shù)式可表示為尺,根據(jù)題意列方程為.17.已知邊長為5的菱形中,對角線長為6,點在對角線上且,則的長為__________.18.分式與的最簡公分母是_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與軸交于,兩點,與軸交于點,點的坐標(biāo)為.(1)求二次函數(shù)的解析式;(2)若點是拋物線在第四象限上的一個動點,當(dāng)四邊形的面積最大時,求點的坐標(biāo),并求出四邊形的最大面積;(3)若為拋物線對稱軸上一動點,直接寫出使為直角三角形的點的坐標(biāo).20.(6分)如圖,在△ABC中,D、E分別是邊AB、AC上的點,DE∥BC,點F在線段DE上,過點F作FG∥AB、FH∥AC分別交BC于點G、H,如果BG:GH:HC=2:4:1.求的值.21.(6分)如圖,在Rt△ABC中,∠C=90°,O、D分別為AB、AC上的點,經(jīng)過A、D兩點的⊙O分別交于AB、AC于點E、F,且BC與⊙O相切于點D.(1)求證:DF=(2)當(dāng)AC=2,CD=1時,求⊙O的面積.22.(8分)近年來,新能源汽車以其舒適環(huán)保、節(jié)能經(jīng)濟(jì)的優(yōu)勢受到熱捧,隨之而來的就是新能汽車銷量的急速增加,當(dāng)前市場上新能漂汽車從動力上分純電動和混合動力兩種,從用途上又分為乘用式和商用式兩種,據(jù)中國汽車工業(yè)協(xié)會提供的信息,2017年全年新能源乘用車的累計銷量為57.9萬輛,其中,純電動乘用車銷量為46.8萬輛,混合動力乘用車銷量為11.1萬輛;2017年全年新能源商用車的累計銷量為19.8萬輛,其中,純電動商用車銷量為18.4萬輛,混合動力商用車銷量為1.4萬輛,請根據(jù)以上材料解答下列問題:(1)請用統(tǒng)計表表示我國2017年新能源汽車各類車型銷量情況;(2)小穎根據(jù)上述信息,計算出2017年我國新能源各類車型總銷量為77.7萬輛,并繪制了“2017年我國新能源汽車四類車型銷量比例”的扇形統(tǒng)計圖,如圖1,請你將該圖補充完整(其中的百分?jǐn)?shù)精確到0.1%);(3)2017年我國新能源乘用車銷量最高的十個城市排名情況如圖2,請根據(jù)圖2中信息寫出這些城市新能源乘用車銷售情況的特點(寫出一條即可);(4)數(shù)據(jù)顯示,2018年1~3月的新能源乘用車總銷量排行榜上位居前四的廠家是比亞迪、北汽、上汽、江準(zhǔn),參加社會實踐的大學(xué)生小王想對其中兩個廠家進(jìn)行深入調(diào)研,他將四個完全相同的乒乓球進(jìn)行編號(用“1,2,3,4”依次對應(yīng)上述四個廠家),并將乒乓球放入不透明的袋子中攪勻,從中一次拿出兩個乒乓球,根據(jù)乒乓球上的編號決定要調(diào)研的廠家.求小王恰好調(diào)研“比亞迪”和“江淮”這兩個廠家的概率.23.(8分)如圖1,將兩個完全相同的三角形紙片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.操作發(fā)現(xiàn)如圖1,固定△ABC,使△DEC繞點C旋轉(zhuǎn).