版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆試題山西省懷仁市重點(diǎn)中學(xué)高考數(shù)學(xué)全真模擬密押卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在中,角、、所對的邊分別為、、,若,則()A. B. C. D.2.執(zhí)行如圖所示的程序框圖若輸入,則輸出的的值為()A. B. C. D.3.如圖,在△ABC中,點(diǎn)M是邊BC的中點(diǎn),將△ABM沿著AM翻折成△AB'M,且點(diǎn)B'不在平面AMC內(nèi),點(diǎn)P是線段B'C上一點(diǎn).若二面角P-AM-B'與二面角P-AM-C的平面角相等,則直線AP經(jīng)過△AB'CA.重心 B.垂心 C.內(nèi)心 D.外心4.如圖是一個算法流程圖,則輸出的結(jié)果是()A. B. C. D.5.已知四棱錐的底面為矩形,底面,點(diǎn)在線段上,以為直徑的圓過點(diǎn).若,則的面積的最小值為()A.9 B.7 C. D.6.已知定義在上的可導(dǎo)函數(shù)滿足,若是奇函數(shù),則不等式的解集是()A. B. C. D.7.已知復(fù)數(shù)滿足,則()A. B.2 C.4 D.38.趙爽是我國古代數(shù)學(xué)家、天文學(xué)家,大約在公元222年,趙爽為《周髀算經(jīng)》一書作序時,介紹了“勾股圓方圖”,亦稱“趙爽弦圖”(以弦為邊長得到的正方形是由4個全等的直角三角形再加上中間的一個小正方形組成的).類比“趙爽弦圖”.可類似地構(gòu)造如下圖所示的圖形,它是由3個全等的三角形與中間的一個小等邊三角形拼成一個大等邊三角形.設(shè),若在大等邊三角形中隨機(jī)取一點(diǎn),則此點(diǎn)取自小等邊三角形(陰影部分)的概率是()A. B. C. D.9.已知拋物線:()的焦點(diǎn)為,為該拋物線上一點(diǎn),以為圓心的圓與的準(zhǔn)線相切于點(diǎn),,則拋物線方程為()A. B. C. D.10.在區(qū)間上隨機(jī)取一個實(shí)數(shù),使直線與圓相交的概率為()A. B. C. D.11.命題:存在實(shí)數(shù),對任意實(shí)數(shù),使得恒成立;:,為奇函數(shù),則下列命題是真命題的是()A. B. C. D.12.已知拋物線的焦點(diǎn)為,準(zhǔn)線為,是上一點(diǎn),是直線與拋物線的一個交點(diǎn),若,則()A. B.3 C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù)滿足:①是偶函數(shù);②的圖象關(guān)于點(diǎn)對稱.則同時滿足①②的,的一組值可以分別是__________.14.“”是“”的__________條件.(填寫“充分必要”、“充分不必要”、“必要不充分”、“既不充分也不必要”之一)15.已知雙曲線的一條漸近線經(jīng)過點(diǎn),則該雙曲線的離心率為_______.16.不等式的解集為________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)時,求不等式解集;(2)若的解集包含于,求a的取值范圍.18.(12分)已知函數(shù).(1)當(dāng)時,解關(guān)于x的不等式;(2)當(dāng)時,若對任意實(shí)數(shù),都成立,求實(shí)數(shù)的取值范圍.19.(12分)設(shè)函數(shù).(1)若,求函數(shù)的值域;(2)設(shè)為的三個內(nèi)角,若,求的值;20.(12分)在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為.(1)求直線l的普通方程和圓C的直角坐標(biāo)方程;(2)直線l與圓C交于A,B兩點(diǎn),點(diǎn)P(2,1),求|PA|?|PB|的值.21.(12分)已知橢圓,左、右焦點(diǎn)為,點(diǎn)為上任意一點(diǎn),若的最大值為3,最小值為1.(1)求橢圓的方程;(2)動直線過點(diǎn)與交于兩點(diǎn),在軸上是否存在定點(diǎn),使成立,說明理由.22.(10分)已知函數(shù)是減函數(shù).(1)試確定a的值;(2)已知數(shù)列,求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
