版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
福建省莆田市秀嶼區(qū)湖東中學(xué)2024年中考二模數(shù)學(xué)試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點(diǎn)涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.的化簡結(jié)果為A.3 B. C. D.92.如果(x-2)(x+3)=x2+px+q,那么p、q的值是()A.p=5,q=6 B.p=1,q=-6 C.p=1,q=6 D.p=5,q=-63.將直徑為60cm的圓形鐵皮,做成三個相同的圓錐容器的側(cè)面(不浪費(fèi)材料,不計接縫處的材料損耗),那么每個圓錐容器的底面半徑為()A.10cm B.30cm C.45cm D.300cm4.九年級(2)班同學(xué)根據(jù)興趣分成五個小組,各小組人數(shù)分布如圖所示,則在扇形圖中第一小組對應(yīng)的圓心角度數(shù)是()A. B. C. D.5.拋物線y=3(x﹣2)2+5的頂點(diǎn)坐標(biāo)是()A.(﹣2,5)B.(﹣2,﹣5)C.(2,5)D.(2,﹣5)6.(2016福建省莆田市)如圖,OP是∠AOB的平分線,點(diǎn)C,D分別在角的兩邊OA,OB上,添加下列條件,不能判定△POC≌△POD的選項是()A.PC⊥OA,PD⊥OB B.OC=OD C.∠OPC=∠OPD D.PC=PD7.如圖,在平面直角坐標(biāo)系中,已知點(diǎn)B、C的坐標(biāo)分別為點(diǎn)B(﹣3,1)、C(0,﹣1),若將△ABC繞點(diǎn)C沿順時針方向旋轉(zhuǎn)90°后得到△A1B1C,則點(diǎn)B對應(yīng)點(diǎn)B1的坐標(biāo)是()A.(3,1) B.(2,2) C.(1,3) D.(3,0)8.如圖,矩形ABCD的邊長AD=3,AB=2,E為AB的中點(diǎn),F(xiàn)在邊BC上,且BF=2FC,AF分別與DE、DB相交于點(diǎn)M,N,則MN的長為()A. B. C. D.9.如圖是一組有規(guī)律的圖案,它們是由邊長相同的小正方形組成的,其中部分小正方形涂有陰影,依此規(guī)律,第2018個圖案中涂有陰影的小正方形個數(shù)為()A.8073 B.8072 C.8071 D.807010.已知關(guān)于x的方程2x+a-9=0的解是x=2,則a的值為A.2 B.3 C.4 D.5二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,從一塊直徑是8m的圓形鐵皮上剪出一個圓心角為90°的扇形,將剪下的扇形圍成一個圓錐,圓錐的高是_________m.12.如圖,△ABC的兩條高AD,BE相交于點(diǎn)F,請?zhí)砑右粋€條件,使得△ADC≌△BEC(不添加其他字母及輔助線),你添加的條件是_____.13.某招聘考試分筆試和面試兩種,其中筆試按60%、面試按40%計算加權(quán)平均數(shù),作為總成績.孔明筆試成績90分,面試成績85分,那么孔明的總成績是分.14.如圖,與中,,,,,AD的長為________.15.若一段弧的半徑為24,所對圓心角為60°,則這段弧長為____.16.如圖,在平面直角坐標(biāo)系中,點(diǎn)P的坐標(biāo)為(0,4),直線y=x-3與x軸、y軸分別交于點(diǎn)A、B,點(diǎn)M是直線AB上的一個動點(diǎn),則PM的最小值為________.三、解答題(共8題,共72分)17.(8分)某工廠計劃在規(guī)定時間內(nèi)生產(chǎn)24000個零件,若每天比原計劃多生產(chǎn)30個零件,則在規(guī)定時間內(nèi)可以多生產(chǎn)300個零件.求原計劃每天生產(chǎn)的零件個數(shù)和規(guī)定的天數(shù).