安徽省合肥市肥西縣2023-2024學年中考數(shù)學模擬試卷含解析_第1頁
安徽省合肥市肥西縣2023-2024學年中考數(shù)學模擬試卷含解析_第2頁
安徽省合肥市肥西縣2023-2024學年中考數(shù)學模擬試卷含解析_第3頁
安徽省合肥市肥西縣2023-2024學年中考數(shù)學模擬試卷含解析_第4頁
安徽省合肥市肥西縣2023-2024學年中考數(shù)學模擬試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

安徽省合肥市肥西縣2023-2024學年中考數(shù)學模擬精編試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在4×4正方形網(wǎng)格中,黑色部分的圖形構(gòu)成一個軸對稱圖形,現(xiàn)在任意選取一個白色的小正方形并涂黑,使黑色部分的圖形仍然構(gòu)成一個軸對稱圖形的概率是()A. B. C. D.2.下面運算正確的是()A. B.(2a)2=2a2 C.x2+x2=x4 D.|a|=|﹣a|3.已知點,為是反比例函數(shù)上一點,當時,m的取值范圍是()A. B. C. D.4.如圖,已知矩形ABCD中,BC=2AB,點E在BC邊上,連接DE、AE,若EA平分∠BED,則的值為()A. B. C. D.5.下面四個幾何體中,左視圖是四邊形的幾何體共有()A.1個 B.2個 C.3個 D.4個6.如圖的平面圖形繞直線l旋轉(zhuǎn)一周,可以得到的立體圖形是()A. B. C. D.7.如圖1,點E為矩形ABCD的邊AD上一點,點P從點B出發(fā)沿BE→ED→DC運動到點C停止,點Q從點B出發(fā)沿BC運動到點C停止,它們運動的速度都是1cm/s.若點P、Q同時開始運動,設(shè)運動時間為t(s),△BPQ的面積為y(cm2),已知y與t之間的函數(shù)圖象如圖2所示.給出下列結(jié)論:①當0<t≤10時,△BPQ是等腰三角形;②S△ABE=48cm2;③14<t<22時,y=110﹣1t;④在運動過程中,使得△ABP是等腰三角形的P點一共有3個;⑤當△BPQ與△BEA相似時,t=14.1.其中正確結(jié)論的序號是()A.①④⑤ B.①②④ C.①③④ D.①③⑤8.已知拋物線y=ax2+bx+c與x軸交于點A和點B,頂點為P,若△ABP組成的三角形恰為等腰直角三角形,則b2﹣4ac的值為()A.1 B.4 C.8 D.129.我國的釣魚島面積約為4400000m2,用科學記數(shù)法表示為()A.4.4×106B.44×105C.4×106D.0.44×10710.函數(shù)y=中,x的取值范圍是()A.x≠0 B.x>﹣2 C.x<﹣2 D.x≠﹣2二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,Rt△ABC中,AC=3,BC=4,∠ACB=90°,P為AB上一點,且AP=2BP,若點A繞點C順時針旋轉(zhuǎn)60°,則點P隨之運動的路徑長是_________12.甲、乙兩車分別從A、B兩地同時出發(fā),相向行駛,已知甲車的速度大于乙車的速度,甲車到達B地后馬上以另一速度原路返回A地(掉頭的時間忽略不計),乙車到達A地以后即停在地等待甲車.如圖所示為甲乙兩車間的距離y(千米)與甲車的行駛時間t(小時)之間的函數(shù)圖象,則當乙車到達A地的時候,甲車與A地的距離為_____千米.13.如圖,AB∥CD,∠1=62°,FG平分∠EFD,則∠2=.14.Rt△ABC的邊AB=5,AC=4,BC=3,矩形DEFG的四個頂點都在Rt△ABC的邊上,當矩形DEFG的面積最大時,其對角線的長為_______.15.