利用余弦定理角化邊整理可得結(jié)果.【詳解】由余弦定理得:,整理可得:,.故選:.【點(diǎn)睛】本題考查余弦定理邊角互化的應(yīng)用,屬于基礎(chǔ)題.2、C【解析】
由程序語言依次計(jì)算,直到時輸出即可【詳解】程序的運(yùn)行過程為當(dāng)n=2時,時,,此時輸出.故選:C【點(diǎn)睛】本題考查由程序框圖計(jì)算輸出結(jié)果,屬于基礎(chǔ)題3、A【解析】
根據(jù)題意P到兩個平面的距離相等,根據(jù)等體積法得到SΔPB'M【詳解】二面角P-AM-B'與二面角P-AM-C的平面角相等,故P到兩個平面的距離相等.故VP-AB'M=VP-ACM,即故B'P=CP,故P為CB'中點(diǎn).故選:A.【點(diǎn)睛】本題考查了二面角,等體積法,意在考查學(xué)生的計(jì)算能力和空間想象能力.4、A【解析】
執(zhí)行程序框圖,逐次計(jì)算,根據(jù)判斷條件終止循環(huán),即可求解,得到答案.【詳解】由題意,執(zhí)行上述的程序框圖:第1次循環(huán):滿足判斷條件,;第2次循環(huán):滿足判斷條件,;第3次循環(huán):滿足判斷條件,;不滿足判斷條件,輸出計(jì)算結(jié)果,故選A.【點(diǎn)睛】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的結(jié)果的計(jì)算與輸出,其中解答中執(zhí)行程序框圖,逐次計(jì)算,根據(jù)判斷條件終止循環(huán)是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.5、C【解析】
根據(jù)線面垂直的性質(zhì)以及線面垂直的判定,根據(jù)勾股定理,得到之間的等量關(guān)系,再用表示出的面積,利用均值不等式即可容易求得.【詳解】設(shè),,則.因?yàn)槠矫妫矫?,所?又,,所以平面,則.易知,.在中,,即,化簡得.在中,,.所以.因?yàn)椋?dāng)且僅當(dāng),時等號成立,所以.故選:C.【點(diǎn)睛】本題考查空間幾何體的線面位置關(guān)系及基本不等式的應(yīng)用,考查空間想象能力以及數(shù)形結(jié)合思想,涉及線面垂直的判定和性質(zhì),屬中檔題.6、A【解析】
構(gòu)造函數(shù),根據(jù)已知條件判斷出的單調(diào)性.根據(jù)是奇函數(shù),求得的值,由此化簡不等式求得不等式的解集.【詳解】構(gòu)造函數(shù),依題意可知,所以在上遞增.由于是奇函數(shù),所以當(dāng)時,,所以,所以.由得,所以,故不等式的解集為.故選:A【點(diǎn)睛】本小題主要考查構(gòu)造函數(shù)法解不等式,考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.7、A【解析】
由復(fù)數(shù)除法求出,再由模的定義計(jì)算出模.【詳解】.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)的除法法則,考查復(fù)數(shù)模的運(yùn)算,屬于基礎(chǔ)題.8、A【解析】
根據(jù)幾何概率計(jì)算公式,求出中間小三角形區(qū)域的面積與大三角形面積的比值即可.【詳解】在中,,,,由余弦定理,得,所以.所以所求概率為.故選A.【點(diǎn)睛】本題考查了幾何概型的概率計(jì)算問題,是基礎(chǔ)題.9、C【解析】
根據(jù)拋物線方程求得點(diǎn)的坐標(biāo),根據(jù)軸、列方程,解方程求得的值.【詳解】不妨設(shè)在第一象限,由于在拋物線上,所以,由于以為圓心的圓與的準(zhǔn)線相切于點(diǎn),根據(jù)拋物線的定義可知,、軸,且.由于,所以直線的傾斜角為,所以,解得,或(由于,故舍去).所以拋物線的方程為.故選:C【點(diǎn)睛】本小題主要考查拋物線的定義,考查直線的斜率,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于中檔題.10、D【解析】
