![內(nèi)蒙古巴彥淖爾市臨河區(qū)2023-2024學(xué)年八年級(jí)上學(xué)期10月月考數(shù)學(xué)試卷_第1頁(yè)](http://file4.renrendoc.com/view3/M03/28/0C/wKhkFmYdaqOAS4AeAAErQijuN14300.jpg)
![內(nèi)蒙古巴彥淖爾市臨河區(qū)2023-2024學(xué)年八年級(jí)上學(xué)期10月月考數(shù)學(xué)試卷_第2頁(yè)](http://file4.renrendoc.com/view3/M03/28/0C/wKhkFmYdaqOAS4AeAAErQijuN143002.jpg)
![內(nèi)蒙古巴彥淖爾市臨河區(qū)2023-2024學(xué)年八年級(jí)上學(xué)期10月月考數(shù)學(xué)試卷_第3頁(yè)](http://file4.renrendoc.com/view3/M03/28/0C/wKhkFmYdaqOAS4AeAAErQijuN143003.jpg)
![內(nèi)蒙古巴彥淖爾市臨河區(qū)2023-2024學(xué)年八年級(jí)上學(xué)期10月月考數(shù)學(xué)試卷_第4頁(yè)](http://file4.renrendoc.com/view3/M03/28/0C/wKhkFmYdaqOAS4AeAAErQijuN143004.jpg)
![內(nèi)蒙古巴彥淖爾市臨河區(qū)2023-2024學(xué)年八年級(jí)上學(xué)期10月月考數(shù)學(xué)試卷_第5頁(yè)](http://file4.renrendoc.com/view3/M03/28/0C/wKhkFmYdaqOAS4AeAAErQijuN143005.jpg)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023-2024學(xué)年內(nèi)蒙古巴彥淖爾市臨河區(qū)八年級(jí)第一學(xué)期月考數(shù)
學(xué)試卷(10月份)
一、選擇題(本大題共12小題,每題3分,共36.0分)
1.下列每組數(shù)分別是三根小木棒的長(zhǎng)度,用它們能擺成三角形的是()
A.7cm、5cm、1\cmB.4c/n、3cm、1cm
C.5cm、10c,n、4c/nD.2ctn、3cmyIcm
2.一個(gè)多邊形的內(nèi)角和等于540。,則它的邊數(shù)為()
A.4B.5C.6D.8
3.在平面直角坐標(biāo)系中,點(diǎn)A(-3,-1)關(guān)于y軸的對(duì)稱點(diǎn)的坐標(biāo)是()
A.(-3,1)B.(3,1)C.(3,-1)D.(-1,-3)
A.80。B.40。C.62°D.38°
5.如圖,已知NCA3=ND43,則添加下列一個(gè)條件不一定能使△ABC也△ABQ的是
A.BC=BDB.ZC=ZDC.AC=ADD.ZABC=AABD
6.用直尺和圓規(guī)作一個(gè)角的平分線的示意圖如圖所示,則能說(shuō)明NAOC=NBOC的依據(jù)
A.SSS
B.ASA
C.A45
D.角平分線上的點(diǎn)到角兩邊距離相等
7.在下列各圖形中,分別畫出了AABC中邊上的高A。,其中正確的是()
8.如圖所示,在△ABC中,NB=55°,ZC=30°,分別以點(diǎn)A和點(diǎn)C為圓心,大于
的長(zhǎng)為半徑畫弧,兩弧相交于點(diǎn)M,N,作直線MN,交BC于點(diǎn)D,連接AD,則
NBA。的度數(shù)為()
A.45°B.55°C.60°D.65°
9.如圖,ABC中,AO是它的角平分線,A8=4,AC=3,那么△AB。與△ACC的面積比
是()
10.如圖,在△A8C中,OE垂直平分8。交AB于點(diǎn)E,若8D=5,ZVIBC的周長(zhǎng)為31,
則△ACE的周長(zhǎng)為()
A.18B.21C.26D.28
11.如圖,BP是/ABC的平分線,4P1.BP于P,連接尸C,若△ABC的面積為ks2,則
△PBC的面積為()
C.0.6cm2D.不能確定
12.已知,如圖,XABC中,AB=AC,AD是角平分線,BE=CF,則下列說(shuō)法正確的有
()
(1)D4平分/EOF;
(2)AEBD咨AFCD;
(3)AAED^AAFD;
(4)AO垂直平分8C.
C.3個(gè)D.4個(gè)
二、填空題(本大題共6小題,每題3分,共18分)
13.已知一個(gè)正多邊形的一個(gè)外角為36°,則這個(gè)正多邊形的邊數(shù)是.