為了提前完成生產(chǎn)任務(wù),工廠在安排原有工人按原計劃正常生產(chǎn)的同時,引進(jìn)5組機(jī)器人生產(chǎn)流水線共同參與零件生產(chǎn),已知每組機(jī)器人生產(chǎn)流水線每天生產(chǎn)零件的個數(shù)比20個工人原計劃每天生產(chǎn)的零件總數(shù)還多20%,按此測算,恰好提前兩天完成24000個零件的生產(chǎn)任務(wù),求原計劃安排的工人人數(shù).18.(8分)在△ABC中,AB=AC,以AB為直徑的⊙O交AC于點(diǎn)E,交BC于點(diǎn)D,P為AC延長線上一點(diǎn),且∠PBC=∠BAC,連接DE,BE.(1)求證:BP是⊙O的切線;(2)若sin∠PBC=,AB=10,求BP的長.19.(8分)已知關(guān)于x的方程x2-(m+2)x+(2m-1)=0。求證:方程恒有兩個不相等的實(shí)數(shù)根;若此方程的一個根是1,請求出方程的另一個根,并求以此兩根為邊長的直角三角形的周長。20.(8分)如圖,AB是⊙O的直徑,D、D為⊙O上兩點(diǎn),CF⊥AB于點(diǎn)F,CE⊥AD交AD的延長線于點(diǎn)E,且CE=CF.(1)求證:CE是⊙O的切線;(2)連接CD、CB,若AD=CD=a,求四邊形ABCD面積.21.(8分)解不等式組:,并寫出它的所有整數(shù)解.22.(10分)如圖,已知反比例函數(shù)y=的圖象與一次函數(shù)y=x+b的圖象交于點(diǎn)A(1,4),點(diǎn)B(﹣4,n).求n和b的值;求△OAB的面積;直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量x的取值范圍.23.(12分)城市小區(qū)生活垃圾分為:餐廚垃圾、有害垃圾、可回收垃圾、其他垃圾四種不同的類型.(1)甲投放了一袋垃圾,恰好是餐廚垃圾的概率是;(2)甲、乙分別投放了一袋垃圾,求恰好是同一類型垃圾的概率.24.如圖①,在四邊形ABCD中,AC⊥BD于點(diǎn)E,AB=AC=BD,點(diǎn)M為BC中點(diǎn),N為線段AM上的點(diǎn),且MB=MN.(1)求證:BN平分∠ABE;(2)若BD=1,連結(jié)DN,當(dāng)四邊形DNBC為平行四邊形時,求線段BC的長;(3)如圖②,若點(diǎn)F為AB的中點(diǎn),連結(jié)FN、FM,求證:△MFN∽△BDC.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】試題分析:根據(jù)二次根式的計算化簡可得:.故選A.考點(diǎn):二次根式的化簡2、B【解析】
先根據(jù)多項式乘以多項式的法則,將(x-2)(x+3)展開,再根據(jù)兩個多項式相等的條件即可確定p、q的值.【詳解】解:∵(x-2)(x+3)=x2+x-1,
又∵(x-2)(x+3)=x2+px+q,
∴x2+px+q=x2+x-1,
∴p=1,q=-1.
故選:B.【點(diǎn)睛】本題主要考查多項式乘以多項式的法則及兩個多項式相等的條件.多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加.兩個多項式相等時,它們同類項的系數(shù)對應(yīng)相等.3、A【解析】
根據(jù)已知得出直徑是的圓形鐵皮,被分成三個圓心角為半徑是30cm的扇形,再根據(jù)扇形弧長等于圓錐底面圓的周長即可得出答案?!驹斀狻恐睆绞堑膱A形鐵皮,被分成三個圓心角為半徑是30cm的扇形假設(shè)每個圓錐容器的地面半徑為解得故答案選A.【點(diǎn)睛】本題考查扇形弧長的計算方法和扇形圍成的圓錐底面圓的半徑的計算方法。4、C【解析】試題分析:由題意可得,第一小組對應(yīng)的圓心角度數(shù)是:×360°=72°,故選C.考點(diǎn):1.扇形統(tǒng)計圖;2.條形統(tǒng)計圖.5、C【解析】