利用直線與圓相交求出實(shí)數(shù)的取值范圍,然后利用幾何概型的概率公式可求得所求事件的概率.【詳解】由于直線與圓相交,則,解得.因此,所求概率為.故選:D.【點(diǎn)睛】本題考查幾何概型概率的計(jì)算,同時也考查了利用直線與圓相交求參數(shù),考查計(jì)算能力,屬于基礎(chǔ)題.11、A【解析】
分別判斷命題和的真假性,然后根據(jù)含有邏輯聯(lián)結(jié)詞命題的真假性判斷出正確選項(xiàng).【詳解】對于命題,由于,所以命題為真命題.對于命題,由于,由解得,且,所以是奇函數(shù),故為真命題.所以為真命題.、、都是假命題.故選:A【點(diǎn)睛】本小題主要考查誘導(dǎo)公式,考查函數(shù)的奇偶性,考查含有邏輯聯(lián)結(jié)詞命題真假性的判斷,屬于基礎(chǔ)題.12、D【解析】
根據(jù)拋物線的定義求得,由此求得的長.【詳解】過作,垂足為,設(shè)與軸的交點(diǎn)為.根據(jù)拋物線的定義可知.由于,所以,所以,所以,所以.故選:D【點(diǎn)睛】本小題主要考查拋物線的定義,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、,【解析】
根據(jù)是偶函數(shù)和的圖象關(guān)于點(diǎn)對稱,即可求出滿足條件的和.【詳解】由是偶函數(shù)及,可取,則,由的圖象關(guān)于點(diǎn)對稱,得,,即,,可取.故,的一組值可以分別是,.故答案為:,.【點(diǎn)睛】本題主要考查了正弦型三角函數(shù)的性質(zhì),屬于基礎(chǔ)題.14、充分不必要【解析】
由余弦的二倍角公式可得,即或,即可判斷命題的關(guān)系.【詳解】由,所以或,所以“”是“”的充分不必要條件.故答案為:充分不必要【點(diǎn)睛】本題考查命題的充分條件與必要條件的判斷,考查余弦的二倍角公式的應(yīng)用.15、【解析】
根據(jù)雙曲線方程,可得漸近線方程,結(jié)合題意可表示,再由雙曲線a,b,c關(guān)系表示,最后結(jié)合雙曲線離心率公式計(jì)算得答案.【詳解】因?yàn)殡p曲線為,所以該雙曲線的漸近線方程為.又因?yàn)槠湟粭l漸近線經(jīng)過點(diǎn),即,則,由此可得.故答案為:.【點(diǎn)睛】本題考查由雙曲線的漸近線構(gòu)建方程表示系數(shù)關(guān)系進(jìn)而求離心率,屬于基礎(chǔ)題.16、【解析】
通過平方,將無理不等式化為有理不等式求解即可。【詳解】由得,解得,所以解集是。【點(diǎn)睛】本題主要考查無理不等式的解法。三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)代入可得對分類討論即可得不等式的解集;(2)根據(jù)不等式在上恒成立去絕對值化簡可得再去絕對值即可得關(guān)于的不等式組解不等式組即可求得的取值范圍【詳解】(1)當(dāng)時,不等式可化為,①當(dāng)時,不等式為,解得;②當(dāng)時,不等式為,無解;③當(dāng)時,不等式為,解得,綜上,原不等式的解集為.(2)因?yàn)榈慕饧?,則不等式可化為,即.解得,由題意知,解得,所以實(shí)數(shù)a的取值范圍是.【點(diǎn)睛】本題考查了絕對值不等式的解法分類討論解絕對值不等式的應(yīng)用,含參數(shù)不等式的解法.難度一般.18、(1)(2)【解析】
(1)當(dāng)時,利用含有一個絕對值不等式的解法,求得不等式的解集.(2)對分成和兩類,利用零點(diǎn)分段法去絕對值,將表示為分段函數(shù)的形式,求得的最小值,進(jìn)而求得的取值范圍.【詳解】(1)當(dāng)時,由得由得解:,得∴當(dāng)時,關(guān)于的不等式的解集為(2)①當(dāng)時,,所以在上是減函數(shù),在是增函數(shù),所以,由題設(shè)得,解得.②當(dāng)時,同理求得.綜上所述,的取值范圍為.【點(diǎn)睛】本小題主要考查含有一個絕對值不等式的求法,考查利用零點(diǎn)分段法解含有兩個絕對值的不等式,屬于中檔題.19、(1)(2)【解析】
(1)將,利用三角恒等變換轉(zhuǎn)化為:,,再根據(jù)正弦函數(shù)的性質(zhì)求解,(2)根據(jù),得,又為的內(nèi)角,得到,再根據(jù),利用兩角和與差的余弦公式求解,【詳解】(1),,,,即的值域?yàn)?;?)由,得,又為的內(nèi)角,所以,又因?yàn)樵谥校?,所以,所?【點(diǎn)睛】本題主要考查三角恒等變換和三角函數(shù)的性質(zhì),還考查了運(yùn)算求解的能力,屬于中檔題,20、(1)直線的普通方程,圓的直角坐標(biāo)方程:.(2)【解析】
