江西省上饒廣豐區(qū)六校聯(lián)考2023-2024學年中考數(shù)學模擬試題含解析_第1頁
江西省上饒廣豐區(qū)六校聯(lián)考2023-2024學年中考數(shù)學模擬試題含解析_第2頁
江西省上饒廣豐區(qū)六校聯(lián)考2023-2024學年中考數(shù)學模擬試題含解析_第3頁
江西省上饒廣豐區(qū)六校聯(lián)考2023-2024學年中考數(shù)學模擬試題含解析_第4頁
江西省上饒廣豐區(qū)六校聯(lián)考2023-2024學年中考數(shù)學模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

江西省上饒廣豐區(qū)六校聯(lián)考2023-2024學年中考數(shù)學模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.《九章算術》中有這樣一個問題:“今有甲乙二人持錢不知其數(shù),甲得乙半而錢五十,乙得甲太半而錢亦五十.問甲、乙持錢各幾何?”題意為:今有甲乙二人,不知其錢包里有多少錢,若乙把其一半的錢給甲,則甲的錢數(shù)為50;而甲把其的錢給乙,則乙的錢數(shù)也能為50,問甲、乙各有多少錢?設甲的錢數(shù)為x,乙的錢數(shù)為y,則列方程組為()A. B.C. D.2.某射擊運動員練習射擊,5次成績分別是:8、9、7、8、x(單位:環(huán)).下列說法中正確的是()A.若這5次成績的中位數(shù)為8,則x=8B.若這5次成績的眾數(shù)是8,則x=8C.若這5次成績的方差為8,則x=8D.若這5次成績的平均成績是8,則x=83.如圖是由5個相同的小正方體組成的立體圖形,這個立體圖形的俯視圖是()A. B. C. D.4.如圖圖形中,是中心對稱圖形的是()A. B. C. D.5.已知⊙O的半徑為5,弦AB=6,P是AB上任意一點,點C是劣弧的中點,若△POC為直角三角形,則PB的長度()A.1 B.5 C.1或5 D.2或46.方程x(x-2)+x-2=0的兩個根為()A., B.,C., D.,7.某學習小組做“用頻率估計概率”的實驗時,統(tǒng)計了某一結果出現(xiàn)的頻率,繪制了如下折線統(tǒng)計圖,則符合這一結果的實驗最有可能的是()A.袋中裝有大小和質地都相同的3個紅球和2個黃球,從中隨機取一個,取到紅球B.擲一枚質地均勻的正六面體骰子,向上的面的點數(shù)是偶數(shù)C.先后兩次擲一枚質地均勻的硬幣,兩次都出現(xiàn)反面D.先后兩次擲一枚質地均勻的正六面體骰子,兩次向上的面的點數(shù)之和是7或超過98.如圖,在△ABC中,∠B=90°,AB=3cm,BC=6cm,動點P從點A開始沿AB向點B以1cm/s的速度移動,動點Q從點B開始沿BC向點C以2cm/s的速度移動,若P,Q兩點分別從A,B兩點同時出發(fā),P點到達B點運動停止,則△PBQ的面積S隨出發(fā)時間t的函數(shù)關系圖象大致是()A. B. C. D.9.函數(shù)的自變量x的取值范圍是()A. B. C. D.10.在實數(shù)﹣,0.21,,,,0.20202中,無理數(shù)的個數(shù)為()A.1 B.2 C.3 D.4二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,直線x=2與反比例函數(shù)和的圖象分別交于A、B兩點,若點P是y軸上任意一點,則△PAB的面積是_____.12.七巧板是我國祖先創(chuàng)造的一種智力玩具,它來源于勾股法,如圖①整幅七巧板是由正方形ABCD分割成七小塊(其中:五塊等腰直角三角形、一塊正方形和一塊平行四邊形)組成,如圖②是由七巧板拼成的一個梯形,若正方形ABCD的邊長為12cm,則梯形MNGH的周長是cm(結果保留根號).13.圖1、圖2的位置如圖所示,如果將兩圖進行拼接(無覆蓋),可以得到一個矩形,請利用學過的變換(翻折、旋轉、軸對稱)知識,將圖2進行移動,寫出一種拼接成矩形的過程______.14.若正多邊形的一個內(nèi)角等于120°,則這個正多邊形的邊數(shù)是_____.15.某地區(qū)的居民用電,按照高峰時段和空閑時段規(guī)定了不同的單價.某戶5月份高峰時段用電量是空閑時段用電量2倍,6月份高峰時段用電量比5月份高峰時段用電量少50%,結果6月份的用電量和5月份的用電量相等,但6月份的電費卻比5月份的電費少25%,求該地區(qū)空閑時段民用電的單價比高峰時段的用電單價低的百分率是_____.16.