根據(jù)二次函數(shù)的性質(zhì)y=a(x﹣h)2+k的頂點(diǎn)坐標(biāo)是(h,k)進(jìn)行求解即可.【詳解】∵拋物線解析式為y=3(x-2)2+5,∴二次函數(shù)圖象的頂點(diǎn)坐標(biāo)是(2,5),故選C.【點(diǎn)睛】本題考查了二次函數(shù)的性質(zhì),根據(jù)拋物線的頂點(diǎn)式,可確定拋物線的開口方向,頂點(diǎn)坐標(biāo)(對稱軸),最大(最小)值,增減性等.6、D【解析】試題分析:對于A,由PC⊥OA,PD⊥OB得出∠PCO=∠PDO=90°,根據(jù)AAS判定定理可以判定△POC≌△POD;對于BOC=OD,根據(jù)SAS判定定理可以判定△POC≌△POD;對于C,∠OPC=∠OPD,根據(jù)ASA判定定理可以判定△POC≌△POD;,對于D,PC=PD,無法判定△POC≌△POD,故選D.考點(diǎn):角平分線的性質(zhì);全等三角形的判定.7、B【解析】
作出點(diǎn)A、B繞點(diǎn)C按順時針方向旋轉(zhuǎn)90°后得到的對應(yīng)點(diǎn),再順次連接可得△A1B1C,即可得到點(diǎn)B對應(yīng)點(diǎn)B1的坐標(biāo).【詳解】解:如圖所示,△A1B1C即為旋轉(zhuǎn)后的三角形,點(diǎn)B對應(yīng)點(diǎn)B1的坐標(biāo)為(2,2).故選:B.【點(diǎn)睛】此題主要考查了平移變換和旋轉(zhuǎn)變換,正確根據(jù)題意得出對應(yīng)點(diǎn)位置是解題關(guān)鍵.圖形或點(diǎn)旋轉(zhuǎn)之后要結(jié)合旋轉(zhuǎn)的角度和圖形的特殊性質(zhì)來求出旋轉(zhuǎn)后的點(diǎn)的坐標(biāo).8、B【解析】
過F作FH⊥AD于H,交ED于O,于是得到FH=AB=1,根據(jù)勾股定理得到AF===,根據(jù)平行線分線段成比例定理得到,OH=AE=,由相似三角形的性質(zhì)得到=,求得AM=AF=,根據(jù)相似三角形的性質(zhì)得到=,求得AN=AF=,即可得到結(jié)論.【詳解】過F作FH⊥AD于H,交ED于O,則FH=AB=1.∵BF=1FC,BC=AD=3,∴BF=AH=1,F(xiàn)C=HD=1,∴AF===,∵OH∥AE,∴=,∴OH=AE=,∴OF=FH﹣OH=1﹣=,∵AE∥FO,∴△AME∽△FMO,∴=,∴AM=AF=,∵AD∥BF,∴△AND∽△FNB,∴=,∴AN=AF=,∴MN=AN﹣AM=﹣=,故選B.【點(diǎn)睛】構(gòu)造相似三角形是本題的關(guān)鍵,且求長度問題一般需用到勾股定理來解決,常作垂線9、A【解析】
觀察圖形可知第1個、第2個、第3個圖案中涂有陰影的小正方形的個數(shù),易歸納出第n個圖案中涂有陰影的小正方形個數(shù)為:4n+1,由此求解即可.【詳解】解:觀察圖形的變化可知:第1個圖案中涂有陰影的小正方形個數(shù)為:5=4×1+1;第2個圖案中涂有陰影的小正方形個數(shù)為:9=4×2+1;第3個圖案中涂有陰影的小正方形個數(shù)為:13=4×3+1;…發(fā)現(xiàn)規(guī)律:第n個圖案中涂有陰影的小正方形個數(shù)為:4n+1;∴第2018個圖案中涂有陰影的小正方形個數(shù)為:4n+1=4×2018+1=1.故選:A.【點(diǎn)睛】本題考查了圖形的變化規(guī)律,根據(jù)已有圖形確定其變化規(guī)律是解題的關(guān)鍵.10、D【解析】∵方程2x+a﹣9=0的解是x=2,∴2×2+a﹣9=0,解得a=1.故選D.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】分析:首先連接AO,求出AB的長度是多少;然后求出扇形的弧長弧BC為多少,進(jìn)而求出扇形圍成的圓錐的底面半徑是多少;最后應(yīng)用勾股定理,求出圓錐的高是多少即可.詳解:如圖1,連接AO,∵AB=AC,點(diǎn)O是BC的中點(diǎn),∴AO⊥BC,又∵∴∴∴弧BC的長為:(m),∴將剪下的扇形圍成的圓錐的半徑是:(m),∴圓錐的高是:故答案為.