版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2024屆浙江省瑞安市重點名校中考數(shù)學五模試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,在?ABCD中,用直尺和圓規(guī)作∠BAD的平分線AG交BC于點E.若BF=8,AB=5,則AE的長為()A.5 B.6 C.8 D.122.如圖,已知Rt△ABC中,∠BAC=90°,將△ABC繞點A順時針旋轉(zhuǎn),使點D落在射線CA上,DE的延長線交BC于F,則∠CFD的度數(shù)為()A.80° B.90° C.100° D.120°3.下列各數(shù)中,比﹣1大1的是()A.0B.1C.2D.﹣34.如圖,AB是⊙O的直徑,點C,D,E在⊙O上,若∠AED=20°,則∠BCD的度數(shù)為()A.100° B.110° C.115° D.120°5.一列動車從A地開往B地,一列普通列車從B地開往A地,兩車同時出發(fā),設普通列車行駛的時間為x(小時),兩車之間的距離為y(千米),如圖中的折線表示y與x之間的函數(shù)關(guān)系.下列敘述錯誤的是()A.AB兩地相距1000千米B.兩車出發(fā)后3小時相遇C.動車的速度為D.普通列車行駛t小時后,動車到達終點B地,此時普通列車還需行駛千米到達A地6.如圖的立體圖形,從左面看可能是()A. B.C. D.7.一元二次方程(x+3)(x-7)=0的兩個根是A.x1=3,x2=-7B.x1=3,x2=7C.x1=-3,x2=7D.x1=-3,x2=-78.已知直線m∥n,將一塊含30°角的直角三角板ABC按如圖方式放置(∠ABC=30°),其中A,B兩點分別落在直線m,n上,若∠1=20°,則∠2的度數(shù)為()A.20° B.30° C.45° D.50°9.在Rt△ABC中,∠C=90°,AB=4,AC=1,則cosB的值為()A. B. C. D.10.如圖所示是放置在正方形網(wǎng)格中的一個,則的值為()A. B. C. D.11.方程2x2﹣x﹣3=0的兩個根為()A.x1=,x2=﹣1 B.x1=﹣,x2=1 C.x1=,x2=﹣3 D.x1=﹣,x2=312.“綠水青山就是金山銀山”.某工程隊承接了60萬平方米的荒山綠化任務,為了迎接雨季的到來,實際工作時每天的工作效率比原計劃提高了25%,結(jié)果提前30天完成了這一任務.設實際工作時每天綠化的面積為x萬平方米,則下面所列方程中正確的是()A. B.C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.有兩個一元二次方程:M:ax2+bx+c=0,N:cx2+bx+a=0,其中a+c=0,以下列四個結(jié)論中正確的是_____(填寫序號).①如果方程M有兩個不相等的實數(shù)根,那么方程N也有兩個不相等的實數(shù)根;②如果方程M有兩根符號相同,那么方程N的兩根符號也相同;③如果方程M和方程N有一個相同的根,那么這個根必是x=1;④如果5是方程M的一個根,那么是方程N的一個根.14.一名模型賽車手遙控一輛賽車,先前進1m,然后,原地逆時針方向旋轉(zhuǎn)角a(0°<α<180°).被稱為一次操作.若五次操作后,發(fā)現(xiàn)賽車回到出發(fā)點,則角α為15.在平面直角坐標系中,智多星做走棋的游戲,其走法是:棋子從原點出發(fā),第1步向上走1個單位,第2步向上走2個單位,第3步向右走1個單位,第4步向上走1個單位……依此類推,第n步的走法是:當n被3除,余數(shù)為2時,則向上走2個單位;當走完第2018步時,棋子所處位置的坐標是_____16.已知點P在一次函數(shù)y=kx+b(k,b為常數(shù),且k<0,b>0)的圖象上,將點P向左平移1個單位,再向上平移2個單位得到點Q,點Q也在該函數(shù)y=kx+b的圖象上.