14.如圖點(diǎn)P是/54c的平分線上一點(diǎn),PELAC于點(diǎn)E.已知PE=3,則點(diǎn)尸到A8
的距離是
E
D
R
15.在平面直角坐標(biāo)系中,將點(diǎn)A(-3,-2)向右平移5個(gè)單位長(zhǎng)度得到點(diǎn)B,則點(diǎn)B關(guān)
于x軸對(duì)稱的點(diǎn)B'的坐標(biāo)為
16.如圖,在AABC中,ZA=90°,BD、CD是AABC的角平分線,則
17.如圖所示,AB=AC,AD=AE,ZBAC=ZDAE,Zl=20°,Z2=25°,貝ljN3
18.如圖,在aABC中,。為BC的中點(diǎn),若AB=4,AD=3,4C=x,則x的范圍
是_____________.
三、解答題(本大題共6小題,共66分)
19.如圖,在△ABC中,ZBAC=95°,NB=25°,NCA£)=75°,求/AQC的度數(shù).
20.己知:如圖,點(diǎn)E,A,C在同一直線上,ABHCD,AB=CE,AC=CD.
求證:BC=ED.
21.已知:如圖,點(diǎn)A、D、C、尸在同一直線上,AB//DE,NB=NE,BC=EF.求證:
F
22.如圖,已知AB=AC,DB=DC,尸是AO上一點(diǎn),求證:ZABP=-ZACP.
23.如圖,AD,8C相交于點(diǎn)。,AD=BC,ZC=ZD=90°.
(1)求證:△ACB安△BOA;
AB與OE交于點(diǎn)
(1)求證:AB=DE;
(2)連MC,求證:MC平分/8MD
B
參考答案
一、選擇題(本大題共12小題,每題3分,共36.0分)
1.下列每組數(shù)分別是三根小木棒的長(zhǎng)度,用它們能擺成三角形的是()
A.7cm、5cm、11cmB.4CM、3cm、1cm
C.5cm、10CAW>4cmD.2cm、3C/M>lent
【分析】根據(jù)三角形的三邊關(guān)系“任意兩邊之和大于第三邊,任意兩邊之差小于第三
邊”,進(jìn)行分析.
解:A、7+5>11,能組成三角形;
B、3+4=7,不能組成三角形;
C、4+5<10,不能夠組成三角形;
。、1+2=3,不能組成三角形.
故選:A.
【點(diǎn)評(píng)】此題主要考查了三角形的邊時(shí),要注意三角形形成的條件:任意兩邊之和大于
第三邊,任意兩邊之差小于第三邊.
2.一個(gè)多邊形的內(nèi)角和等于540°,則它的邊數(shù)為()
A.4B.5C.6D.8
【分析】根據(jù)〃邊形的內(nèi)角和為(?-2)-180°得到(〃-2)780。=540。,然后解方
程即可.
解:設(shè)這個(gè)多邊形的邊數(shù)為〃,
(?-2)780°=540°,
'.n—5.
故選:B.
【點(diǎn)評(píng)】本題考查了多邊形的內(nèi)角和定理,掌握“邊形的內(nèi)角和為(〃-2)780°是解
決此題關(guān)鍵.
3.在平面直角坐標(biāo)系中,點(diǎn)A(-3,-1)關(guān)于y軸的對(duì)稱點(diǎn)的坐標(biāo)是()
A.(-3,1)B.(3,1)C.(3,-1)D.(-1,-3)
【分析】根據(jù)關(guān)于y軸的對(duì)稱點(diǎn)的坐標(biāo)特點(diǎn):橫坐標(biāo)互為相反數(shù),縱坐標(biāo)不變可得答案.
解:點(diǎn)A(-3,-1)關(guān)于),軸的對(duì)稱點(diǎn)H的坐標(biāo)是(3,-1),
故選:c.
【點(diǎn)評(píng)】此題主要考查了關(guān)于y軸的對(duì)稱點(diǎn)的坐標(biāo),關(guān)鍵是掌握點(diǎn)的坐標(biāo)特點(diǎn).
4.如圖,叢ABCQlXDEF,則/E的度數(shù)為()
A.80°B.40°C.62°D.38°
【分析】根據(jù)全等三角形的性質(zhì)得出N/M/CUGZ。,ZD=ZA=80°,根據(jù)三角形的
內(nèi)角和定理求出/E的度數(shù)即可.
解:?.,△ABC^AD£F,ZA=80°,ZC=62°,
.?./F=NC=62°,/£>=/A=80°,
;.NE=180°-ZD-ZF=180°-80°-62°=38°,
故選:D.
【點(diǎn)評(píng)】本題考查了對(duì)全等三角形的性質(zhì),三角形的內(nèi)角和定理的應(yīng)用,注意:全等三
角形的對(duì)應(yīng)邊相等,對(duì)應(yīng)角相等.