計算:|-3|-1=__.16.兩個完全相同的正五邊形都有一邊在直線l上,且有一個公共頂點O,其擺放方式如圖所示,則∠AOB等于______度.三、解答題(共8題,共72分)17.(8分)用你發(fā)現(xiàn)的規(guī)律解答下列問題.┅┅計算.探究.(用含有的式子表示)若的值為,求的值.18.(8分)列方程或方程組解應(yīng)用題:去年暑期,某地由于暴雨導致電路中斷,該地供電局組織電工進行搶修.供電局距離搶修工地15千米.搶修車裝載著所需材料先從供電局出發(fā),10分鐘后,電工乘吉普車從同一地點出發(fā),結(jié)果他們同時到達搶修工地.已知吉普車速度是搶修車速度的1.5倍,求吉普車的速度.19.(8分)如圖1,三個正方形ABCD、AEMN、CEFG,其中頂點D、C、G在同一條直線上,點E是BC邊上的動點,連結(jié)AC、AM.(1)求證:△ACM∽△ABE.(2)如圖2,連結(jié)BD、DM、MF、BF,求證:四邊形BFMD是平行四邊形.(3)若正方形ABCD的面積為36,正方形CEFG的面積為4,求五邊形ABFMN的面積.20.(8分)如圖平行四邊形ABCD中,對角線AC,BD交于點O,EF過點O,并與AD,BC分別交于點E,F(xiàn),已知AE=3,BF=5(1)求BC的長;(2)如果兩條對角線長的和是20,求三角形△AOD的周長.21.(8分)如圖,菱形ABCD中,已知∠BAD=120°,∠EGF=60°,∠EGF的頂點G在菱形對角線AC上運動,角的兩邊分別交邊BC、CD于E、F.(1)如圖甲,當頂點G運動到與點A重合時,求證:EC+CF=BC;(2)知識探究:①如圖乙,當頂點G運動到AC的中點時,請直接寫出線段EC、CF與BC的數(shù)量關(guān)系(不需要寫出證明過程);②如圖丙,在頂點G運動的過程中,若,探究線段EC、CF與BC的數(shù)量關(guān)系;(3)問題解決:如圖丙,已知菱形的邊長為8,BG=7,CF=,當>2時,求EC的長度.22.(10分)甲、乙兩人分別站在相距6米的A、B兩點練習打羽毛球,已知羽毛球飛行的路線為拋物線的一部分,甲在離地面1米的C處發(fā)出一球,乙在離地面1.5米的D處成功擊球,球飛行過程中的最高點H與甲的水平距離AE為4米,現(xiàn)以A為原點,直線AB為x軸,建立平面直角坐標系(如圖所示).求羽毛球飛行的路線所在的拋物線的表達式及飛行的最高高度.23.(12分)某中學九年級數(shù)學興趣小組想測量建筑物AB的高度他們在C處仰望建筑物頂端A處,測得仰角為,再往建筑物的方向前進6米到達D處,測得仰角為,求建筑物的高度測角器的高度忽略不計,結(jié)果精確到米,,24.如圖,矩形ABCD中,E是AD的中點,延長CE,BA交于點F,連接AC,DF.(1)求證:四邊形ACDF是平行四邊形;(2)當CF平分∠BCD時,寫出BC與CD的數(shù)量關(guān)系,并說明理由.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】解:∵根據(jù)軸對稱圖形的概念,軸對稱圖形兩部分沿對稱軸折疊后可重合,白色的小正方形有13個,而能構(gòu)成一個軸對稱圖形的有4個情況,∴使圖中黑色部分的圖形仍然構(gòu)成一個軸對稱圖形的概率是:.故選B.2、D【解析】

分別利用整數(shù)指數(shù)冪的性質(zhì)以及合并同類項以及積的乘方運算、絕對值的性質(zhì)分別化簡求出答案.【詳解】解:A,,故此選項錯誤;B,,故此選項錯誤;C,,故此選項錯誤;D,,故此選項正確.所以D選項是正確的.【點睛】靈活運用整數(shù)指數(shù)冪的性質(zhì)以及合并同類項以及積的乘方運算、絕對值的性質(zhì)可以求出答案.3、A【解析】