當(dāng)點D恰好落在BC邊上時,填空:線段DE與AC的位置關(guān)系是;②設(shè)△BDC的面積為S1,△AEC的面積為S1.則S1與S1的數(shù)量關(guān)系是.猜想論證當(dāng)△DEC繞點C旋轉(zhuǎn)到圖3所示的位置時,小明猜想(1)中S1與S1的數(shù)量關(guān)系仍然成立,并嘗試分別作出了△BDC和△AEC中BC,CE邊上的高,請你證明小明的猜想.拓展探究已知∠ABC=60°,點D是其角平分線上一點,BD=CD=4,OE∥AB交BC于點E(如圖4),若在射線BA上存在點F,使S△DCF=S△BDC,請直接寫出相應(yīng)的BF的長24.(10分)如圖,AB為⊙O的直徑,直線BM⊥AB于點B,點C在⊙O上,分別連接BC,AC,且AC的延長線交BM于點D,CF為⊙O的切線交BM于點F.(1)求證:CF=DF;(2)連接OF,若AB=10,BC=6,求線段OF的長.25.(10分)中華文明,源遠(yuǎn)流長;中華漢字,寓意深廣.為傳承中華優(yōu)秀傳統(tǒng)文化,某校團(tuán)委組織了一次全校3000名學(xué)生參加的“漢字聽寫”大賽.為了解本次大賽的成績,校團(tuán)委隨機(jī)抽取了其中200名學(xué)生的成績作為樣本進(jìn)行統(tǒng)計,制成如下不完整的統(tǒng)計圖表:頻數(shù)頻率分布表成績x(分)頻數(shù)(人)頻率50≤x<60100.0560≤x<70300.1570≤x<8040n80≤x<90m0.3590≤x≤100500.25根據(jù)所給信息,解答下列問題:(1)m=,n=;(2)補全頻數(shù)分布直方圖;(3)這200名學(xué)生成績的中位數(shù)會落在分?jǐn)?shù)段;(4)若成績在90分以上(包括90分)為“優(yōu)”等,請你估計該校參加本次比賽的3000名學(xué)生中成績是“優(yōu)”等的約有多少人?26.(12分)為落實黨中央“長江大保護(hù)”新發(fā)展理念,我市持續(xù)推進(jìn)長江岸線保護(hù),還洞庭湖和長江水清岸綠的自然生態(tài)原貌.某工程隊負(fù)責(zé)對一面積為33000平方米的非法砂石碼頭進(jìn)行拆除,回填土方和復(fù)綠施工,為了縮短工期,該工程隊增加了人力和設(shè)備,實際工作效率比原計劃每天提高了20%,結(jié)果提前11天完成任務(wù),求實際平均每天施工多少平方米?27.(12分)已知如圖,直線y=﹣x+4與x軸相交于點A,與直線y=x相交于點P.(1)求點P的坐標(biāo);(2)動點E從原點O出發(fā),沿著O→P→A的路線向點A勻速運動(E不與點O、A重合),過點E分別作EF⊥x軸于F,EB⊥y軸于B.設(shè)運動t秒時,F(xiàn)的坐標(biāo)為(a,0),矩形EBOF與△OPA重疊部分的面積為S.直接寫出:S與a之間的函數(shù)關(guān)系式(3)若點M在直線OP上,在平面內(nèi)是否存在一點Q,使以A,P,M,Q為頂點的四邊形為矩形且滿足矩形兩邊AP:PM之比為1:若存在直接寫出Q點坐標(biāo)。若不存在請說明理由。

