云南省玉溪市江川縣2024年中考試題猜想數(shù)學試卷含解析_第1頁
云南省玉溪市江川縣2024年中考試題猜想數(shù)學試卷含解析_第2頁
云南省玉溪市江川縣2024年中考試題猜想數(shù)學試卷含解析_第3頁
云南省玉溪市江川縣2024年中考試題猜想數(shù)學試卷含解析_第4頁
云南省玉溪市江川縣2024年中考試題猜想數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩20頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

云南省玉溪市江川縣2024年中考試題猜想數(shù)學試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.已知點A(0,﹣4),B(8,0)和C(a,﹣a),若過點C的圓的圓心是線段AB的中點,則這個圓的半徑的最小值是()A. B. C. D.22.一組數(shù)據(jù):6,3,4,5,7的平均數(shù)和中位數(shù)分別是()A.5,5 B.5,6 C.6,5 D.6,63.如圖,△ABC中,AB=4,BC=6,∠B=60°,將△ABC沿射線BC的方向平移,得到△A′B′C′,再將△A′B′C′繞點A′逆時針旋轉一定角度后,點B′恰好與點C重合,則平移的距離和旋轉角的度數(shù)分別為()A.4,30° B.2,60° C.1,30° D.3,60°4.將一副三角板按如圖方式擺放,∠1與∠2不一定互補的是()A. B. C. D.5.我國古代數(shù)學著作《九章算術》中,將底面是直角三角形,且側棱與底面垂直的三棱柱稱為“塹堵”某“塹堵”的三視圖如圖所示(網(wǎng)格圖中每個小正方形的邊長均為1),則該“塹堵”的側面積為()A.16+16 B.16+8 C.24+16 D.4+46.如圖,是由7個相同的小立方體木塊堆成的一個幾何體,拿掉1個小立方體木塊之后,這個幾何體的主(正)視圖沒變,則拿掉這個小立方體木塊之后的幾何體的俯視圖是()A. B. C. D.7.下面的圖形中,既是軸對稱圖形又是中心對稱圖形的是()A.B.C.D.8.在﹣3,0,4,這四個數(shù)中,最大的數(shù)是()A.﹣3 B.0 C.4 D.9.如圖,直線y=3x+6與x,y軸分別交于點A,B,以OB為底邊在y軸右側作等腰△OBC,將點C向左平移5個單位,使其對應點C′恰好落在直線AB上,則點C的坐標為()A.(3,3) B.(4,3) C.(﹣1,3) D.(3,4)10.下列事件中必然發(fā)生的事件是()A.一個圖形平移后所得的圖形與原來的圖形不全等B.不等式的兩邊同時乘以一個數(shù),結果仍是不等式C.200件產(chǎn)品中有5件次品,從中任意抽取6件,至少有一件是正品D.隨意翻到一本書的某頁,這頁的頁碼一定是偶數(shù)11.如圖,把一個矩形紙片ABCD沿EF折疊后,點D、C分別落在D′、C′的位置,若∠EFB=65°,則∠AED′為()。A.70° B.65° C.50° D.25°12.如圖,在矩形ABCD中,AB=2,AD=3,點E是BC邊上靠近點B的三等分點,動點P從點A出發(fā),沿路徑A→D→C→E運動,則△APE的面積y與點P經(jīng)過的路徑長x之間的函數(shù)關系用圖象表示大致是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在反比例函數(shù)y=(x>0)的圖象上,有點P1,P2,P3,P4,…,它們的橫坐標依次為2,4,6,8,…分別過這些點作x軸與y軸的垂線,圖中所構成的陰影部分的面積從左到右依次記為S1,S2,S3,…,Sn,則S1+S2+S3+…+Sn=_____(用含n的代數(shù)式表示)14.小明和小亮分別從A、B兩地同時相向而行,并以各自的速度勻速行駛,途中會經(jīng)過奶茶店C,小明先到達奶茶店C,并在C地休息了一小時,然后按原速度前往B地,小亮從B地直達A地,結果還是小明先到達目的地,如圖是小明和小亮兩人之間的距離y(千米)與小亮出發(fā)時間x(時)的函數(shù)的圖象,請問當小明到達B地時,小亮距離A地_____千米.15.如圖,在⊙O中,AB是直徑,點D是⊙O上一點,點C是的中點,CE⊥AB于點E,過點D的切線交EC的延長線于點G,連接AD,分別交CE,CB于點P,Q,連接AC,關于下列結論:①∠BAD=∠ABC;②GP=GD;③點P是△ACQ的外心,其中結論正確的是________(只需填寫序號).16.