(1)直接利用轉(zhuǎn)換關(guān)系的應(yīng)用,把參數(shù)方程極坐標(biāo)方程和直角坐標(biāo)方程之間進(jìn)行轉(zhuǎn)換.(2)將直線的參數(shù)方程代入圓的直角坐標(biāo)方程,利用一元二次方程根和系數(shù)關(guān)系式即可求解.【詳解】(1)直線l的參數(shù)方程為(t為參數(shù)),轉(zhuǎn)換為直角坐標(biāo)方程為x+y﹣3=0.圓C的極坐標(biāo)方程為ρ2﹣4ρcosθ=3,轉(zhuǎn)換為直角坐標(biāo)方程為x2+y2﹣4x﹣3=0.(2)把直線l的參數(shù)方程為(t為參數(shù)),代入圓的直角坐標(biāo)方程x2+y2﹣4x﹣3=0,得到,所以|PA||PB|=|t1t2|=6.【點(diǎn)睛】本題考查參數(shù)方程極坐標(biāo)方程和直角坐標(biāo)方程之間的轉(zhuǎn)換,一元二次方程根和系數(shù)關(guān)系式的應(yīng)用,主要考查學(xué)生的運(yùn)算能力和轉(zhuǎn)換能力及思維能力,屬于基礎(chǔ)題型.21、(1)(2)存在;詳見解析【解析】
(1)由橢圓的性質(zhì)得,解得后可得,從而得橢圓方程;(2)設(shè),當(dāng)直線斜率存在時,設(shè)為,代入橢圓方程,整理后應(yīng)用韋達(dá)定理得,代入=0由恒成立問題可求得.驗(yàn)證斜率不存在時也適合即得.【詳解】解:(1)由題易知解得,所以橢圓方程為(2)設(shè)當(dāng)直線斜率存在時,設(shè)為與橢圓方程聯(lián)立得,顯然所以因?yàn)榛喗獾眉此源藭r存在定點(diǎn)滿足題意當(dāng)直線斜率不存在時,顯然也滿足綜上所述,存在定點(diǎn),使成立【點(diǎn)睛】本題考查求橢圓的標(biāo)準(zhǔn)方程,考查直線與橢圓相交問題中的定點(diǎn)問題,解題方法是設(shè)而不求的思想方法.設(shè)而不求思想方法是直線與圓錐曲線相交問題中常用方法,只要涉及交點(diǎn)坐標(biāo),一般就用此法.22、(Ⅰ)(Ⅱ)見證明【解析】
(Ⅰ)求導(dǎo)得,由是減函數(shù)得,對任意的,都有恒成立,構(gòu)造函數(shù),通過求導(dǎo)判斷它的單調(diào)性,令其最大值小于等于0,即可求出;(Ⅱ)由是減函數(shù),且可得,當(dāng)時,,則,即,兩邊同除以得,,即,從而,兩邊取對數(shù),然后再證明恒成立即可,構(gòu)造函
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《珠寶玉石教程》課件
- 車輛租賃協(xié)議三篇
- 人力資源行業(yè)員工福利顧問工作總結(jié)
- 2003年海南高考語文真題及答案
- 水利行業(yè)的保安工作總結(jié)
- 2023-2024年企業(yè)主要負(fù)責(zé)人安全培訓(xùn)考試題附答案【培優(yōu)】
- 2023年-2024年項(xiàng)目部安全培訓(xùn)考試題【易錯題】
- 1000字的貧困申請書范文5篇
- 開題答辯概覽
- 電灼傷護(hù)理查房
- GB/T 45014-2024聚合物基復(fù)合材料層壓板緊固件拉脫阻抗試驗(yàn)方法
- 傳播學(xué)(東北林業(yè)大學(xué))知到智慧樹章節(jié)答案
- 2024年安全員之A證考試題庫及完整答案(網(wǎng)校專用)
- 統(tǒng)編版2024-2025學(xué)年三年級上冊語文期末情景測試卷 (無答案)
- 績效考核辦法1
- 【MOOC】外科護(hù)理學(xué)-中山大學(xué) 中國大學(xué)慕課MOOC答案
- 年度學(xué)校辦公室工作總結(jié)
- 2025版國家開放大學(xué)法律事務(wù)專科《民法學(xué)(2)》期末紙質(zhì)考試總題庫
- 【MOOC】思辨式英文寫作-南開大學(xué) 中國大學(xué)慕課MOOC答案
- 生物人教版(2024版)生物七年級上冊復(fù)習(xí)材料
- 企業(yè)地震應(yīng)急預(yù)案管理方案
評論
0/150
提交評論