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】過點A作AM⊥BC于點M,由題意可知當(dāng)點P運動到點M時,AP最小,此時長為4,觀察圖象可知AB=AC=5,∴BM==3,∴BC=2BM=6,∴S△ABC==12,故選B.【點睛】本題考查了動點問題的函數(shù)圖象,根據(jù)已知和圖象能確定出AB、AC的長,以及點P運動到與BC垂直時最短是解題的關(guān)鍵.2、B【解析】

連接OA、OC,然后根據(jù)圓周角定理求得∠AOC的度數(shù),最后根據(jù)弧長公式求解.【詳解】連接OA、OC,∵∠ADC=60°,∴∠AOC=2∠ADC=120°,則劣弧AC的長為:=4π.故選B.【點睛】本題考查了弧長的計算以及圓周角定理,解答本題的關(guān)鍵是掌握弧長公式.3、C【解析】

根據(jù)從左邊看得到的圖形是左視圖,可得答案.【詳解】從左邊看是三個矩形,中間矩形的左右兩邊是虛線,故選C.【點睛】本題考查了簡單幾何體的三視圖,從左邊看得到的圖形是左視圖.4、D【解析】

觀察表格的數(shù)據(jù)可以得到擊中靶心的頻率,然后用頻率估計概率即可求解.【詳解】依題意得擊中靶心頻率為0.90,估計這名射手射擊一次,擊中靶心的概率約為0.90.故選:D.【點睛】此題主要考查了利用頻率估計概率,首先通過實驗得到事件的頻率,然后用頻率估計概率即可解決問題.5、B【解析】

根據(jù)正實數(shù)都大于0,負(fù)實數(shù)都小于0,正實數(shù)大于一切負(fù)實數(shù),兩個負(fù)實數(shù)絕對值大的反而小,進(jìn)行比較.【詳解】∵<-2<0<,∴最小的數(shù)是-π,故選B.【點睛】此題主要考查了比較實數(shù)的大小,要熟練掌握任意兩個實數(shù)比較大小的方法.(1)正實數(shù)都大于0,負(fù)實數(shù)都小于0,正實數(shù)大于一切負(fù)實數(shù),兩個負(fù)實數(shù)絕對值大的反而小.(2)利用數(shù)軸也可以比較任意兩個實數(shù)的大小,即在數(shù)軸上表示的兩個實數(shù),右邊的總比左邊的大,在原點左側(cè),絕對值大的反而?。?、D【解析】已知△ABC繞點A按逆時針方向旋轉(zhuǎn)l20°得到△AB′C′,根據(jù)旋轉(zhuǎn)的性質(zhì)可得∠BAB′=∠CAC′=120°,AB=AB′,根據(jù)等腰三角形的性質(zhì)和三角形的內(nèi)角和定理可得∠AB′B=(180°-120°)=30°,再由AC′∥BB′,可得∠C′AB′=∠AB′B=30°,所以∠CAB′=∠CAC′-∠C′AB′=120°-30°=90°.故選D.7、A【解析】

過E作EG∥AB,交AC于G,易得CG=EG,EF=AF,依據(jù)△ABC∽△GEF,即可得到EG:EF:GF,根據(jù)斜邊的長列方程即可得到結(jié)論.【詳解】過E作EG∥BC,交AC于G,則∠BCE=∠CEG.∵CE平分∠BCA,∴∠BCE=∠ACE,∴∠ACE=∠CEG,∴CG=EG,同理可得:EF=AF.∵BC∥GE,AB∥EF,∴∠BCA=∠EGF,∠BAC=∠EFG,∴△ABC∽△GEF.∵∠ABC=90°,AB=6,BC=8,∴AC=10,∴EG:EF:GF=BC:BC:AC=4:3:5,設(shè)EG=4k=AG,則EF=3k=CF,F(xiàn)G=5k.∵AC=10,∴3k+5k+4k=10,∴k=,∴EF=3k=.故選A.【點睛】本題考查了相似三角形的判定與性質(zhì),等腰三角形的性質(zhì)以及勾股定理的綜合運用,解決問題的關(guān)鍵是作輔助線構(gòu)相似三角形以及構(gòu)造等腰三角形.8、B【解析】

根據(jù)完全平方式的特點求解:a2±2ab+b2.【詳解】∵x2+mx+25是完全平方式,∴m=±10,故選B.【點睛】本題考查了完全平方公式:a2±2ab+b2,其特點是首平方,尾平方,首尾積的兩倍在中央,這里首末兩項是x和1的平方,那么中間項為加上或減去x和1的乘積的2倍.9、B【解析】【分析】直接利用購買科普書的數(shù)量比購買文學(xué)書的數(shù)量少100本得出等式進(jìn)而得出答案.【詳解】科普類圖書平均每本的價格是x元,則可列方程為:﹣=100,故選B.【點睛】本題考查了分式方程的應(yīng)用,弄清題意,找準(zhǔn)等量關(guān)系列出方程是解題的關(guān)鍵.10、A【解析】試題解析:連接OE,OF,ON,OG,在矩形ABCD中,∵∠A=∠B=90°,CD=AB=4,∵AD,AB,BC分別與⊙O相切于E,F(xiàn),G三點,∴∠AEO=∠AFO=∠OFB=∠BGO=90°,∴四邊形AFOE,F(xiàn)BGO是正方形,∴AF=BF=AE=BG=2,∴DE=3,∵DM是⊙O的切線,∴DN=DE=3,MN=MG,∴CM=5-2-MN=3-MN,在Rt△DMC中,DM2=CD2+CM2,∴(3+NM)2=(3-NM)2+42,∴NM=,∴DM=3+=,故選B.考點:1.切線的性質(zhì);3.矩形的性質(zhì).11、B【解析】