如圖是某商品的標志圖案,AC與BD是⊙O的兩條直徑,首尾順次連接點A、B、C、D,得到四邊形ABCD,若AC=10cm,∠BAC=36°,則圖中陰影部分的面積為_____.17.在Rt△ABC內(nèi)有邊長分別為2,x,3的三個正方形如圖擺放,則中間的正方形的邊長x的值為_____.18.點G是三角形ABC的重心,,,那么=_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)清朝數(shù)學家梅文鼎的《方程論》中有這樣一題:山田三畝,場地六畝,共折實田四畝七分;又山田五畝,場地三畝,共折實田五畝五分,問每畝山田折實田多少,每畝場地折實田多少?譯文為:若有山田3畝,場地6畝,其產(chǎn)糧相當于實田4.7畝;若有山田5畝,場地3畝,其產(chǎn)糧相當于實田5.5畝,問每畝山田和每畝場地產(chǎn)糧各相當于實田多少畝?20.(6分)為了加強學生的安全意識,某校組織了學生參加安全知識競賽.從中抽取了部分學生成績(得分數(shù)取正整數(shù),滿分為100分)進行統(tǒng)計,繪制統(tǒng)計頻數(shù)分布直方圖(未完成)和扇形圖如下,請解答下列問題:(1)A組的頻數(shù)a比B組的頻數(shù)b小24,樣本容量,a為:(2)n為°,E組所占比例為%:(3)補全頻數(shù)分布直方圖;(4)若成績在80分以上優(yōu)秀,全校共有2000名學生,估計成績優(yōu)秀學生有名.21.(6分)在平面直角坐標系中,二次函數(shù)y=ax2+bx+2的圖象與x軸交于A(﹣4,0),B(1,0)兩點,與y軸交于點C.(1)求這個二次函數(shù)的解析式;(2)連接AC、BC,判斷△ABC的形狀,并證明;(3)若點P為二次函數(shù)對稱軸上點,求出使△PBC周長最小時,點P的坐標.22.(8分)已知,拋物線y=ax2+c過點(-2,2)和點(4,5),點F(0,2)是y軸上的定點,點B是拋物線上除頂點外的任意一點,直線l:y=kx+b經(jīng)過點B、F且交x軸于點A.(1)求拋物線的解析式;(2)①如圖1,過點B作BC⊥x軸于點C,連接FC,求證:FC平分∠BFO;②當k=時,點F是線段AB的中點;(3)如圖2,M(3,6)是拋物線內(nèi)部一點,在拋物線上是否存在點B,使△MBF的周長最?。咳舸嬖?,求出這個最小值及直線l的解析式;若不存在,請說明理由.23.(8分)如圖,在Rt△ABC中,∠C=90°,以BC為直徑的⊙O交AB于點D,過點D作⊙O的切線DE交AC于點E.(1)求證:∠A=∠ADE;(2)若AB=25,DE=10,弧DC的長為a,求DE、EC和弧DC圍成的部分的面積S.(用含字母a的式子表示).24.(10分)由于霧霾天氣頻發(fā),市場上防護口罩出現(xiàn)熱銷,某醫(yī)藥公司每月固定生產(chǎn)甲、乙兩種型號的防霧霾口罩共20萬只,且所有產(chǎn)品當月全部售出,原料成本、銷售單價及工人生產(chǎn)提成如表:若該公司五月份的銷售收入為300萬元,求甲、乙兩種型號的產(chǎn)品分別是多少萬只?公司實行計件工資制,即工人每生產(chǎn)一只口罩獲得一定金額的提成,如果公司六月份投入總成本(原料總成本+生產(chǎn)提成總額)不超過239萬元,應怎樣安排甲、乙兩種型號的產(chǎn)量,可使該月公司所獲利潤最大?并求出最大利潤(利潤=銷售收入﹣投入總成本)25.(10分)化簡求值:,其中.26.(12分)某報社為了解市民對“社會主義核心價值觀”的知曉程度,采取隨機抽樣的方式進行問卷調查,調查結果分為“A.非常了解”、“B.了解”、“C.基本了解”三個等級,并根據(jù)調查結果繪制了如下兩幅不完整的統(tǒng)計圖.(1)這次調查的市民人數(shù)為________人,m=________,n=________;(2)補全條形統(tǒng)計圖;(3)若該市約有市民100000人,請你根據(jù)抽樣調查的結果,估計該市大約有多少人對“社會主義核心價值觀”達到“A.非常了解”的程度.27.(12分)如圖,直線y=kx+2與x軸,y軸分別交于點A(﹣1,0)和點B,與反比例函數(shù)y=的圖象在第一象限內(nèi)交于點C(1,n).求一次函數(shù)y=kx+2與反比例函數(shù)y=的表達式;過x軸上的點D(a,0)作平行于y軸的直線l(a>1),分別與直線y=kx+2和雙曲線y=交于P、Q兩點,且PQ=2QD,求點D的坐標.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