5.如圖,己知NCAB=/D4B,則添加下列一個(gè)條件不一定能使AABC絲△ABO的是
()
A.BC=BDB.NC=NDC.AC=ADD.ZABC=ZABD
【分析】根據(jù)全等三角形的判定定理逐個(gè)判斷即可.
解:A.AB=AB,BC=BD,NCAB=NDAB,不符合全等三角形的判定定理,不能推出
△ABC絲△A8Z),故本選項(xiàng)符合題意;
B.ZC=ND,NCAB=NDAB,AB=AB,符合全等三角形的判定定理44S,能推出△
ABC之△AB。,故本選項(xiàng)不符合題意;
C.AB=AB,ZCAB^ZDAB,AC^AD,符合全等三角形的判定定理SAS,能推出△
ABC^/\ABD,故本選項(xiàng)不符合題意;
D.ZABC=AABD,AB=AB,NCAB=/DAB,符合全等三角形的判定定理ASA,能
推出△ABC絲△A8O,故本選項(xiàng)不符合題意;
故選:A.
【點(diǎn)評(píng)】本題考查了全等三角形的判定定理,能熟記全等三角形的判定定理是解此題的
關(guān)鍵,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,兩直角三角形全等還有
HL.
6.用直尺和圓規(guī)作一個(gè)角的平分線的示意圖如圖所示,則能說(shuō)明NAOC=NBOC的依據(jù)
B.ASA
C.AAS
D.角平分線上的點(diǎn)到角兩邊距離相等
【分析】連接NC,MC,根據(jù)SSS證△ONCg△OMC,即可推出答案.
在△CWC和△OMC中
'ON=OM
-NC=MC,
oc=oc
:.XONgMOMC(SSS),
ZAOC=ZBOC,
故選:A.
【點(diǎn)評(píng)】本題考查了全等三角形的性質(zhì)和判定,主要考查學(xué)生運(yùn)用性質(zhì)進(jìn)行推理的能
力,題型較好,難度適中.
7.在下列各圖形中,分別畫出了aABC中BC邊上的高4。,其中正確的是()
BB
【分析】從三角形的一個(gè)頂點(diǎn)向底邊作垂線,垂足與頂點(diǎn)之間的線段叫做三角形的高,
根據(jù)概念判斷.
解:過(guò)點(diǎn)A作直線的垂線段,即畫邊上的高A。,
所以畫法正確的是B選項(xiàng).
故選:B.
【點(diǎn)評(píng)】本題考查了三角形的高的概念,解決問(wèn)題的關(guān)鍵是能夠正確作三角形一邊上的
高.
8.如圖所示,在aABC中,NB=55°,ZC=30°,分別以點(diǎn)A和點(diǎn)C為圓心,大于
/AC的長(zhǎng)為半徑畫弧,兩弧相交于點(diǎn)N,作直線MN,交BC于點(diǎn)、D,連接AQ,則
NBA。的度數(shù)為()
A.45°B.55°C.60°D.65°
【分析】根據(jù)內(nèi)角和定理求得/8AC=95°,由中垂線性質(zhì)知。A=QC,即ND4C=NC
=30°,從而得出答案.
解:在△ABC中,VZB=55°,ZC=30°,
:.ZBAC=180°-ZB-ZC=95°,
由作圖可知MN為AC的中垂線,
:.DA=DC,
.?.ND4C=NC=30°,
:.ZBAD=ZBAC-ZDAC=65°,
故選:D.
【點(diǎn)評(píng)】本題主要考查作圖-基本作圖,熟練掌握中垂線的作圖和性質(zhì)是解題的關(guān)鍵.
9.如圖,ABC中,4。是它的角平分線,AB=4,4c=3,那么△48。與△4OC的面積比
是()
A.1:1B.3:4C.4:3D.不能確定
【分析】如圖,過(guò)。分別作OELA8于E,OFLAC于尸,根據(jù)平分線的性質(zhì)得到。E=
DF,然后利用三角形的面積公式就可以得到△AB。與△ADC的面積比是A8:AC,再利
用已知條件即可求出結(jié)果.
解:如圖,過(guò)。分別作于E,DFLAC^F,
是它的角平分線,
:.DE=DF,
而S/\ABD:SA.ADC——AB*DE:—AC,DF
22
=A8:AC
=4:3.
【點(diǎn)評(píng)】此題考查了角平分線的性質(zhì),三角形的面積公式等知識(shí),一般已知角平分線往
往都是通過(guò)作垂線解決問(wèn)題.