直接把n的值代入求出m的取值范圍.【詳解】解:∵點P(m,n),為是反比例函數(shù)y=-圖象上一點,∴當-1≤n<-1時,∴n=-1時,m=1,n=-1時,m=1,則m的取值范圍是:1≤m<1.故選A.【點睛】此題主要考查了反比例函數(shù)圖象上點的坐標性質(zhì),正確把n的值代入是解題關(guān)鍵.4、C【解析】

過點A作AF⊥DE于F,根據(jù)角平分線上的點到角的兩邊距離相等可得AF=AB,利用全等三角形的判定和性質(zhì)以及矩形的性質(zhì)解答即可.【詳解】解:如圖,過點A作AF⊥DE于F,在矩形ABCD中,AB=CD,∵AE平分∠BED,∴AF=AB,∵BC=2AB,∴BC=2AF,∴∠ADF=30°,在△AFD與△DCE中∵∠C=∠AFD=90°,∠ADF=∠DEC,AF=DC,,∴△AFD≌△DCE(AAS),∴△CDE的面積=△AFD的面積=∵矩形ABCD的面積=AB?BC=2AB2,∴2△ABE的面積=矩形ABCD的面積﹣2△CDE的面積=(2﹣)AB2,∴△ABE的面積=,∴,故選:C.【點睛】本題考查了矩形的性質(zhì),角平分線上的點到角的兩邊距離相等的性質(zhì),以及全等三角形的判定與性質(zhì),關(guān)鍵是根據(jù)角平分線上的點到角的兩邊距離相等可得AF=AB.5、B【解析】簡單幾何體的三視圖.【分析】左視圖是從左邊看到的圖形,因為圓柱的左視圖是矩形,圓錐的左視圖是等腰三角形,球的左視圖是圓,正方體的左視圖是正方形,所以,左視圖是四邊形的幾何體是圓柱和正方體2個.故選B.6、B【解析】

根據(jù)面動成體以及長方形繞一邊所在直線旋轉(zhuǎn)一周得圓柱即可得答案.【詳解】由圖可知所給的平面圖形是一個長方形,長方形繞一邊所在直線旋轉(zhuǎn)一周得圓柱,故選B.【點睛】本題考查了點、線、面、體,熟記各種常見平面圖形旋轉(zhuǎn)得到的立體圖形是解題關(guān)鍵.7、D【解析】

根據(jù)題意,得到P、Q分別同時到達D、C可判斷①②,分段討論PQ位置后可以判斷③,再由等腰三角形的分類討論方法確定④,根據(jù)兩個點的相對位置判斷點P在DC上時,存在△BPQ與△BEA相似的可能性,分類討論計算即可.【詳解】解:由圖象可知,點Q到達C時,點P到E則BE=BC=10,ED=4故①正確則AE=10﹣4=6t=10時,△BPQ的面積等于∴AB=DC=8故故②錯誤當14<t<22時,故③正確;分別以A、B為圓心,AB為半徑畫圓,將兩圓交點連接即為AB垂直平分線則⊙A、⊙B及AB垂直平分線與點P運行路徑的交點是P,滿足△ABP是等腰三角形此時,滿足條件的點有4個,故④錯誤.∵△BEA為直角三角形∴只有點P在DC邊上時,有△BPQ與△BEA相似由已知,PQ=22﹣t∴當或時,△BPQ與△BEA相似分別將數(shù)值代入或,解得t=(舍去)或t=14.1故⑤正確故選:D.【點睛】本題是動點問題的函數(shù)圖象探究題,考查了三角形相似判定、等腰三角形判定,應(yīng)用了分類討論和數(shù)形結(jié)合的數(shù)學思想.8、B【解析】