首先求得AB的中點D的坐標,然后求得經(jīng)過點D且垂直于直線y=-x的直線的解析式,然后求得與y=-x的交點坐標,再求得交點與D之間的距離即可.【詳解】AB的中點D的坐標是(4,-2),∵C(a,-a)在一次函數(shù)y=-x上,∴設過D且與直線y=-x垂直的直線的解析式是y=x+b,把(4,-2)代入解析式得:4+b=-2,解得:b=-1,則函數(shù)解析式是y=x-1.根據(jù)題意得:,解得:,則交點的坐標是(3,-3).則這個圓的半徑的最小值是:=.

故選:B【點睛】本題考查了待定系數(shù)法求函數(shù)的解析式,以及兩直線垂直的條件,正確理解C(a,-a),一定在直線y=-x上,是關鍵.2、A【解析】試題分析:根據(jù)平均數(shù)的定義列式計算,再根據(jù)找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)(或兩個數(shù)的平均數(shù))為中位數(shù)解答.平均數(shù)為:×(6+3+4+1+7)=1,按照從小到大的順序排列為:3,4,1,6,7,所以,中位數(shù)為:1.故選A.考點:中位數(shù);算術平均數(shù).3、B【解析】試題分析:∵∠B=60°,將△ABC沿射線BC的方向平移,得到△A′B′C′,再將△A′B′C′繞點A′逆時針旋轉一定角度后,點B′恰好與點C重合,∴∠A′B′C=60°,AB=A′B′=A′C=4,∴△A′B′C是等邊三角形,∴B′C=4,∠B′A′C=60°,∴BB′=6﹣4=2,∴平移的距離和旋轉角的度數(shù)分別為:2,60°故選B.考點:1、平移的性質;2、旋轉的性質;3、等邊三角形的判定4、D【解析】A選項:∠1+∠2=360°-90°×2=180°;B選項:∵∠2+∠3=90°,∠3+∠4=90°,∴∠2=∠4,∵∠1+∠4=180°,∴∠1+∠2=180°;C選項:∵∠ABC=∠DEC=90°,∴AB∥DE,∴∠2=∠EFC,∵∠1+∠EFC=180°,∴∠1+∠2=180°;D選項:∠1和∠2不一定互補.故選D.點睛:本題主要掌握平行線的性質與判定定理,關鍵在于通過角度之間的轉化得出∠1和∠2的互補關系.5、A【解析】

分析出此三棱柱的立體圖像即可得出答案.【詳解】由三視圖可知主視圖為一個側面,另外兩個側面全等,是長×高=×4=,所以側面積之和為×2+4×4=16+16,所以答案選擇A項.【點睛】本題考查了由三視圖求側面積,畫出該圖的立體圖形是解決本題的關鍵.6、B【解析】