由概率公式可知摸出黑球的概率為5m,分析表格數(shù)據(jù)可知摸出黑球次數(shù)【詳解】解:分析表格數(shù)據(jù)可知摸出黑球次數(shù)摸球?qū)嶒灤螖?shù)的值總是在0.5左右,則由題意可得5故選擇B.【點睛】本題考查了概率公式的應(yīng)用.12、D【解析】

由旋轉(zhuǎn)的性質(zhì)得到AB=BE,根據(jù)菱形的性質(zhì)得到AE=AB,推出△ABE是等邊三角形,得到AB=3,AD=,根據(jù)三角函數(shù)的定義得到∠BAC=30°,求得AC⊥BE,推出C在對角線AH上,得到A,C,H共線,于是得到結(jié)論.【詳解】如圖,連接AC交BE于點O,∵將矩形ABCD繞點B按順時針方向旋轉(zhuǎn)后得到矩形EBGF,∴AB=BE,∵四邊形AEHB為菱形,∴AE=AB,∴AB=AE=BE,∴△ABE是等邊三角形,∵AB=3,AD=,∴tan∠CAB=,∴∠BAC=30°,∴AC⊥BE,∴C在對角線AH上,∴A,C,H共線,∴AO=OH=AB=,∵OC=BC=,∵∠COB=∠OBG=∠G=90°,∴四邊形OBGM是矩形,∴OM=BG=BC=,∴HM=OH﹣OM=,故選D.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),菱形的性質(zhì),等邊三角形的判定與性質(zhì),解直角三角形的應(yīng)用等,熟練掌握和靈活運用相關(guān)的知識是解題的關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】

根據(jù)題意可求AD的長度,即可得CD的長度,根據(jù)菱形ABCD的面積=CD×AE,可求菱形ABCD的面積.【詳解】∵sinD=∴∴AD=11∵四邊形ABCD是菱形∴AD=CD=11∴菱形ABCD的面積=11×8=96cm1.故答案為:96cm1.【點睛】本題考查了菱形的性質(zhì),解直角三角形,熟練運用菱形性質(zhì)解決問題是本題的關(guān)鍵.14、±2【解析】分析:先化簡,再分同正或同負(fù)兩種情況作答.詳解:因為xy=3,所以x、y同號,于是原式==,當(dāng)x>0,y>0時,原式==2;當(dāng)x<0,y<0時,原式==?2故原式=±2.點睛:本題考查的是二次根式的化簡求值,能夠正確的判斷出化簡過程中被開方數(shù)底數(shù)的符號是解答此題的關(guān)鍵.15、圓形【解析】

根據(jù)竹籬笆的長度可知所圍成的正方形的邊長,進(jìn)而可計算出所圍成的正方形的面積;根據(jù)圓的周長公式,可知所圍成的圓的半徑,進(jìn)而將圓的面積計算出來,兩者進(jìn)行比較.【詳解】圍成的圓形場地的面積較大.理由如下:設(shè)正方形的邊長為a,圓的半徑為R,∵竹籬笆的長度為48米,∴4a=48,則a=1.即所圍成的正方形的邊長為1;2π×R=48,∴R=,即所圍成的圓的半徑為,∴正方形的面積S1=a2=144,圓的面積S2=π×()2=,∵144<,∴圍成的圓形場地的面積較大.故答案為:圓形.【點睛】此題主要考查實數(shù)的大小的比較在實際生活中的應(yīng)用,所以學(xué)生在學(xué)這一部分時一定要聯(lián)系實際,不能死學(xué).16、(x+1);.【解析】試題分析:設(shè)水深為x尺,則蘆葦長用含x的代數(shù)式可表示為(x+1)尺,根據(jù)題意列方程為.故答案為(x+1),.考點:由實際問題抽象出一元二次方程;勾股定理的應(yīng)用.17、3或1【解析】