(1)k的值是;(2)如圖,該一次函數(shù)的圖象分別與x軸、y軸交于A,B兩點,且與反比例函數(shù)y=圖象交于C,D兩點(點C在第二象限內(nèi)),過點C作CE⊥x軸于點E,記S1為四邊形CEOB的面積,S2為△OAB的面積,若=,則b的值是.17.如圖,Rt△ABC的直角邊BC在x軸上,直線y=x﹣經(jīng)過直角頂點B,且平分△ABC的面積,BC=3,點A在反比例函數(shù)y=圖象上,則k=_______.18.如圖,某城市的電視塔AB坐落在湖邊,數(shù)學老師帶領學生隔湖測量電視塔AB的高度,在點M處測得塔尖點A的仰角∠AMB為22.5°,沿射線MB方向前進200米到達湖邊點N處,測得塔尖點A在湖中的倒影A′的俯角∠A′NB為45°,則電視塔AB的高度為______米(結(jié)果保留根號).三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)計算:2-1+20160-3tan30°+|-|20.(6分)如圖,直線y=x+2與拋物線y=ax2+bx+6(a≠0)相交于A()和B(4,m),點P是線段AB上異于A、B的動點,過點P作PC⊥x軸于點D,交拋物線于點C.(1)B點坐標為,并求拋物線的解析式;(2)求線段PC長的最大值;(3)若△PAC為直角三角形,直接寫出此時點P的坐標.21.(6分)李寧準備完成題目;解二元一次方程組,發(fā)現(xiàn)系數(shù)“□”印刷不清楚.他把“□”猜成3,請你解二元一次方程組;張老師說:“你猜錯了”,我看到該題標準答案的結(jié)果x、y是一對相反數(shù),通過計算說明原題中“□”是幾?22.(8分)下表中給出了變量x,與y=ax2,y=ax2+bx+c之間的部分對應值,(表格中的符號“…”表示該項數(shù)據(jù)已丟失)x﹣101ax2……1ax2+bx+c72…(1)求拋物線y=ax2+bx+c的表達式(2)拋物線y=ax2+bx+c的頂點為D,與y軸的交點為A,點M是拋物線對稱軸上一點,直線AM交對稱軸右側(cè)的拋物線于點B,當△ADM與△BDM的面積比為2:3時,求B點坐標;(3)在(2)的條件下,設線段BD與x軸交于點C,試寫出∠BAD和∠DCO的數(shù)量關(guān)系,并說明理由.23.(8分)如圖,AB是⊙O的直徑,點C是AB延長線上的點,CD與⊙O相切于點D,連結(jié)BD、AD.(1)求證;∠BDC=∠A.(2)若∠C=45°,⊙O的半徑為1,直接寫出AC的長.24.(10分)已知關(guān)于x的方程x2-(m+2)x+(2m-1)=0。求證:方程恒有兩個不相等的實數(shù)根;若此方程的一個根是1,請求出方程的另一個根,并求以此兩根為邊長的直角三角形的周長。25.(10分)如圖1,菱形ABCD,AB=4,∠ADC=120o,連接對角線AC、BD交于點O,(1)如圖2,將△AOD沿DB平移,使點D與點O重合,求平移后的△A′BO與菱形ABCD重合部分的面積.(2)如圖3,將△A′BO繞點O逆時針旋轉(zhuǎn)交AB于點E′,交BC于點F,①求證:BE′+BF=2,②求出四邊形OE′BF的面積.26.(12分)如圖,已知A,B兩點在數(shù)軸上,點A表示的數(shù)為-10,OB=3OA,點M以每秒3個單位長度的速度從點A向右運動.點N以每秒2個單位長度的速度從點O向右運動(點M、點N同時出發(fā))數(shù)軸上點B對應的數(shù)是______.經(jīng)過幾秒,點M、點N分別到原點O的距離相等?27.(12分)今年以來,我國持續(xù)大面積的霧霾天氣讓環(huán)保和健康問題成為焦點.為了調(diào)查學生對霧霾天氣知識的了解程度,某校在學生中做了一次抽樣調(diào)查,調(diào)查結(jié)果共分為四個等級:A.非常了解;B.比較了解;C.基本了解;D.不了解.根據(jù)調(diào)查統(tǒng)計結(jié)果,繪制了不完整的三種統(tǒng)計圖表.對霧霾了解程度的統(tǒng)計表:對霧霾的了解程度