俯視圖是從上面看幾何體得到的圖形,據(jù)此進行判斷即可.【詳解】由7個相同的小立方體木塊堆成的一個幾何體,拿掉1個小立方體木塊之后,這個幾何體的主(正)視圖沒變,得拿掉第一排的小正方形,拿掉這個小立方體木塊之后的幾何體的俯視圖是,故選B.【點睛】本題主要考查了簡單幾何體的三視圖,解題時注意:俯視圖就是從幾何體上面看到的圖形.7、B【解析】試題解析:A.是軸對稱圖形但不是中心對稱圖形B.既是軸對稱圖形又是中心對稱圖形;C.是中心對稱圖形,但不是軸對稱圖形;D.是軸對稱圖形不是中心對稱圖形;故選B.8、C【解析】試題分析:根據(jù)實數(shù)的大小比較法則,正數(shù)大于0,0大于負數(shù),兩個負數(shù)相比,絕對值大的反而小.因此,在﹣3,0,1,這四個數(shù)中,﹣3<0<<1,最大的數(shù)是1.故選C.9、B【解析】令x=0,y=6,∴B(0,6),∵等腰△OBC,∴點C在線段OB的垂直平分線上,∴設C(a,3),則C'(a-5,3),∴3=3(a-5)+6,解得a=4,∴C(4,3).故選B.點睛:掌握等腰三角形的性質、函數(shù)圖像的平移.10、C【解析】

直接利用隨機事件、必然事件、不可能事件分別分析得出答案.【詳解】A、一個圖形平移后所得的圖形與原來的圖形不全等,是不可能事件,故此選項錯誤;B、不等式的兩邊同時乘以一個數(shù),結果仍是不等式,是隨機事件,故此選項錯誤;C、200件產(chǎn)品中有5件次品,從中任意抽取6件,至少有一件是正品,是必然事件,故此選項正確;D、隨意翻到一本書的某頁,這頁的頁碼一定是偶數(shù),是隨機事件,故此選項錯誤;故選C.【點睛】此題主要考查了隨機事件、必然事件、不可能事件,正確把握相關定義是解題關鍵.11、C【解析】

首先根據(jù)AD∥BC,求出∠FED的度數(shù),然后根據(jù)軸對稱的性質,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等,則可知∠DEF=∠FED′,最后求得∠AED′的大小.【詳解】解:∵AD∥BC,∴∠EFB=∠FED=65°,由折疊的性質知,∠DEF=∠FED′=65°,∴∠AED′=180°-2∠FED=50°,故選:C.【點睛】此題考查了長方形的性質與折疊的性質.此題比較簡單,解題的關鍵是注意數(shù)形結合思想的應用.12、B【解析】

由題意可知,當時,;當時,;當時,.∵時,;時,.∴結合函數(shù)解析式,可知選項B正確.【點睛】考點:1.動點問題的函數(shù)圖象;2.三角形的面積.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、10﹣【解析】

過點P1、點Pn+1作y軸的垂線段,垂足分別是點A、B,過點P1作x軸的垂線段,垂足是點C,P1C交BPn+1于點D,所有的陰影部分平移到左邊,陰影部分的面積之和就等于矩形P1ABD的面積,即可得到答案.【詳解】如圖,過點P1、點Pn+1作y軸的垂線段,垂足分別是點A、B,過點P1作x軸的垂線段,垂足是點C,P1C交BPn于點D,則點Pn+1的坐標為(2n+2,),則OB=,∵點P1的橫坐標為2,∴點P1的縱坐標為5,∴AB=5﹣,∴S1+S2+S3+…+Sn=S矩形AP1DB=2(5﹣)=10﹣,故答案為10﹣.【點睛】本題考查了反比例函數(shù)系數(shù)k的幾何意義,反比例函數(shù)圖象上點的坐標特征,解題的關鍵是掌握過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|.14、1【解析】