點(diǎn)睛:考查圓錐的計算,正確理解圓錐的側(cè)面展開圖與原來扇形之間的關(guān)系式解決本題的關(guān)鍵.12、AC=BC.【解析】分析:添加AC=BC,根據(jù)三角形高的定義可得∠ADC=∠BEC=90°,再證明∠EBC=∠DAC,然后再添加AC=BC可利用AAS判定△ADC≌△BEC.詳解:添加AC=BC,∵△ABC的兩條高AD,BE,∴∠ADC=∠BEC=90°,∴∠DAC+∠C=90°,∠EBC+∠C=90°,∴∠EBC=∠DAC,在△ADC和△BEC中∠BEC=∴△ADC≌△BEC(AAS),故答案為:AC=BC.點(diǎn)睛:此題主要考查了三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應(yīng)相等時,角必須是兩邊的夾角.13、88【解析】試題分析:根據(jù)筆試和面試所占的百分比以及筆試成績和面試成績,列出算式,進(jìn)行計算即可:∵筆試按60%、面試按40%計算,∴總成績是:90×60%+85×40%=88(分).14、【解析】
先證明△ABC∽△ADB,然后根據(jù)相似三角形的判定與性質(zhì)列式求解即可.【詳解】∵,,∴△ABC∽△ADB,∴,∵,,∴,∴AD=.故答案為:.【點(diǎn)睛】本題考查了相似三角形的判定與性質(zhì):在判定兩個三角形相似時,應(yīng)注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用,尋找相似三角形的一般方法是通過作平行線構(gòu)造相似三角形.靈活運(yùn)用相似三角形的性質(zhì)進(jìn)行幾何計算.15、8π【解析】試題分析:∵弧的半徑為24,所對圓心角為60°,∴弧長為l==8π.故答案為8π.【考點(diǎn)】弧長的計算.16、【解析】
認(rèn)真審題,根據(jù)垂線段最短得出PM⊥AB時線段PM最短,分別求出PB、OB、OA、AB的長度,利用△PBM∽△ABO,即可求出本題的答案【詳解】解:如圖,過點(diǎn)P作PM⊥AB,則:∠PMB=90°,當(dāng)PM⊥AB時,PM最短,因為直線y=x﹣3與x軸、y軸分別交于點(diǎn)A,B,可得點(diǎn)A的坐標(biāo)為(4,0),點(diǎn)B的坐標(biāo)為(0,﹣3),在Rt△AOB中,AO=4,BO=3,AB=,∵∠BMP=∠AOB=90°,∠B=∠B,PB=OP+OB=7,∴△PBM∽△ABO,∴,即:,所以可得:PM=.三、解答題(共8題,共72分)17、(1)2400個,10天;(2)1人.【解析】
(1)設(shè)原計劃每天生產(chǎn)零件x個,根據(jù)相等關(guān)系“原計劃生產(chǎn)24000個零件所用時間=實(shí)際生產(chǎn)(24000+300)個零件所用的時間”可列方程,解出x即為原計劃每天生產(chǎn)的零件個數(shù),再代入即可求得規(guī)定天數(shù);(2)設(shè)原計劃安排的工人人數(shù)為y人,根據(jù)“(5組機(jī)器人生產(chǎn)流水線每天生產(chǎn)的零件個數(shù)+原計劃每天生產(chǎn)的零件個數(shù))×(規(guī)定天數(shù)-2)=零件總數(shù)24000個”可列方程[5×20×(1+20%)×+2400]×(10-2)=24000,解得y的值即為原計劃安排的工人人數(shù).【詳解】解:(1)解:設(shè)原計劃每天生產(chǎn)零件x個,由題意得,,解得x=2400,經(jīng)檢驗,x=2400是原方程的根,且符合題意.∴規(guī)定的天數(shù)為24000÷2400=10(天).答:原計劃每天生產(chǎn)零件2400個,規(guī)定的天數(shù)是10天.(2)設(shè)原計劃安排的工人人數(shù)為y人,由題意得,[5×20×(1+20%)×+2400]×(10-2)=24000,解得,y=1.經(jīng)檢驗,y=1是原方程的根,且符合題意.答:原計劃安排的工人人數(shù)為1人.【點(diǎn)睛】本題考查分式方程的應(yīng)用,找準(zhǔn)等量關(guān)系是本題的解題關(guān)鍵,注意分式方程結(jié)果要檢驗.18、(1)證明見解析;(2)【解析】