計算:cos245°-tan30°sin60°=______.三、解答題(共8題,共72分)17.(8分)先化簡,再求值:1+xx2-118.(8分)將一個等邊三角形紙片AOB放置在平面直角坐標系中,點O(0,0),點B(6,0).點C、D分別在OB、AB邊上,DC∥OA,CB=2.(I)如圖①,將△DCB沿射線CB方向平移,得到△D′C′B′.當點C平移到OB的中點時,求點D′的坐標;(II)如圖②,若邊D′C′與AB的交點為M,邊D′B′與∠ABB′的角平分線交于點N,當BB′多大時,四邊形MBND′為菱形?并說明理由.(III)若將△DCB繞點B順時針旋轉,得到△D′C′B,連接AD′,邊D′C′的中點為P,連接AP,當AP最大時,求點P的坐標及AD′的值.(直接寫出結果即可).19.(8分)在Rt△ABC中,∠BAC=,D是BC的中點,E是AD的中點.過點A作AF∥BC交BE的延長線于點F.(1)求證:△AEF≌△DEB;(2)證明四邊形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCFD的面積.20.(8分)如圖,在△ABC中,∠B=90°,AB=4,BC=1.在BC上求作一點P,使PA+PB=BC;(尺規(guī)作圖,不寫作法,保留作圖痕跡)求BP的長.21.(8分)體育老師為了解本校九年級女生1分鐘“仰臥起坐”體育測試項目的達標情況,從該校九年級136名女生中,隨機抽取了20名女生,進行了1分鐘仰臥起坐測試,獲得數(shù)據(jù)如下:收集數(shù)據(jù):抽取20名女生的1分鐘仰臥起坐測試成績(個)如下:3846425255435946253835455148574947535849(1)整理、描述數(shù)據(jù):請你按如下分組整理、描述樣本數(shù)據(jù),把下列表格補充完整:范圍25≤x≤2930≤x≤3435≤x≤3940≤x≤4445≤x≤4950≤x≤5455≤x≤59人數(shù)(說明:每分鐘仰臥起坐個數(shù)達到49個及以上時在中考體育測試中可以得到滿分)(2)分析數(shù)據(jù):樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、滿分率如下表所示:平均數(shù)中位數(shù)滿分率46.847.545%得出結論:①估計該校九年級女生在中考體育測試中1分鐘“仰臥起坐”項目可以得到滿分的人數(shù)為;②該中心所在區(qū)縣的九年級女生的1分鐘“仰臥起坐”總體測試成績?nèi)缦拢浩骄鶖?shù)中位數(shù)滿分率45.34951.2%請你結合該校樣本測試成績和該區(qū)縣總體測試成績,為該校九年級女生的1分鐘“仰臥起坐”達標情況做一下評估,并提出相應建議.22.(10分)先化簡,再求值:x(x+1)﹣(x+1)(x﹣1),其中x=1.23.(12分)瑞安市曹村鎮(zhèn)“八百年燈會”成為溫州“申遺”的寶貴項目.某公司生產(chǎn)了一種紀念花燈,每件紀念花燈制造成本為18元.設銷售單價x(元),每日銷售量y(件)每日的利潤w(元).在試銷過程中,每日銷售量y(件)、每日的利潤w(元)與銷售單價x(元)之間存在一定的關系,其幾組對應量如下表所示:(元)19202130(件)62605840(1)根據(jù)表中數(shù)據(jù)的規(guī)律,分別寫出毎日銷售量y(件),每日的利潤w(元)關于銷售單價x(元)之間的函數(shù)表達式.(利潤=(銷售單價﹣成本單價)×銷售件數(shù)).當銷售單價為多少元時,公司每日能夠獲得最大利潤?最大利潤是多少?根據(jù)物價局規(guī)定,這種紀念品的銷售單價不得高于32元,如果公司要獲得每日不低于350元的利潤,那么制造這種紀念花燈每日的最低制造成本需要多少元?24.在某市組織的大型商業(yè)演出活動中,對團體購買門票實行優(yōu)惠,決定在原定票價基礎上每張降價80元,這樣按原定票價需花費6000元購買的門票張數(shù),現(xiàn)在只花費了4800元.求每張門票原定的票價;根據(jù)實際情況,活動組織單位決定對于個人購票也采取優(yōu)惠措施,原定票價經(jīng)過連續(xù)二次降價后降為324元,求平均每次降價的百分率.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】