根據(jù)題意設小明的速度為akm/h,小亮的速度為bkm/h,求出a,b的值,再代入方程即可解答.【詳解】設小明的速度為akm/h,小亮的速度為bkm/h,,解得,,當小明到達B地時,小亮距離A地的距離是:120×(3.5﹣1)﹣60×3.5=1(千米),故答案為1.【點睛】此題考查一次函數(shù)的應用,解題關鍵在于列出方程組.15、②③【解析】試題分析:∠BAD與∠ABC不一定相等,選項①錯誤;∵GD為圓O的切線,∴∠GDP=∠ABD,又AB為圓O的直徑,∴∠ADB=90°,∵CF⊥AB,∴∠AEP=90°,∴∠ADB=∠AEP,又∠PAE=∠BAD,∴△APE∽△ABD,∴∠ABD=∠APE,又∠APE=∠GPD,∴∠GDP=∠GPD,∴GP=GD,選項②正確;由AB是直徑,則∠ACQ=90°,如果能說明P是斜邊AQ的中點,那么P也就是這個直角三角形外接圓的圓心了.Rt△BQD中,∠BQD=90°-∠6,Rt△BCE中,∠8=90°-∠5,而∠7=∠BQD,∠6=∠5,所以∠8=∠7,所以CP=QP;由②知:∠3=∠5=∠4,則AP=CP;所以AP=CP=QP,則點P是△ACQ的外心,選項③正確.則正確的選項序號有②③.故答案為②③.考點:1.切線的性質;2.圓周角定理;3.三角形的外接圓與外心;4.相似三角形的判定與性質.16、10πcm1.【解析】

根據(jù)已知條件得到四邊形ABCD是矩形,求得圖中陰影部分的面積=S扇形AOD+S扇形BOC=1S扇形AOD,根據(jù)等腰三角形的性質得到∠BAC=∠ABO=36°,由圓周角定理得到∠AOD=71°,于是得到結論.【詳解】解:∵AC與BD是⊙O的兩條直徑,∴∠ABC=∠ADC=∠DAB=∠BCD=90°,∴四邊形ABCD是矩形,∴S△ABO=S△CDO=S△AOD=S△BOD,∴圖中陰影部分的面積=S扇形AOD+S扇形BOC=1S扇形AOD,∵OA=OB,∴∠BAC=∠ABO=36°,∴∠AOD=71°,∴圖中陰影部分的面積=1×=10π,故答案為10πcm1.點睛:本題考查了扇形的面積,矩形的判定和性質,圓周角定理的推論,三角形外角的性質,熟練掌握扇形的面積公式是解題的關鍵.17、1【解析】解:如圖.∵在Rt△ABC中(∠C=90°),放置邊長分別2,3,x的三個正方形,∴△CEF∽△OME∽△PFN,∴OE:PN=OM:PF.∵EF=x,MO=2,PN=3,∴OE=x﹣2,PF=x﹣3,∴(x﹣2):3=2:(x﹣3),∴x=0(不符合題意,舍去),x=1.故答案為1.點睛:本題主要考查相似三角形的判定和性質、正方形的性質,解題的關鍵在于找到相似三角形,用x的表達式表示出對應邊是解題的關鍵.18、.【解析】

根據(jù)題意畫出圖形,由,,根據(jù)三角形法則,即可求得的長,又由點G是△ABC的重心,根據(jù)重心的性質,即可求得.【詳解】如圖:BD是△ABC的中線,∵,∴=,∵,∴=﹣,∵點G是△ABC的重心,∴==﹣,故答案為:﹣.【點睛】本題考查了三角形的重心的性質:三角形的重心到三角形頂點的距離是它到對邊中點的距離的2倍,本題也考查了向量的加法及其幾何意義,是基礎題目.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、每畝山田產(chǎn)糧相當于實田0.9畝,每畝場地產(chǎn)糧相當于實田畝.【解析】

設每畝山田產(chǎn)糧相當于實田x畝,每畝場地產(chǎn)糧相當于實田y畝,根據(jù)山田3畝,場地6畝,其產(chǎn)糧相當于實田4.7畝;又山田5畝,場地3畝,其產(chǎn)糧相當于實田5.5畝,列二元一次方程組求解.【詳解】解:設每畝山田產(chǎn)糧相當于實田x畝,每畝場地產(chǎn)糧相當于實田y畝.可列方程組為解得答:每畝山田相當于實田0.9畝,每畝場地相當于實田畝.20、(1)200;16(2)126;12%(3)見解析(4)940【解析】分析:(1)由于A組的頻數(shù)比B組小24,而A組的頻率比B組小12%,則可計算出調查的總人數(shù),然后計算a和b的值;(2)用360度乘以D組的頻率可得到n的值,根據(jù)百分比之和為1可得E組百分比;(3)計算出C和E組的頻數(shù)后補全頻數(shù)分布直方圖;(4)利用樣本估計總體,用2000乘以D組和E組的頻率和即可.本題解析:()調查的總人數(shù)為,∴,,()部分所對的圓心角,即,組所占比例為:,()組的頻數(shù)為,組的頻數(shù)為,補全頻數(shù)分布直方圖為:(),∴估計成績優(yōu)秀的學生有人.點睛:本題考查了頻數(shù)(率)分布直方圖:提高讀頻數(shù)分布直方圖的能力和利用統(tǒng)計圖獲取信息的能力;利用統(tǒng)計圖獲取信息時,要認真觀察、分析、研究統(tǒng)計圖,才能作出正確的判斷和解決問題,也考查了用樣本估計總體.21、(1)拋物線解析式為y=﹣x2﹣x+2;(2)△ABC為直角三角形,理由見解析;(3)當P點坐標為(﹣,)時,△PBC周長最小【解析】