菱形ABCD中,邊長為1,對角線AC長為6,由菱形的性質(zhì)及勾股定理可得AC⊥BD,BO=4,分當(dāng)點E在對角線交點左側(cè)時(如圖1)和當(dāng)點E在對角線交點左側(cè)時(如圖2)兩種情況求BE得長即可.【詳解】解:當(dāng)點E在對角線交點左側(cè)時,如圖1所示:∵菱形ABCD中,邊長為1,對角線AC長為6,∴AC⊥BD,BO==4,∵tan∠EAC=,解得:OE=1,∴BE=BO﹣OE=4﹣1=3,當(dāng)點E在對角線交點左側(cè)時,如圖2所示:∵菱形ABCD中,邊長為1,對角線AC長為6,∴AC⊥BD,BO==4,∵tan∠EAC=,解得:OE=1,∴BE=BO﹣OE=4+1=1,故答案為3或1.【點睛】本題主要考查了菱形的性質(zhì),解決問題時要注意分當(dāng)點E在對角線交點左側(cè)時和當(dāng)點E在對角線交點左側(cè)時兩種情況求BE得長.18、3a2b【解析】

利用取各分母系數(shù)的最小公倍數(shù)與字母因式的最高次冪的積作公分母求解即可.【詳解】分式與的最簡公分母是3a2b.故答案為3a2b.【點睛】本題考查最簡公分母,解題的關(guān)鍵是掌握求最簡公分母的方法.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1);(2)P點坐標(biāo)為,;(3)或或或.【解析】

(1)根據(jù)待定系數(shù)法把A、C兩點坐標(biāo)代入可求得二次函數(shù)的解析式;

(2)由拋物線解析式可求得B點坐標(biāo),由B、C坐標(biāo)可求得直線BC解析式,可設(shè)出P點坐標(biāo),用P點坐標(biāo)表示出四邊形ABPC的面積,根據(jù)二次函數(shù)的性質(zhì)可求得其面積的最大值及P點坐標(biāo);

(3)首先設(shè)出Q點的坐標(biāo),則可表示出QB2、QC2和BC2,然后分∠BQC=90°、∠CBQ=90°和∠BCQ=90°三種情況,求解即可.【詳解】解:(1)∵A(-1,0),在上,,解得,∴二次函數(shù)的解析式為;(2)在中,令可得,解得或,,且,∴經(jīng)過、兩點的直線為,設(shè)點的坐標(biāo)為,如圖,過點作軸,垂足為,與直線交于點,則,,∴當(dāng)時,四邊形的面積最大,此時P點坐標(biāo)為,∴四邊形的最大面積為;(3),∴對稱軸為,∴可設(shè)點坐標(biāo)為,,,,,,為直角三角形,∴有、和三種情況,①當(dāng)時,則有,即,解得或,此時點坐標(biāo)為或;②當(dāng)時,則有,即,解得,此時點坐標(biāo)為;③當(dāng)時,則有,即,解得,此時點坐標(biāo)為;綜上可知點的坐標(biāo)為或或或.【點睛】本題考查了待定系數(shù)法、三角形的面積、二次函數(shù)的性質(zhì)、勾股定理、方程思想及分類討論思想等知識,注意分類討論思想的應(yīng)用.20、【解析】