百分比
A.非常了解
5%
B.比較了解
m
C.基本了解
45%
D.不了解
n
請結(jié)合統(tǒng)計圖表,回答下列問題.(1)本次參與調(diào)查的學生共有人,m=,n=;(2)圖2所示的扇形統(tǒng)計圖中D部分扇形所對應的圓心角是度;(3)請補全條形統(tǒng)計圖;(4)根據(jù)調(diào)查結(jié)果,學校準備開展關(guān)于霧霾知識競賽,某班要從“非常了解”態(tài)度的小明和小剛中選一人參加,現(xiàn)設計了如下游戲來確定,具體規(guī)則是:把四個完全相同的乒乓球標上數(shù)字1,2,3,4,然后放到一個不透明的袋中,一個人先從袋中隨機摸出一個球,另一人再從剩下的三個球中隨機摸出一個球.若摸出的兩個球上的數(shù)字和為奇數(shù),則小明去;否則小剛?cè)ィ堄脴錉顖D或列表法說明這個游戲規(guī)則是否公平.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】試題分析:由基本作圖得到AB=AF,AG平分∠BAD,故可得出四邊形ABEF是菱形,由菱形的性質(zhì)可知AE⊥BF,故可得出OB=4,再由勾股定理即可得出OA=3,進而得出AE=2AO=1.故選B.考點:1、作圖﹣基本作圖,2、平行四邊形的性質(zhì),3、勾股定理,4、平行線的性質(zhì)2、B【解析】
根據(jù)旋轉(zhuǎn)的性質(zhì)得出全等,推出∠B=∠D,求出∠B+∠BEF=∠D+∠AED=90°,根據(jù)三角形外角性質(zhì)得出∠CFD=∠B+∠BEF,代入求出即可.【詳解】解:∵將△ABC繞點A順時針旋轉(zhuǎn)得到△ADE,∴△ABC≌△ADE,∴∠B=∠D,∵∠CAB=∠BAD=90°,∠BEF=∠AED,∠B+∠BEF+∠BFE=180°,∠D+∠BAD+∠AED=180°,∴∠B+∠BEF=∠D+∠AED=180°﹣90°=90°,∴∠CFD=∠B+∠BEF=90°,故選:B.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),全等三角形的性質(zhì)和判定,三角形內(nèi)角和定理,三角形外角性質(zhì)的應用,掌握旋轉(zhuǎn)變換的性質(zhì)是解題的關(guān)鍵.3、A【解析】
用-1加上1,求出比-1大1的是多少即可.【詳解】∵-1+1=1,∴比-1大1的是1.故選:A.【點睛】本題考查了有理數(shù)加法的運算,解題的關(guān)鍵是要熟練掌握:“先符號,后絕對值”.4、B【解析】
連接AD,BD,由圓周角定理可得∠ABD=20°,∠ADB=90°,從而可求得∠BAD=70°,再由圓的內(nèi)接四邊形對角互補得到∠BCD=110°.【詳解】如下圖,連接AD,BD,∵同弧所對的圓周角相等,∴∠ABD=∠AED=20°,∵AB為直徑,∴∠ADB=90°,∴∠BAD=90°-20°=70°,∴∠BCD=180°-70°=110°.故選B【點睛】本題考查圓中的角度計算,熟練運用圓周角定理和內(nèi)接四邊形的性質(zhì)是關(guān)鍵.5、C【解析】
可以用物理的思維來解決這道題.【詳解】未出發(fā)時,x=0,y=1000,所以兩地相距1000千米,所以A選項正確;y=0時兩車相遇,x=3,所以B選項正確;設動車速度為V1,普車速度為V2,則3(V1+V2)=1000,所以C選項錯誤;D選項正確.【點睛】理解轉(zhuǎn)折點的含義是解決這一類題的關(guān)鍵.6、A【解析】
根據(jù)三視圖的性質(zhì)即可解題.【詳解】解:根據(jù)三視圖的概念可知,該立體圖形是三棱柱,左視圖應為三角形,且直角應該在左下角,故選A.【點睛】本題考查了三視圖的識別,屬于簡單題,熟悉三視圖的概念是解題關(guān)鍵.7、C【解析】