(1)連接AD,求出∠PBC=∠ABC,求出∠ABP=90°,根據(jù)切線的判定得出即可;(2)解直角三角形求出BD,求出BC,根據(jù)勾股定理求出AD,根據(jù)相似三角形的判定和性質(zhì)求出BE,根據(jù)相似三角形的性質(zhì)和判定求出BP即可.【詳解】解:(1)連接AD,∵AB是⊙O的直徑,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴AD平分∠BAC,∴∠BAD=∠BAC,∵∠ADB=90°,∴∠BAD+∠ABD=90°,∵∠PBC=∠BAC,∴∠PBC+∠ABD=90°,∴∠ABP=90°,即AB⊥BP,∴PB是⊙O的切線;(2)∵∠PBC=∠BAD,∴sin∠PBC=sin∠BAD,∵sin∠PBC==,AB=10,∴BD=2,由勾股定理得:AD==4,∴BC=2BD=4,∵由三角形面積公式得:AD×BC=BE×AC,∴4×4=BE×10,∴BE=8,∴在Rt△ABE中,由勾股定理得:AE=6,∵∠BAE=∠BAP,∠AEB=∠ABP=90°,∴△ABE∽△APB,∴=,∴PB===.【點(diǎn)睛】本題考查了切線的判定、圓周角定理、勾股定理、解直角三角形、相似三角形的性質(zhì)和判定等知識點(diǎn),能綜合運(yùn)用性質(zhì)定理進(jìn)行推理是解此題的關(guān)鍵.19、(1)見詳解;(2)4+或4+.【解析】
(1)根據(jù)關(guān)于x的方程x2-(m+2)x+(2m-1)=0的根的判別式的符號來證明結(jié)論.(2)根據(jù)一元二次方程的解的定義求得m值,然后由根與系數(shù)的關(guān)系求得方程的另一根.分類討論:①當(dāng)該直角三角形的兩直角邊是2、3時,②當(dāng)該直角三角形的直角邊和斜邊分別是2、3時,由勾股定理求出得該直角三角形的另一邊,再根據(jù)三角形的周長公式進(jìn)行計算.【詳解】解:(1)證明:∵△=(m+2)2-4(2m-1)=(m-2)2+4,∴在實(shí)數(shù)范圍內(nèi),m無論取何值,(m-2)2+4≥4>0,即△>0.∴關(guān)于x的方程x2-(m+2)x+(2m-1)=0恒有兩個不相等的實(shí)數(shù)根.(2)∵此方程的一個根是1,∴12-1×(m+2)+(2m-1)=0,解得,m=2,則方程的另一根為:m+2-1=2+1=3.①當(dāng)該直角三角形的兩直角邊是1、3時,由勾股定理得斜邊的長度為,該直角三角形的周長為1+3+=4+.②當(dāng)該直角三角形的直角邊和斜邊分別是1、3時,由勾股定理得該直角三角形的另一直角邊為;則該直角三角形的周長為1+3+=4+.20、(1)證明見解析;(2)3【解析】
(1)連接OC,AC,可先證明AC平分∠BAE,結(jié)合圓的性質(zhì)可證明OC∥AE,可得∠OCB=90°,可證得結(jié)論;(2)可先證得四邊形AOCD為平行四邊形,再證明△OCB為等邊三角形,可求得CF、AB,利用梯形的面積公式可求得答案.【詳解】(1)證明:連接OC,AC.∵CF⊥AB,CE⊥AD,且CE=CF.∴∠CAE=∠CAB.∵OC=OA,∴∠CAB=∠OCA.∴∠CAE=∠OCA.∴OC∥AE.∴∠OCE+∠AEC=180°,∵∠AEC=90°,∴∠OCE=90°即OC⊥CE,∵OC是⊙O的半徑,點(diǎn)C為半徑外端,∴CE是⊙O的切線.(2)解:∵AD=CD,∴∠DAC=∠DCA=∠CAB,∴DC∥AB,∵∠CAE=∠OCA,∴OC∥AD,∴四邊形AOCD是平行四邊形,∴OC=AD=a,AB=2a,∵∠CAE=∠CAB,∴CD=CB=a,∴CB=OC=OB,∴△OCB是等邊三角形,在Rt△CFB中,CF=CB∴S四邊形ABCD=12(DC+AB)?CF=【點(diǎn)睛】本題主要考查切線的判定,掌握切線的兩種判定方法是解題的關(guān)鍵,即有切點(diǎn)時連接圓心和切點(diǎn),然后證明垂直,沒有切點(diǎn)時,過圓心作垂直,證明圓心到直線的距離等于半徑.21、﹣2,﹣1,0,1,2;【解析】