(1)設交點式y(tǒng)=a(x+4)(x-1),展開得到-4a=2,然后求出a即可得到拋物線解析式;

(2)先利用兩點間的距離公式計算出AC2=42+22,BC2=12+22,AB2=25,然后利用勾股定理的逆定理可判斷△ABC為直角三角形;

(3)拋物線的對稱軸為直線x=-,連接AC交直線x=-于P點,如圖,利用兩點之間線段最短得到PB+PC的值最小,則△PBC周長最小,接著利用待定系數(shù)法求出直線AC的解析式為y=x+2,然后進行自變量為-所對應的函數(shù)值即可得到P點坐標.【詳解】(1)拋物線的解析式為y=a(x+4)(x﹣1),即y=ax2+3ax﹣4a,∴﹣4a=2,解得a=﹣,∴拋物線解析式為y=﹣x2﹣x+2;(2)△ABC為直角三角形.理由如下:當x=0時,y=﹣x2﹣x+2=2,則C(0,2),∵A(﹣4,0),B(1,0),∴AC2=42+22,BC2=12+22,AB2=52=25,∴AC2+BC2=AB2,∴△ABC為直角三角形,∠ACB=90°;(3)拋物線的對稱軸為直線x=﹣,連接AC交直線x=﹣于P點,如圖,∵PA=PB,∴PB+PC=PA+PC=AC,∴此時PB+PC的值最小,△PBC周長最小,設直線AC的解析式為y=kx+m,把A(﹣4,0),C(0,2)代入得,解得,∴直線AC的解析式為y=x+2,當x=﹣時,y=x+2=,則P(﹣,)∴當P點坐標為(﹣,)時,△PBC周長最小.【點睛】本題考查了拋物線與x軸的交點:把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點坐標問題轉化解.關于x的一元二次方程即可求得交點橫坐標.也考查了待定系數(shù)法求二次函數(shù)解析式和最短路徑問題.22、(1);(2)①見解析;②;(3)存在點B,使△MBF的周長最?。鱉BF周長的最小值為11,直線l的解析式為.【解析】