根據(jù)因式分解法直接求解即可得.【詳解】∵(x+3)(x﹣7)=0,∴x+3=0或x﹣7=0,∴x1=﹣3,x2=7,故選C.【點睛】本題考查了解一元二次方程——因式分解法,根據(jù)方程的特點選擇恰當?shù)姆椒ㄟM行求解是解題的關(guān)鍵.8、D【解析】
根據(jù)兩直線平行,內(nèi)錯角相等計算即可.【詳解】因為m∥n,所以∠2=∠1+30°,所以∠2=30°+20°=50°,故選D.【點睛】本題主要考查平行線的性質(zhì),清楚兩直線平行,內(nèi)錯角相等是解答本題的關(guān)鍵.9、A【解析】∵在Rt△ABC中,∠C=90°,AB=4,AC=1,∴BC==,則cosB==,故選A10、D【解析】
首先過點A向CB引垂線,與CB交于D,表示出BD、AD的長,根據(jù)正切的計算公式可算出答案.【詳解】解:過點A向CB引垂線,與CB交于D,△ABD是直角三角形,∵BD=4,AD=2,∴tan∠ABC=故選:D.【點睛】此題主要考查了銳角三角函數(shù)的定義,關(guān)鍵是掌握正切:銳角A的對邊a與鄰邊b的比叫做∠A的正切,記作tanA.11、A【解析】
利用因式分解法解方程即可.【詳解】解:(2x-3)(x+1)=0,2x-3=0或x+1=0,所以x1=,x2=-1.故選A.【點睛】本題考查了解一元二次方程-因式分解法:因式分解法就是先把方程的右邊化為0,再把左邊通過因式分解化為兩個一次因式的積的形式,那么這兩個因式的值就都有可能為0,這就能得到兩個一元一次方程的解,這樣也就把原方程進行了降次,把解一元二次方程轉(zhuǎn)化為解一元一次方程的問題了(數(shù)學轉(zhuǎn)化思想).12、C【解析】分析:設實際工作時每天綠化的面積為x萬平方米,根據(jù)工作時間=工作總量÷工作效率結(jié)合提前30天完成任務,即可得出關(guān)于x的分式方程.詳解:設實際工作時每天綠化的面積為x萬平方米,則原來每天綠化的面積為萬平方米,依題意得:,即.故選C.點睛:考查了由實際問題抽象出分式方程.找到關(guān)鍵描述語,找到合適的等量關(guān)系是解決問題的關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、①②④【解析】試題解析:①在方程ax2+bx+c=0中△=b2-4ac,在方程cx2+bx+a=0中△=b2-4ac,
∴如果方程M有兩個不相等的實數(shù)根,那么方程N也有兩個不相等的實數(shù)根,正確;
②∵和符號相同,和符號也相同,
∴如果方程M有兩根符號相同,那么方程N的兩根符號也相同,正確;
③、M-N得:(a-c)x2+c-a=0,即(a-c)x2=a-c,
∵a≠c,
∴x2=1,解得:x=±1,錯誤;④∵5是方程M的一個根,
∴25a+5b+c=0,
∴a+b+c=0,
∴是方程N的一個根,正確.
故正確的是①②④.14、72°或144°【解析】
∵五次操作后,發(fā)現(xiàn)賽車回到出發(fā)點,∴正好走了一個正五邊形,因為原地逆時針方向旋轉(zhuǎn)角a(0°<α<180°),那么朝左和朝右就是兩個不同的結(jié)論所以∴角α=(5-2)?180°÷5=108°,則180°-108°=72°或者角α=(5-2)?180°÷5=108°,180°-72°÷2=144°15、(672,2019)【解析】分析:按照題目給定的規(guī)則,找到周期,由題意可得每三步是一個循環(huán),所以只需要計算2018被3除,就可以得到棋子的位置.詳解:解:由題意得,每3步為一個循環(huán)組依次循環(huán),且一個循環(huán)組內(nèi)向右1個單位,向上3個單位,∵2018÷3=672…2,∴走完第2018步,為第673個循環(huán)組的第2步,所處位置的橫坐標為672,縱坐標為672×3+3=2019,∴棋子所處位置的坐標是(672,2019).故答案為:(672,2019).點睛:周期問題解決問題的核心是要找到最小正周期,然后把給定的數(shù)(一般是一個很大的數(shù))除以最小正周期,余數(shù)是幾,就是第幾步,特別余數(shù)是1,就是第一步,余數(shù)是0,就是最后一步.16、(1)-2;(2)【解析】