設甲的錢數(shù)為x,人數(shù)為y,根據(jù)“若乙把其一半的錢給甲,則甲的錢數(shù)為50;而甲把其的錢給乙,則乙的錢數(shù)也能為50”,即可得出關于x,y的二元一次方程組,此題得解.【詳解】解:設甲的錢數(shù)為x,乙的錢數(shù)為y,依題意,得:.故選A.【點睛】本題考查了由實際問題抽象出二元一次方程組,找準等量關系,正確列出二元一次方程組是解題的關鍵.2、D【解析】

根據(jù)中位數(shù)的定義判斷A;根據(jù)眾數(shù)的定義判斷B;根據(jù)方差的定義判斷C;根據(jù)平均數(shù)的定義判斷D.【詳解】A、若這5次成績的中位數(shù)為8,則x為任意實數(shù),故本選項錯誤;B、若這5次成績的眾數(shù)是8,則x為不是7與9的任意實數(shù),故本選項錯誤;C、如果x=8,則平均數(shù)為(8+9+7+8+8)=8,方差為[3×(8-8)2+(9-8)2+(7-8)2]=0.4,故本選項錯誤;D、若這5次成績的平均成績是8,則(8+9+7+8+x)=8,解得x=8,故本選項正確;

故選D.【點睛】本題考查中位數(shù)、眾數(shù)、平均數(shù)和方差:一般地設n個數(shù)據(jù),x1,x2,…xn的平均數(shù)為,則方差,它反映了一組數(shù)據(jù)的波動大小,方差越大,波動性越大,反之也成立.3、C【解析】

從上面看共有2行,上面一行有3個正方形,第二行中間有一個正方形,故選C.4、D【解析】

根據(jù)中心對稱圖形的概念和識別.【詳解】根據(jù)中心對稱圖形的概念和識別,可知D是中心對稱圖形,A、C是軸對稱圖形,D既不是中心對稱圖形,也不是軸對稱圖形.故選D.【點睛】本題考查中心對稱圖形,掌握中心對稱圖形的概念,會判斷一個圖形是否是中心對稱圖形.5、C【解析】

由點C是劣弧AB的中點,得到OC垂直平分AB,求得DA=DB=3,根據(jù)勾股定理得到OD==1,若△POC為直角三角形,只能是∠OPC=90°,則根據(jù)相似三角形的性質得到PD=2,于是得到結論.【詳解】∵點C是劣弧AB的中點,∴OC垂直平分AB,∴DA=DB=3,∴OD=,若△POC為直角三角形,只能是∠OPC=90°,則△POD∽△CPD,∴,∴PD2=4×1=4,∴PD=2,∴PB=3﹣2=1,根據(jù)對稱性得,當P在OC的左側時,PB=3+2=5,∴PB的長度為1或5.故選C.【點睛】考查了圓周角,弧,弦的關系,勾股定理,垂徑定理,正確左側圖形是解題的關鍵.6、C【解析】