設(shè)拋物線與x軸的兩交點A、B坐標分別為(x1,0),(x2,0),利用二次函數(shù)的性質(zhì)得到P(-,),利用x1、x2為方程ax2+bx+c=0的兩根得到x1+x2=-,x1?x2=,則利用完全平方公式變形得到AB=|x1-x2|=,接著根據(jù)等腰直角三角形的性質(zhì)得到||=?,然后進行化簡可得到b2-1ac的值.【詳解】設(shè)拋物線與x軸的兩交點A、B坐標分別為(x1,0),(x2,0),頂點P的坐標為(-,),則x1、x2為方程ax2+bx+c=0的兩根,∴x1+x2=-,x1?x2=,∴AB=|x1-x2|====,∵△ABP組成的三角形恰為等腰直角三角形,

∴||=?,=,∴b2-1ac=1.故選B.【點睛】本題考查了拋物線與x軸的交點:把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點坐標問題轉(zhuǎn)化為解關(guān)于x的一元二次方程.也考查了二次函數(shù)的性質(zhì)和等腰直角三角形的性質(zhì).9、A【解析】4400000=4.4×1.故選A.點睛:科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).10、D【解析】試題分析:由分式有意義的條件得出x+1≠0,解得x≠﹣1.故選D.點睛:本題考查了函數(shù)中自變量的取值范圍、分式有意義的條件;由分式有意義得出不等式是解決問題的關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、π【解析】

作PD⊥BC,則點P運動的路徑長是以點D為圓心,以PD為半徑,圓心角為60°的一段圓弧,根據(jù)相似三角形的判定與性質(zhì)求出PD的長,然后根據(jù)弧長公式求解即可.【詳解】作PD⊥BC,則PD∥AC,∴△PBD~△ABC,∴PDAC∵AC=3,BC=4,∴AB=32∵AP=2BP,∴BP=13∴PD=5∴點P運動的路徑長=60π×1180故答案為:π3【點睛】本題考查了相似三角形的判定與性質(zhì),弧長的計算,根據(jù)相似三角形的判定與性質(zhì)求出PD的長是解答本題的關(guān)鍵.12、630【解析】分析:兩車相向而行5小時共行駛了900千米可得兩車的速度之和為180千米/時,當相遇后車共行駛了720千米時,甲車到達B地,由此則可求得兩車的速度.再根據(jù)甲車返回到A地總用時16.5小時,求出甲車返回時的速度即可求解.詳解:設(shè)甲車,乙車的速度分別為x千米/時,y千米/時,甲車與乙車相向而行5小時相遇,則5(x+y)=900,解得x+y=180,相遇后當甲車到達B地時兩車相距720千米,所需時間為720÷180=4小時,則甲車從A地到B需要9小時,故甲車的速度為900÷9=100千米/時,乙車的速度為180-100=80千米/時,乙車行駛900-720=180千米所需時間為180÷80=2.25小時,甲車從B地到A地的速度為900÷(16.5-5-4)=120千米/時.所以甲車從B地向A地行駛了120×2.25=270千米,當乙車到達A地時,甲車離A地的距離為900-270=630千米.點睛:利用函數(shù)圖象解決實際問題,其關(guān)鍵在于正確理解函數(shù)圖象橫,縱坐標表示的意義,抓住交點,起點.終點等關(guān)鍵點,理解問題的發(fā)展過程,將實際問題抽象為數(shù)學問題,從而將這個數(shù)學問題變化為解答實際問題.13、31°.【解析】試題分析:由AB∥CD,根據(jù)平行線的性質(zhì)得∠1=∠EFD=62°,然后根據(jù)角平分線的定義即可得到∠2的度數(shù).∵AB∥CD,∴∠1=∠EFD=62°,∵FG平分∠EFD,∴∠2=12∠EFD=1故答案是31°.考點:平行線的性質(zhì).14、或【解析】