先根據(jù)平行線的性質(zhì)證明△ADE∽△FGH,再由線段DF=BG、FE=HC及BG︰GH︰HC=2︰4︰1,可求得的值.【詳解】解:∵DE∥BC,∴∠ADE=∠B,∵FG∥AB,∴∠FGH=∠B,∴∠ADE=∠FGH,同理:∠AED=∠FHG,∴△ADE∽△FGH,∴,∵DE∥BC,F(xiàn)G∥AB,∴DF=BG,同理:FE=HC,∵BG︰GH︰HC=2︰4︰1,∴設(shè)BG=2k,GH=4k,HC=1k,∴DF=2k,F(xiàn)E=1k,∴DE=5k,∴.【點睛】本題考查了平行線的性質(zhì)和三角形相似的判定和相似比.21、(1)證明見解析;(2)2516【解析】

(1)連接OD,由BC為圓O的切線,得到OD垂直于BC,再由AC垂直于BC,得到OD與AC平行,利用兩直線平行得到一對內(nèi)錯角相等,再由OA=OD,利用等邊對等角得到一對角相等,等量代換得到AD為角平分線,利用相等的圓周角所對的弧相等即可得證;

(2)連接ED,在直角三角形ACD中,由AC與CD的長,利用勾股定理求出AD的長,由(1)得出的兩個圓周角相等,及一對直角相等得到三角形ACD與三角形ADE相似,由相似得比例求出AE的長,進(jìn)而求出圓的半徑,即可求出圓的面積.【詳解】證明:連接OD,∵BC為圓O的切線,∴OD⊥CB,∵AC⊥CB,∴OD∥AC,∴∠CAD=∠ODA,∵OA=OD,∴∠OAD=∠ODA,∴∠CAD=∠OAD,則DF=(2)解:連接ED,在Rt△ACD中,AC=2,CD=1,根據(jù)勾股定理得:AD=5,∵∠CAD=∠OAD,∠ACD=∠ADE=90°,∴△ACD∽△ADE,∴ADAE=AC∴AE=52,即圓的半徑為5則圓的面積為25π16【點睛】此題考查了切線的性質(zhì),圓周角定理,相似三角形的判定與性質(zhì),以及勾股定理,熟練掌握相關(guān)性質(zhì)是解本題的關(guān)鍵.22、(1)統(tǒng)計表見解析;(2)補全圖形見解析;(3)總銷量越高,其個人購買量越大;(4).【解析】

(1)認(rèn)真讀題,找到題目中的相關(guān)信息量,列表統(tǒng)計即可;(2)分別求出“混動乘用”和“純電動商用”的圓心角的度數(shù),然后補扇形圖即可;(3)根據(jù)圖表信息寫出一個符合條件的信息即可;(4)利用樹狀圖確定求解概率.【詳解】(1)統(tǒng)計表如下:2017年新能源汽車各類型車型銷量情況(單位:萬輛)類型純電動混合動力總計新能源乘用車46.811.157.9新能源商用車18.41.419.8(2)混動乘用:×100%≈14.3%,14.3%×360°≈51.5°,純電動商用:×100%≈23.7%,23.7%×360°≈85.3°,補全圖形如下:(3)總銷量越高,其個人購買量越大.(4)畫樹狀圖如下:∵一共有12種等可能的情況數(shù),其中抽中1、4的情況有2種,∴小王恰好調(diào)研“比亞迪”和“江淮”這兩個廠家的概率為=.【點睛】此題主要考查了數(shù)據(jù)的分析,利用統(tǒng)計表和扇形統(tǒng)計圖表示數(shù)據(jù)的關(guān)系,以及用列表法或樹狀圖法求概率,難度一般,注意認(rèn)真閱讀題目信息是關(guān)鍵.23、解:(1)①DE∥AC.②.(1)仍然成立,證明見解析;(3)3或2.【解析】

(1)①由旋轉(zhuǎn)可知:AC=DC,∵∠C=90°,∠B=∠DCE=30°,∴∠DAC=∠CDE=20°.∴△ADC是等邊三角形.∴∠DCA=20°.∴∠DCA=∠CDE=20°.∴DE∥AC.②過D作DN⊥AC交AC于點N,過E作EM⊥AC交AC延長線于M,過C作CF⊥AB交AB于點F.由①可知:△ADC是等邊三角形,DE∥AC,∴DN=CF,DN=EM.∴CF=EM.∵∠C=90°,∠B=30°∴AB=1AC.又∵AD=AC∴BD=AC.∵∴.(1)如圖,過點D作DM⊥BC于M,過點A作AN⊥CE交EC的延長線于N,