根據(jù)因式分解法,可得答案.【詳解】解:因式分解,得(x-2)(x+1)=0,

于是,得x-2=0或x+1=0,

解得x1=-1,x2=2,

故選:C.【點睛】本題考查了解一元二次方程,熟練掌握因式分解法是解題關鍵.7、D【解析】

根據(jù)統(tǒng)計圖可知,試驗結果在0.33附近波動,即其概率P≈0.33,計算四個選項的概率,約為0.33者即為正確答案.【詳解】解:根據(jù)統(tǒng)計圖可知,試驗結果在0.33附近波動,即其概率P≈0.33,A、袋中裝有大小和質地都相同的3個紅球和2個黃球,從中隨機取一個,取到紅球的概率為,不符合題意;B、擲一枚質地均勻的正六面體骰子,向上的面的點數(shù)是偶數(shù)的概率為,不符合題意;C、先后兩次擲一枚質地均勻的硬幣,兩次都出現(xiàn)反面的概率為,不符合題意;D、先后兩次擲一枚質地均勻的正六面體骰子,兩次向上的面的點數(shù)之和是7或超過9的概率為,符合題意,故選D.【點睛】本題考查了利用頻率估計概率,大量反復試驗下頻率穩(wěn)定值即概率.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.8、C【解析】

根據(jù)題意表示出△PBQ的面積S與t的關系式,進而得出答案.【詳解】由題意可得:PB=3﹣t,BQ=2t,則△PBQ的面積S=PB?BQ=(3﹣t)×2t=﹣t2+3t,故△PBQ的面積S隨出發(fā)時間t的函數(shù)關系圖象大致是二次函數(shù)圖象,開口向下.故選C.【點睛】此題主要考查了動點問題的函數(shù)圖象,正確得出函數(shù)關系式是解題關鍵.9、D【解析】

根據(jù)二次根式的意義,被開方數(shù)是非負數(shù).【詳解】根據(jù)題意得,解得.故選D.【點睛】本題考查了函數(shù)自變量的取值范圍的確定和分式的意義.函數(shù)自變量的范圍一般從三個方面考慮:(1)當函數(shù)表達式是整式時,自變量可取全體實數(shù);(2)當函數(shù)表達式是分式時,考慮分式的分母不能為0;(3)當函數(shù)表達式是二次根式時,被開方數(shù)非負數(shù).10、C【解析】在實數(shù)﹣,0.21,,,,0.20202中,根據(jù)無理數(shù)的定義可得其中無理數(shù)有﹣,,,共三個.故選C.二、填空題(本大題共6個小題,每小題3分,共18分)11、.【解析】

解:∵把x=1分別代入、,得y=1、y=,∴A(1,1),B(1,).∴.∵P為y軸上的任意一點,∴點P到直線BC的距離為1.∴△PAB的面積.故答案為:.12、24+24【解析】

仔細觀察梯形從而發(fā)現(xiàn)其各邊與原正方形各邊之間的關系,則不難求得梯形的周長.【詳解】解:觀察圖形得MH=GN=AD=12,HG=AC,AD=DC=12,AC=12,HG=6.梯形MNGH的周長=HG+HM+MN+NG=2HM+4HG=24+24.故答案為24+24.【點睛】此題主要考查學生對等腰梯形的性質及正方形的性質的運用及觀察分析圖形的能力.13、先將圖2以點A為旋轉中心逆時針旋轉,再將旋轉后的圖形向左平移5個單位.【解析】

變換圖形2,可先旋轉,然后平移與圖2拼成一個矩形.【詳解】先將圖2以點A為旋轉中心逆時針旋轉90°,再將旋轉后的圖形向左平移5個單位可以與圖1拼成一個矩形.故答案為:先將圖2以點A為旋轉中心逆時針旋轉90°,再將旋轉后的圖形向左平移5個單位.【點睛】本題考查了平移和旋轉的性質:對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等.14、6【解析】試題分析:設所求正n邊形邊數(shù)為n,則120°n=(n﹣2)?180°,解得n=6;考點:多邊形內(nèi)角與外角.15、60%【解析】