首先解每個不等式,兩個不等式的解集的公共部分就是不等式組的解集;再確定解集中的所有整數(shù)解即可.【詳解】解:解不等式(1),得解不等式(2),得x≤2所以不等式組的解集:-3<x≤2它的整數(shù)解為:-2,-1,0,1,222、(1)-1;(2);(3)x>1或﹣4<x<0.【解析】
(1)把A點(diǎn)坐標(biāo)分別代入反比例函數(shù)與一次函數(shù)解析式,求出k和b的值,把B點(diǎn)坐標(biāo)代入反比例函數(shù)解析式求出n的值即可;(2)設(shè)直線y=x+3與y軸的交點(diǎn)為C,由S△AOB=S△AOC+S△BOC,根據(jù)A、B兩點(diǎn)坐標(biāo)及C點(diǎn)坐標(biāo),利用三角形面積公式即可得答案;(3)利用函數(shù)圖像,根據(jù)A、B兩點(diǎn)坐標(biāo)即可得答案.【詳解】(1)把A點(diǎn)(1,4)分別代入反比例函數(shù)y=,一次函數(shù)y=x+b,得k=1×4,1+b=4,解得k=4,b=3,∵點(diǎn)B(﹣4,n)也在反比例函數(shù)y=的圖象上,∴n==﹣1;(2)如圖,設(shè)直線y=x+3與y軸的交點(diǎn)為C,∵當(dāng)x=0時,y=3,∴C(0,3),∴S△AOB=S△AOC+S△BOC=×3×1+×3×4=7.5,(3)∵B(﹣4,﹣1),A(1,4),∴根據(jù)圖象可知:當(dāng)x>1或﹣4<x<0時,一次函數(shù)值大于反比例函數(shù)值.【點(diǎn)睛】本題主要考查了待定系數(shù)法求反比例函數(shù)與一次函數(shù)的解析式和反比例函數(shù)y=中k的幾何意義,這里體現(xiàn)了數(shù)形結(jié)合的思想.23、(1);(2)【解析】
(1)直接利用概率公式求出甲投放的垃圾恰好是“餐廚垃圾”的概率;(2)首先利用樹狀圖法列舉出所有可能,進(jìn)而利用概率公式求出答案.【詳解】解:(1)∵垃圾要按餐廚垃圾、有害垃圾、可回收垃圾、其他垃圾四類分別裝袋,甲投放了一袋垃圾,∴甲投放了一袋是餐廚垃圾的概率是,故答案為:;(2)記這四類
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 學(xué)校傳染病預(yù)防管理實(shí)務(wù)
- 泵電機(jī)項目可行性研究報告(立項備案申請范文)
- 達(dá)州關(guān)于成立undefined公司可行性報告
- 設(shè)備工程師述職報告11
- 用模擬法測繪靜電場實(shí)驗報告
- 豬場檢測凈化工作總結(jié)報告
- 2025關(guān)于辦學(xué)合同范文
- 中國特種運(yùn)輸行業(yè)運(yùn)行態(tài)勢及市場發(fā)展?jié)摿︻A(yù)測報告
- 視頻監(jiān)控系統(tǒng)項目可行性分析報告(模板參考范文)
- 過氧化氫項目可行性研究報告發(fā)改委立項模板
- 2024年高壓電工證理論考試題庫(含答案)
- 2023-2024學(xué)年仁愛版七上期末考試英語(試題)
- 無人機(jī)表演服務(wù)合同
- 2024年醫(yī)院培訓(xùn)計劃
- 呼吸內(nèi)科臨床診療指南及操作規(guī)范
- 學(xué)生管理教育課件
- 物業(yè)經(jīng)理轉(zhuǎn)正述職
- 貿(mào)易崗位招聘面試題及回答建議(某大型國企)2025年
- 世界職業(yè)院校技能大賽高職組“關(guān)務(wù)實(shí)務(wù)組”賽項參考試題及答案
- 高中歷史教師資格考試面試試題及解答參考(2024年)
- 銀行貸款房產(chǎn)抵押合同樣本
評論
0/150
提交評論