分兩種情形畫出圖形分別求解即可解決問題【詳解】情況1:如圖1中,四邊形DEFG是△ABC的內(nèi)接矩形,設(shè)DE=CF=x,則BF=3-x∵EF∥AC,∴=∴=∴EF=(3-x)∴S矩形DEFG=x?(3-x)=﹣(x-)2+3∴x=時,矩形的面積最大,最大值為3,此時對角線=.情況2:如圖2中,四邊形DEFG是△ABC的內(nèi)接矩形,設(shè)DE=GF=x,作CH⊥AB于H,交DG于T.則CH=,CT=﹣x,∵DG∥AB,∴△CDG∽△CAB,∴∴∴DG=5﹣x,∴S矩形DEFG=x(5﹣x)=﹣(x﹣)2+3,∴x=時,矩形的面積最大為3,此時對角線==∴矩形面積的最大值為3,此時對角線的長為或故答案為或【點睛】本題考查相似三角形的應(yīng)用、矩形的性質(zhì)、二次函數(shù)的最值等知識,解題的關(guān)鍵是學會用分類討論的思想思考問題15、2【解析】

根據(jù)有理數(shù)的加減混合運算法則計算.【詳解】解:|﹣3|﹣1=3-1=2.故答案為2.【點睛】考查的是有理數(shù)的加減運算、乘除運算,掌握它們的運算法則是解題的關(guān)鍵.16、108°【解析】

如圖,易得△OCD為等腰三角形,根據(jù)正五邊形內(nèi)角度數(shù)可求出∠OCD,然后求出頂角∠COD,再用360°減去∠AOC、∠BOD、∠COD即可【詳解】∵五邊形是正五邊形,∴每一個內(nèi)角都是108°,∴∠OCD=∠ODC=180°-108°=72°,∴∠COD=36°,∴∠AOB=360°-108°-108°-36°=108°.故答案為108°【點睛】本題考查正多邊形的內(nèi)角計算,分析出△OCD是等腰三角形,然后求出頂角是關(guān)鍵.三、解答題(共8題,共72分)17、解:(1);(2);(3)n=17.【解析】

(1)、根據(jù)給出的式子將各式進行拆開,然后得出答案;(2)、根據(jù)給出的式子得出規(guī)律,然后根據(jù)規(guī)律進行計算;(3)、根據(jù)題意將式子進行展開,然后列出關(guān)于n的一元一次方程,從而得出n的值.【詳解】(1)原式=1?+?+?+?+?=1?=.故答案為;(2)原式=1?+?+?+…+?=1?=故答案為;(3)+++…+=(1?+?+?+…+?)=(1?)==解得:n=17.考點:規(guī)律題.18、吉普車的速度為30千米/時.【解析】

先設(shè)搶修車的速度為x千米/時,則吉普車的速度為1.5x千米/時,列出方程求出x的值,再進行檢驗,即可求出答案.【詳解】解:設(shè)搶修車的速度為x千米/時,則吉普車的速度為15x千米/時.由題意得:.解得,x=20經(jīng)檢驗,x=20是原方程的解,并且x=20,1.5x=30都符合題意.答:吉普車的速度為30千米/時.點評:本題難度中等,主要考查學生對分式方程實際應(yīng)用的綜合運用.為中考常見題型,要求學生牢固掌握.注意檢驗.19、(1)證明見解析;(2)證明見解析;(3)74.【解析】

(1)根據(jù)四邊形ABCD和四邊形AEMN都是正方形得,∠CAB=∠MAC=45°,∠BAE=∠CAM,可證△ACM∽△ABE;(2)連結(jié)AC,由△ACM∽△ABE得∠ACM=∠B=90°,易證∠MCD=∠BDC=45°,得BD∥CM,由MC=BE,F(xiàn)C=CE,得MF=BD,從而可以證明四邊形BFMD是平行四邊形;(3)根據(jù)S五邊形ABFMN=S正方形AEMN+S梯形ABFE+S三角形EFM求解即可.【詳解】(1)證明:∵四邊形ABCD和四邊形AEMN都是正方形,∴,∠CAB=∠MAC=45°,∴∠CAB-∠CAE=∠MAC-∠CAE,∴∠BAE=∠CAM,∴△ACM∽△ABE.(2)證明:連結(jié)AC因為△ACM∽△ABE,則∠ACM=∠B=90°,因為∠ACB=∠ECF=45°,所以∠ACM+∠ACB+∠ECF=180°,所以點M,C,F在同一直線上,所以∠MCD=∠BDC=45°,所以BD平行MF,又因為MC=BE,F(xiàn)C=CE,所以MF=BC=BD,所以四邊形BFMD是平行四邊形(3)S五邊形ABFMN=S正方形AEMN+S梯形ABFE+S三角形EFM=62+42+(2+6)4+26=74.【點睛】本題主要考查了正方形的性質(zhì)的應(yīng)用,解此題的關(guān)鍵是能正確作出輔助線,綜合性比較強,有一定的難度.20、(1)8;(2)1.【解析】