設空閑時段民用電的單價為x元/千瓦時,高峰時段民用電的單價為y元/千瓦時,該用戶5月份空閑時段用電量為a千瓦時,則5月份高峰時段用電量為2a千瓦時,6月份空閑時段用電量為2a千瓦時,6月份高峰時段用電量為a千瓦時,根據(jù)總價=單價×數(shù)量結合6月份的電費卻比5月份的電費少25%,即可得出關于x,y的二元一次方程,解之即可得出x,y之間的關系,進而即可得出結論.【詳解】設空閑時段民用電的單價為x元/千瓦時,高峰時段民用電的單價為y元/千瓦時,該用戶5月份空閑時段用電量為a千瓦時,則5月份高峰時段用電量為2a千瓦時,6月份空閑時段用電量為2a千瓦時,6月份高峰時段用電量為a千瓦時,依題意,得:(1﹣25%)(ax+2ay)=2ax+ay,解得:x=0.4y,∴該地區(qū)空閑時段民用電的單價比高峰時段的用電單價低×100%=60%.故答案為60%.【點睛】本題考查了二元一次方程的應用,找準等量關系,正確列出二元一次方程是解題的關鍵.16、0【解析】

直接利用特殊角的三角函數(shù)值代入進而得出答案.【詳解】=.故答案為0.【點睛】此題主要考查了特殊角的三角函數(shù)值,正確記憶相關數(shù)據(jù)是解題關鍵.三、解答題(共8題,共72分)17、3+3【解析】

先化簡分式,再計算x的值,最后把x的值代入化簡后的分式,計算出結果.【詳解】原式=1+x=1+xx+1=1+1=xx-1當x=2cos30°+tan45°=2×32=3+1時.xx-1=【點睛】本題主要考查了分式的加減及銳角三角函數(shù)值.解決本題的關鍵是掌握分式的運算法則和運算順序.18、(Ⅰ)D′(3+,3);(Ⅱ)當BB'=時,四邊形MBND'是菱形,理由見解析;(Ⅲ)P().【解析】

(Ⅰ)如圖①中,作DH⊥BC于H.首先求出點D坐標,再求出CC′的長即可解決問題;(Ⅱ)當BB'=時,四邊形MBND'是菱形.首先證明四邊形MBND′是平行四邊形,再證明BB′=BC′即可解決問題;(Ⅲ)在△ABP中,由三角形三邊關系得,AP<AB+BP,推出當點A,B,P三點共線時,AP最大.【詳解】(Ⅰ)如圖①中,作DH⊥BC于H,∵△AOB是等邊三角形,DC∥OA,∴∠DCB=∠AOB=60°,∠CDB=∠A=60°,∴△CDB是等邊三角形,∵CB=2,DH⊥CB,∴CH=HB=,DH=3,∴D(6﹣,3),∵C′B=3,∴CC′=2﹣3,∴DD′=CC′=2﹣3,∴D′(3+,3).(Ⅱ)當BB'=時,四邊形MBND'是菱形,理由:如圖②中,∵△ABC是等邊三角形,∴∠ABO=60°,∴∠ABB'=180°﹣∠ABO=120°,∵BN是∠ACC'的角平分線,∴∠NBB′'=∠ABB'=60°=∠D′C′B,∴D'C'∥BN,∵AB∥B′D′∴四邊形MBND'是平行四邊形,∵∠ME'C'=∠MCE'=60°,∠NCC'=∠NC'C=60°,∴△MC′B'和△NBB'是等邊三角形,∴MC=CE',NC=CC',∵B'C'=2,∵四邊形MBND'是菱形,∴BN=BM,∴BB'=B'C'=;(Ⅲ)如圖連接BP,在△ABP中,由三角形三邊關系得,AP<AB+BP,∴當點A,B,P三點共線時,AP最大,如圖③中,在△D'BE'中,由P為D'E的中點,得AP⊥D'E',PD'=,∴CP=3,∴AP=6+3=9,在Rt△APD'中,由勾股定理得,AD'==2.此時P(,﹣).【點睛】此題是四邊形綜合題,主要考查了平行四邊形的判定和性質,菱形的性質,平移和旋轉的性質,等邊三角形的判定和性質,勾股定理,解(2)的關鍵是四邊形MCND'是平行四邊形,解(3)的關鍵是判斷出點A,C,P三點共線時,AP最大.19、(1)證明詳見解析;(2)證明詳見解析;(3)1.【解析】