∵△DEC是由△ABC繞點C旋轉(zhuǎn)得到,

∴BC=CE,AC=CD,

∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°-90°=90°,

∴∠ACN=∠DCM,

∵在△ACN和△DCM中,,

∴△ACN≌△DCM(AAS),

∴AN=DM,

∴△BDC的面積和△AEC的面積相等(等底等高的三角形的面積相等),

即S1=S1;(3)如圖,過點D作DF1∥BE,易求四邊形BEDF1是菱形,

所以BE=DF1,且BE、DF1上的高相等,

此時S△DCF1=S△BDE;

過點D作DF1⊥BD,

∵∠ABC=20°,F(xiàn)1D∥BE,

∴∠F1F1D=∠ABC=20°,

∵BF1=DF1,∠F1BD=∠ABC=30°,∠F1DB=90°,

∴∠F1DF1=∠ABC=20°,

∴△DF1F1是等邊三角形,

∴DF1=DF1,過點D作DG⊥BC于G,

∵BD=CD,∠ABC=20°,點D是角平分線上一點,

∴∠DBC=∠DCB=×20°=30°,BG=BC=,

∴BD=3∴∠CDF1=180°-∠BCD=180°-30°=150°,

∠CDF1=320°-150°-20°=150°,

∴∠CDF1=∠CDF1,

∵在△CDF1和△CDF1中,,

∴△CDF1≌△CDF1(SAS),

∴點F1也是所求的點,

∵∠ABC=20°,點D是角平分線上一點,DE∥AB,

∴∠DBC=∠BDE=∠ABD=×20°=30°,

又∵BD=3,

∴BE=×3÷cos30°=3,

∴BF1=3,BF1=BF1+F1F1=3+3=2,

故BF的長為3或2.24、(1)詳見解析;(2)OF=.【解析】

(1)連接OC,如圖,根據(jù)切線的性質(zhì)得∠1+∠3=90°,則可證明∠3=∠4,再根據(jù)圓周角定理得到∠ACB=90°,然后根據(jù)等角的余角相等得到∠BDC=∠5,從而根據(jù)等腰三角形的判定定理得到結(jié)論;(2)根據(jù)勾股定理計算出AC=8,再證明△ABC∽△ABD,利用相似比得到AD=,然后證明OF為△ABD的中位線,從而根據(jù)三角形中位線性質(zhì)求出OF的長.【詳解】(1)證明:連接OC,如圖,∵CF為切線,∴OC⊥CF,∴∠1+∠3=90°,∵BM⊥AB,∴∠2+∠4=90°,∵OC=OB,∴∠1=∠2,∴∠3=∠4,∵AB為直徑,∴∠ACB=90°,∴∠3+∠5=90°,∠4+∠BDC=90°,∴∠BDC=∠5,∴CF=DF;(2)在Rt△ABC中,AC==8,∵∠BAC=∠DAB,∴△ABC∽△ABD,∴,即,∴AD=,∵∠3=∠4,∴FC=FB,而FC=FD,∴FD=FB,而BO=AO,∴OF為△ABD的中位線,∴OF=AD=.【點睛】本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點的半徑.若出現(xiàn)圓的切線,必連過切點的半徑,構(gòu)造定理圖,得出垂直關(guān)系.也考查了圓周角定理和垂徑定理.25、(1)70,0.2;(2)補圖見解析;(3)80≤x<90;(4)750人.【解析】分析:(1)根據(jù)第一組的頻數(shù)是10,頻率是0.05,求得數(shù)據(jù)總數(shù),再用數(shù)據(jù)總數(shù)乘以第四組頻率可得m的值,用第三組頻數(shù)除以數(shù)據(jù)總數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論