(1)設點P的坐標為(m,n),則點Q的坐標為(m?1,n+2),依題意得:,解得:k=?2.故答案為?2.(2)∵BO⊥x軸,CE⊥x軸,∴BO∥CE,∴△AOB∽△AEC.又∵,∴令一次函數(shù)y=?2x+b中x=0,則y=b,∴BO=b;令一次函數(shù)y=?2x+b中y=0,則0=?2x+b,解得:x=,即AO=.∵△AOB∽△AEC,且,∴,∴AE=,AO=,CE=BO=b,OE=AE?AO=.∵OE?CE=|?4|=4,即=4,解得:b=,或b=?(舍去).故答案為.17、1【解析】分析:根據(jù)題意得出點B的坐標,根據(jù)面積平分得出點D的坐標,利用三角形相似可得點A的坐標,從而求出k的值.詳解:根據(jù)一次函數(shù)可得:點B的坐標為(1,0),∵BD平分△ABC的面積,BC=3∴點D的橫坐標1.5,∴點D的坐標為,∵DE:AB=1:1,∴點A的坐標為(1,1),∴k=1×1=1.點睛:本題主要考查的是反比例函數(shù)的性質(zhì)以及三角形相似的應用,屬于中等難度的題型.得出點D的坐標是解決這個問題的關(guān)鍵.18、.【解析】解:如圖,連接AN,由題意知,BM⊥AA',BA=BA',∴AN=A'N,∴∠ANB=∠A'NB=45°,∵∠AMB=22.5°,∴∠MAN=∠ANB﹣∠AMB=22.5°=∠AMN,∴AN=MN=200米,在Rt△ABN中,∠ANB=45°,∴AB=AN=(米),故答案為.點睛:此題是解直角三角形的應用﹣﹣﹣仰角和俯角,主要考查了垂直平分線的性質(zhì),等腰三角形的性質(zhì),解本題的關(guān)鍵是求出∠ANB=45°.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、【解析】
原式第一項利用負指數(shù)冪法則計算,第二項利用零指數(shù)冪法則計算,第三項利用特殊角的三角函數(shù)值化簡,最后一項利用絕對值的代數(shù)意義化簡,即可得到結(jié)果;【詳解】原式===.【點睛】此題考查實數(shù)的混合運算.此題難度不大,注意解決此類題目的關(guān)鍵是熟練掌握負整數(shù)指數(shù)冪、零指數(shù)冪、特殊角的三角函數(shù)值、絕對值等考點的運算.20、(1)(4,6);y=1x1﹣8x+6(1);(3)點P的坐標為(3,5)或().【解析】
(1)已知B(4,m)在直線y=x+1上,可求得m的值,拋物線圖象上的A、B兩點坐標,可將其代入拋物線的解析式中,通過聯(lián)立方程組即可求得待定系數(shù)的值.(1)要弄清PC的長,實際是直線AB與拋物線函數(shù)值的差.可設出P點橫坐標,根據(jù)直線AB和拋物線的解析式表示出P、C的縱坐標,進而得到關(guān)于PC與P點橫坐標的函數(shù)關(guān)系式,根據(jù)函數(shù)的性質(zhì)即可求出PC的最大值.(3)根據(jù)頂點問題分情況討論,若點P為直角頂點,此圖形不存在,若點A為直角頂點,根據(jù)已知解析式與點坐標,可求出未知解析式,再聯(lián)立拋物線的解析式,可求得C點的坐標;若點C為直角頂點,可根據(jù)點的對稱性求出結(jié)論.【詳解】解:(1)∵B(4,m)在直線y=x+1上,∴m=4+1=6,∴B(4,6),故答案為(4,6);∵A(,),B(4,6)在拋物線y=ax1+bx+6上,∴,解得,∴拋物線的解析式為y=1x1﹣8x+6;(1)設動點P的坐標為(n,n+1),則C點的坐標為(n,1n1﹣8n+6),∴PC=(n+1)﹣(1n1﹣8n+6),=﹣1n1+9n﹣4,=﹣1(n﹣)1+,∵PC>0,∴當n=時,線段PC最大且為.(3)∵△PAC為直角三角形,i)若點P為直角頂點,則∠APC=90°.