(1)用待定系數(shù)法將已知兩點的坐標代入拋物線解析式即可解答.(2)①由于BC∥y軸,容易看出∠OFC=∠BCF,想證明∠BFC=∠OFC,可轉化為求證∠BFC=∠BCF,根據(jù)“等邊對等角”,也就是求證BC=BF,可作BD⊥y軸于點D,設B(m,),通過勾股定理用表示出的長度,與相等,即可證明.②用表示出點的坐標,運用勾股定理表示出的長度,令,解關于的一元二次方程即可.(3)求折線或者三角形周長的最小值問題往往需要將某些線段代換轉化到一條直線上,再通過“兩點之間線段最短”或者“垂線段最短”等定理尋找最值.本題可過點M作MN⊥x軸于點N,交拋物線于點B1,過點B作BE⊥x軸于點E,連接B1F,通過第(2)問的結論將△MBF的邊轉化為,可以發(fā)現(xiàn),當點運動到位置時,△MBF周長取得最小值,根據(jù)求平面直角坐標系里任意兩點之間的距離的方法代入點與的坐標求出的長度,再加上即是△MBF周長的最小值;將點的橫坐標代入二次函數(shù)求出,再聯(lián)立與的坐標求出的解析式即可.【詳解】(1)解:將點(-2,2)和(4,5)分別代入,得:解得:∴拋物線的解析式為:.(2)①證明:過點B作BD⊥y軸于點D,設B(m,),∵BC⊥x軸,BD⊥y軸,F(xiàn)(0,2)∴BC=,BD=|m|,DF=∴BC=BF∴∠BFC=∠BCF又BC∥y軸,∴∠OFC=∠BCF∴∠BFC=∠OFC∴FC平分∠BFO.②(說明:寫一個給1分)(3)存在點B,使△MBF的周長最小.過點M作MN⊥x軸于點N,交拋物線于點B1,過點B作BE⊥x軸于點E,連接B1F由(2)知B1F=B1N,BF=BE∴△MB1F的周長=MF+MB1+B1F=MF+MB1+B1N=MF+MN△MBF的周長=MF+MB+BF=MF+MB+BE根據(jù)垂線段最短可知:MN<MB+BE∴當點B在點B1處時,△MBF的周長最小∵M(3,6),F(xiàn)(0,2)∴,MN=6∴△MBF周長的最小值=MF+MN=5+6=11將x=3代入,得:∴B1(3,)將F(0,2)和B1(3,)代入y=kx+b,得:,解得:∴此時直線l的解析式為:.【點睛】本題綜合考查了二次函數(shù)與一次函數(shù)的圖象與性質,等腰三角形的性質,動點與最值問題等,熟練掌握各個知識點,結合圖象作出合理輔助線,進行適當?shù)霓D化是解答關鍵.23、(1)見解析;(2)75﹣a.【解析】

(1)連接CD,求出∠ADC=90°,根據(jù)切線長定理求出DE=EC,即可求出答案;(2)連接CD、OD、OE,求出扇形DOC的面積,分別求出△ODE和△OCE的面積,即可求出答案【詳解】(1)證明:連接DC,∵BC是⊙O直徑,∴∠BDC=90°,∴∠ADC=90°,∵∠C=90°,BC為直徑,∴AC切⊙O于C,∵過點D作⊙O的切線DE交AC于點E,∴DE=CE,∴∠EDC=∠ECD,∵∠ACB=∠ADC=90°,∴∠A+∠ACD=90°,∠ADE+∠EDC=90°,∴∠A=∠ADE;(2)解:連接CD、OD、OE,∵DE=10,DE=CE,∴CE=10,∵∠A=∠ADE,∴AE=DE=10,∴AC=20,∵∠ACB=90°,AB=25,∴由勾股定理得:BC===15,∴CO=OD=,∵的長度是a,∴扇形DOC的面積是×a×=a,∴DE、EC和弧DC圍成的部分的面積S=××10+×10﹣a=75﹣a.【點睛】本題考查了圓周角定理,切線的性質,切線長定理,等腰三角形的性質和判定,勾股定理,扇形的面積,三角形的面積等知識點,能綜合運用知識點進行推理和計算是解此題的關鍵.24、(1)甲型號的產(chǎn)品有10萬只,則乙型號的產(chǎn)品有10萬只;(2)安排甲型號產(chǎn)品生產(chǎn)15萬只,乙型號產(chǎn)品生產(chǎn)5萬只,可獲得最大利潤91萬元.【解析】

(1)設甲型號的產(chǎn)品有x萬只,則乙型號的產(chǎn)品有(20﹣x)萬只,根據(jù)銷售收入為300萬元可列方程18x+12(20﹣x)=300,解方程即可;(2)設安排甲型號產(chǎn)品生產(chǎn)y萬只,則乙型號產(chǎn)品生產(chǎn)(20﹣y)萬只,根據(jù)公司六月份投入總成本(原料總成本+生產(chǎn)提成總額)不超過239萬元列出不等式,求出不等式的解集確定出y的范圍,再根據(jù)利潤=售價﹣成本列出W與y的一次函數(shù),根據(jù)y的范圍確定出W的最大值即可.【詳解】(1)設甲型號的產(chǎn)品有x萬只,則乙型號的產(chǎn)品有(20﹣x)萬只,根據(jù)題意得:18x+12(20﹣x)=300,解得:x=10,則20﹣x=20﹣10=10,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論