(1)由平行四邊形的性質(zhì)和已知條件易證△AOE≌△COF,所以可得AE=CF=3,進而可求出BC的長;(2)由平行四邊形的性質(zhì):對角線互相平分可求出AO+OD的長,進而可求出三角形△AOD的周長.【詳解】(1)∵四邊形ABCD是平行四邊形,∴AD∥BC,AO=CO,∴∠EAO=∠FCO,在△AOE和△COF中,∴△AOE≌△COF,∴AE=CF=3,∴BC=BF+CF=5+3=8;(2)∵四邊形ABCD是平行四邊形,∴AO=CO,BO=DO,AD=BC=8,∵AC+BD=20,∴AO+BO=10,∴△AOD的周長=AO+BO+AD=1.【點睛】本題考查了平行四邊形的性質(zhì)和全等三角形的判定以及全等三角形的性質(zhì),能夠根據(jù)平行四邊形的性質(zhì)證明三角形全等,再根據(jù)全等三角形的性質(zhì)將所求的線段轉(zhuǎn)化為已知的線段是解題的關(guān)鍵.21、(1)證明見解析(2)①線段EC,CF與BC的數(shù)量關(guān)系為:CE+CF=BC.②CE+CF=BC(3)【解析】

(1)利用包含60°角的菱形,證明△BAE≌△CAF,可求證;(2)由特殊到一般,證明△CAE′∽△CGE,從而可以得到EC、CF與BC的數(shù)量關(guān)系(3)連接BD與AC交于點H,利用三角函數(shù)BH,AH,CH的長度,最后求BC長度.【詳解】解:(1)證明:∵四邊形ABCD是菱形,∠BAD=120°,∴∠BAC=60°,∠B=∠ACF=60°,AB=BC,AB=AC,∵∠BAE+∠EAC=∠EAC+∠CAF=60°,∴∠BAE=∠CAF,在△BAE和△CAF中,,∴△BAE≌△CAF,∴BE=CF,∴EC+CF=EC+BE=BC,即EC+CF=BC;(2)知識探究:①線段EC,CF與BC的數(shù)量關(guān)系為:CE+CF=BC.理由:如圖乙,過點A作AE′∥EG,AF′∥GF,分別交BC、CD于E′、F′.

類比(1)可得:E′C+CF′=BC,

∵AE′∥EG,

∴△CAE′∽△CGE,,同理可得:,,即;②CE+CF=BC.理由如下:過點A作AE′∥EG,AF′∥GF,分別交BC、CD于E′、F′.類比(1)可得:E′C+CF′=BC,∵AE′∥EG,∴△CAE′∽△CAE,∴,∴CE=CE′,同理可得:CF=CF′,∴CE+CF=CE′+CF′=(CE′+CF′)=BC,即CE+CF=BC;(3)連接BD與AC交于點H,如圖所示:在Rt△ABH中,∵AB=8,∠BAC=60°,∴BH=ABsin60°=8×=,AH=CH=ABcos60°=8×=4,∴GH===1,∴CG=4-1=3,∴,∴t=(t>2),由(2)②得:CE+CF=BC,∴CE=BC-CF=×8-=.【點睛】本題屬于相似形綜合題,主要考查了全

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論