由題意易知,PC∥y軸,∠APC=45°,因此這種情形不存在;ii)若點A為直角頂點,則∠PAC=90°.如圖1,過點A(,)作AN⊥x軸于點N,則ON=,AN=.過點A作AM⊥直線AB,交x軸于點M,則由題意易知,△AMN為等腰直角三角形,∴MN=AN=,∴OM=ON+MN=+=3,∴M(3,0).設直線AM的解析式為:y=kx+b,則:,解得,∴直線AM的解析式為:y=﹣x+3①又拋物線的解析式為:y=1x1﹣8x+6②聯(lián)立①②式,解得:或(與點A重合,舍去),∴C(3,0),即點C、M點重合.當x=3時,y=x+1=5,∴P1(3,5);iii)若點C為直角頂點,則∠ACP=90°.∵y=1x1﹣8x+6=1(x﹣1)1﹣1,∴拋物線的對稱軸為直線x=1.如圖1,作點A(,)關(guān)于對稱軸x=1的對稱點C,則點C在拋物線上,且C(,).當x=時,y=x+1=.∴P1(,).∵點P1(3,5)、P1(,)均在線段AB上,∴綜上所述,△PAC為直角三角形時,點P的坐標為(3,5)或(,).【點睛】本題考查了二次函數(shù)的綜合題,解題的關(guān)鍵是熟練的掌握二次函數(shù)的應用.21、(1);(2)-1【解析】
(1)②+①得出4x=-4,求出x,把x的值代入①求出y即可;(2)把x=-y代入x-y=4求出y,再求出x,最后把x、y代入②求出答案即可.【詳解】解:(1)①+②得,.將時代入①得,,∴.(2)設“□”為a,∵x、y是一對相反數(shù),∴把x=-y代入x-y=4得:-y-y=4,解得:y=-2,即x=2,所以方程組的解是,代入ax+y=-8得:2a-2=-8,解得:a=-1,即原題中“□”是-1.【點睛】本題考查了解二元一次方程組,也考查了二元一次方程組的解,能得出關(guān)于a的方程是解(2)的關(guān)鍵.22、(1)y=x2﹣4x+2;(2)點B的坐標為(5,7);(1)∠BAD和∠DCO互補,理由詳見解析.【解析】
(1)由(1,1)在拋物線y=ax2上可求出a值,再由(﹣1,7)、(0,2)在拋物線y=x2+bx+c上可求出b、c的值,此題得解;(2)由△ADM和△BDM同底可得出兩三角形的面積比等于高的比,結(jié)合點A的坐標即可求出點B的橫坐標,再利用二次函數(shù)圖象上點的坐標特征即可求出點B的坐標;(1)利用二次函數(shù)圖象上點的坐標特征可求出A、D的坐標,過點A作AN∥x軸,交BD于點N,則∠AND=∠DCO,根據(jù)點B、D的坐標利用待定系數(shù)法可求出直線BD的解析式,利用一次函數(shù)圖象上點的坐標特征可求出點N的坐標,利用兩點間的距離公式可求出BA、BD、BN的長度,由三者間的關(guān)系結(jié)合∠ABD=∠NBA,可證出△ABD∽△NBA,根據(jù)相似三角形的性質(zhì)可得出∠ANB=∠DAB,再由∠ANB+∠AND=120°可得出∠DAB+∠DCO=120°,即∠BAD和∠DCO互補.【詳解】(1)當x=1時,y=ax2=1,解得:a=1;將(﹣1,7)、(0,2)代入y=x2+bx+c,得:,解得:,∴拋物線的表達式為y=x2﹣4x+2;(2)∵△ADM和△BDM同底,且△ADM與△BDM的面積比為2:1,∴點A到拋物線的距離與點B到拋物線的距離比為2:1.∵拋物線y=x2﹣4x+2的對稱軸為直線x=﹣=2,點A的橫坐標為0,∴點B到拋物線的距離為1,∴點B的橫坐標為1+2=5,∴點B的坐標為(5,7).(1)∠BAD和∠DCO互補,理由如下:當x=0時,y=x2﹣4x+2=2,∴點A的坐標為(0,2),∵y=x2﹣4x+2=(x﹣2)2﹣2,∴點D的坐標為(2,﹣2).過點A作AN∥x軸,交BD于點N,則∠AND=∠DCO,如圖所示.設直線BD的表達式為y=mx+n(m≠0),將B(5,7)、D(2,﹣2)代入y=mx+n,,解得:,∴直線BD的表達式為y=1x﹣2.當y=2時,有1x﹣2=2,解得:x=,∴點N的坐標為(,2).∵A(0,2),B(5,7),D(2,﹣2),∴AB=5,BD=1,BN=,∴==.