(1)利用平行線的性質及中點的定義,可利用AAS證得結論;

(2)由(1)可得AF=BD,結合條件可求得AF=DC,則可證明四邊形ADCF為平行四邊形,再利用直角三角形的性質可證得AD=CD,可證得四邊形ADCF為菱形;

(3)連接DF,可證得四邊形ABDF為平行四邊形,則可求得DF的長,利用菱形的面積公式可求得答案.【詳解】(1)證明:∵AF∥BC,

∴∠AFE=∠DBE,

∵E是AD的中點,

∴AE=DE,

在△AFE和△DBE中,

∴△AFE≌△DBE(AAS);

(2)證明:由(1)知,△AFE≌△DBE,則AF=DB.

∵AD為BC邊上的中線

∴DB=DC,

∴AF=CD.

∵AF∥BC,

∴四邊形ADCF是平行四邊形,

∵∠BAC=90°,D是BC的中點,E是AD的中點,

∴AD=DC=BC,

∴四邊形ADCF是菱形;

(3)連接DF,

∵AF∥BD,AF=BD,

∴四邊形ABDF是平行四邊形,

∴DF=AB=5,

∵四邊形ADCF是菱形,

∴S菱形ADCF=AC?DF=×4×5=1.【點睛】本題主要考查菱形的性質及判定,利用全等三角形的性質證得AF=CD是解題的關鍵,注意菱形面積公式的應用.20、(1)見解析;(2)2.【解析】

(1)作AC的垂直平分線與BC相交于P;(2)根據(jù)勾股定理求解.【詳解】(1)如圖所示,點P即為所求.(2)設BP=x,則CP=1﹣x,由(1)中作圖知AP=CP=1﹣x,在Rt△ABP中,由AB2+BP2=AP2可得42+x2=(1﹣x)2,解得:x=2,所以BP=2.【點睛】考核知識點:勾股定理和線段垂直平分線.21、(1)補充表格見解析;(2)①61;②見解析.【解析】

(1)根據(jù)所給數(shù)據(jù)分析補充表格即可.(2)①根據(jù)概率公式計算即可.②根據(jù)平均數(shù)、中位數(shù)分別進行分析并根據(jù)分析結果給出建議即可.【詳解】(1)補充表格如下:范圍25≤x≤2930≤x≤3435≤x≤3940≤x≤4445≤x≤4950≤x≤5455≤x≤59人數(shù)1032734(2)①估計該校九年級女生在中考體育測試中1分鐘“仰臥起坐”項目可以得到滿分的人數(shù)為136×≈61,故答案為:61;②從平均數(shù)角度看,該校女生1分鐘仰臥起坐的平均成績高于區(qū)縣水平,整體水平較好;從中位數(shù)角度看,該校成績中等水平偏上的學生比例低于區(qū)縣水平,該校測試成績的滿分率低于區(qū)縣水平;建議:該校在保持學校整體水平的同事,多關注接近滿分的學生,提高滿分成績的人數(shù).【點睛】本題考查的是統(tǒng)計表的綜合運用,讀懂統(tǒng)計圖,從統(tǒng)計圖中得到必要的信息是解決問題的關鍵.22、x+1,2.【解析】

先根據(jù)單項式乘以多項式的運算法則、平方差公式計算后,再去掉括號,合并同類項化為最簡后代入求值即可.【詳解】原式=x2+x﹣(x2﹣1)=x2+x﹣x2+1=x+1,當x

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論