又∵∠ABD=∠NBA,∴△ABD∽△NBA,∴∠ANB=∠DAB.∵∠ANB+∠AND=120°,∴∠DAB+∠DCO=120°,∴∠BAD和∠DCO互補.【點睛】本題是二次函數(shù)綜合題,考查了待定系數(shù)法求二次函數(shù)和一次函數(shù)解析式、等底三角形面積的關(guān)系、二次函數(shù)的圖像與性質(zhì)、相似三角形的判定與性質(zhì).熟練掌握待定系數(shù)法是解(1)的關(guān)鍵;熟練掌握等底三角形面積的關(guān)系式解(2)的關(guān)鍵;證明△ABD∽△NBA是解(1)的關(guān)鍵.23、(1)詳見解析;(2)1+【解析】
(1)連接OD,結(jié)合切線的性質(zhì)和直徑所對的圓周角性質(zhì),利用等量代換求解(2)根據(jù)勾股定理先求OC,再求AC.【詳解】(1)證明:連結(jié).如圖,與相切于點D,是的直徑,即(2)解:在中,.【點睛】此題重點考查學生對圓的認識,熟練掌握圓的性質(zhì)是解題的關(guān)鍵.24、(1)見詳解;(2)4+或4+.【解析】
(1)根據(jù)關(guān)于x的方程x2-(m+2)x+(2m-1)=0的根的判別式的符號來證明結(jié)論.(2)根據(jù)一元二次方程的解的定義求得m值,然后由根與系數(shù)的關(guān)系求得方程的另一根.分類討論:①當該直角三角形的兩直角邊是2、3時,②當該直角三角形的直角邊和斜邊分別是2、3時,由勾股定理求出得該直角三角形的另一邊,再根據(jù)三角形的周長公式進行計算.【詳解】解:(1)證明:∵△=(m+2)2-4(2m-1)=(m-2)2+4,∴在實數(shù)范圍內(nèi),m無論取何值,(m-2)2+4≥4>0,即△>0.∴關(guān)于x的方程x2-(m+2)x+(2m-1)=0恒有兩個不相等的實數(shù)根.(2)∵此方程的一個根是1,∴12-1×(m+2)+(2m-1)=0,解得,m=2,則方程的另一根為:m+2-1=2+1=3.①當該直角
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 【正版授權(quán)】 ISO/IEC 18046-5:2025 EN Information technology - Radio frequency identification device performance test methods - Part 5: Test methods for the environmental characteristics
- 2024食品工廠代加工冷鏈配送服務合同范本3篇
- 2024版無人機遙感監(jiān)測服務合同
- 2025年度水庫魚塘智能化養(yǎng)殖技術(shù)承包合同4篇
- 出資協(xié)議書范本
- 2024版鋁錠批發(fā)銷售協(xié)議樣本一
- 2025年度生態(tài)環(huán)保打井承包合同標準范本4篇
- 2025年度智慧家居產(chǎn)品銷售與售后服務合同3篇
- 2025年度住宅小區(qū)墻面公共藝術(shù)創(chuàng)作租賃合同標的協(xié)議4篇
- 2025年度牙科專業(yè)人才培養(yǎng)與承包服務合同范本4篇
- DL-T1848-2018220kV和110kV變壓器中性點過電壓保護技術(shù)規(guī)范
- DZ∕T 0213-2020 礦產(chǎn)地質(zhì)勘查規(guī)范 石灰?guī)r、水泥配料類(正式版)
- 食品銷售業(yè)務員合同
- (中考試題)2024年浙江省紹興市中考數(shù)學真題試卷解析版
- 國有企業(yè)內(nèi)部審計實施方案
- 部編版語文一年級下冊全冊大單元整體作業(yè)設計
- 減速機的培訓課件
- 六西格瑪-DMAIC-報告
- 老年人護理風險管理
- 蒸壓加氣混凝土制品課件
- 《根號2有多大》課件
評論
0/150
提交評論