10.如圖,在△ABC中,OE垂直平分2c交A3于點(diǎn)E,若BD=5,ZVIBC的周長(zhǎng)為31,
則△4CE的周長(zhǎng)為()
E.
BDC
A.18B.21C.26D.28
【分析】先根據(jù)DE是線段BC的垂直平分線得出BE=CE,即BE+AE=CE+AE=AB,
再由△ACE的周長(zhǎng)=4B+4c即可求出答案.
解:???OE是線段BC的垂直平分線,
:.BE=CE,8c=28。=10,BPBE+AE=CE+AE=AB,
':ZXABC的周長(zhǎng)為31,
.?.△ACE的周長(zhǎng)=AB+4C=31-10=21.
故選:B.
【點(diǎn)評(píng)】本題考查的是線段垂直平分線的性質(zhì),即線段的垂直平分線上的點(diǎn)到線段的兩
個(gè)端點(diǎn)的距離相等.
II.如圖,8P是NABC的平分線,AP_LBP于P,連接PC,若△ABC的面積為卜小,則
△PBC的面積為()
A.0.4cm2B.0.5cm2C.0.6c/n2D.不能確定
【分析】延長(zhǎng)AP交BC于E,根據(jù)已知條件證得△ABP益△EBP,根據(jù)全等三角形的性
質(zhì)得到AP=PE,得出S故BP=SAEBP,S&ACP=SAECP,推出S^PBC=-^-S&ABC>代入求出即
可.
解:如圖,延長(zhǎng)AP交BC于E,
平分NABC,
NABP=AEBP,
':APA_BP,
:.NAPB=/EPB=9Q°,
:.4ABP學(xué)AEBP(ASA),
:.AP=PE,
;.SAABP=SAEBP,S&ACP-S^ECP>
?*.SAPBC--~Sz\AflC~~X1=0.5(C/7J-),
22
故選:B.
【點(diǎn)評(píng)】本題考查了全等三角形的性質(zhì)和判定,三角形的面積的應(yīng)用,注意:等底等高
的三角形的面積相等.
12.已知,如圖,XABC中,AB=AC,AD是角平分線,BE=CF,則下列說(shuō)法正確的有
()
(1)DA平分NEDF;
(2)AEBD咨AFCD;
(3)/\AED^^\AFD;
(4)AO垂直平分BC.
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
【分析】在△ABC中,AB=AC,A。是△A8C的平分線,可知直線4。為△ABC的對(duì)稱
軸,再根據(jù)圖形的對(duì)稱性,逐一判斷.
解:I?在△ABC中,AB=AC,是△ABC的平分線,
根據(jù)等腰三角形底邊上的“三線合一”可知,AO垂直平分BC,④正確;
由④的結(jié)論,已知BE=CF,可證△EB。絲△FC。(SAS),②正確
故有AE=A凡DE=DF,③正確;
D4平分/EOF,①正確;
故選:D.
【點(diǎn)評(píng)】本題考查了等腰三角形的判定和性質(zhì);利用三角形全等是正確解答本題的關(guān)
鍵.
二、填空題(本大題共6小題,每題3分,共18分)
13.已知一個(gè)正多邊形的一個(gè)外角為36°,則這個(gè)正多邊形的邊數(shù)是10.
【分析】正多邊形的一個(gè)外角為36°,且每個(gè)外角都相等,根據(jù)多邊形外角和為360°,
可直接求出邊數(shù).
解:正多邊形的邊數(shù)是:360°+36°=10.
故答案為:10.
360°
【點(diǎn)評(píng)】此題考查正多邊形的外角和,解題關(guān)鍵是正多邊形的邊數(shù)為
一個(gè)外角,
14.如圖點(diǎn)P是/BAC的平分線AD上一點(diǎn),PEL4c于點(diǎn)E.已知PE=3,則點(diǎn)P到48
【分析】根據(jù)角平分線的性質(zhì)可得,點(diǎn)尸到A8的距離=PE=3.
解:?.?尸是NBAC的平分線AO上一點(diǎn),PELAC于點(diǎn)E,PE=3,
.?.點(diǎn)P到AB的距離=PE=3.
故答案為:3.
【點(diǎn)評(píng)】此題主要考查角平分線的性質(zhì):角的平分線上的點(diǎn)到角的兩邊的距離相等.
15.在平面直角坐標(biāo)系中,將點(diǎn)A(-3,-2)向右平移5個(gè)單位長(zhǎng)度得到點(diǎn)B,則點(diǎn)B關(guān)
于x軸對(duì)稱的點(diǎn)B'的坐標(biāo)為(2,2).
【分析】首先根據(jù)橫坐標(biāo)右移加,左移減可得B點(diǎn)坐標(biāo),然后再根據(jù)關(guān)于x軸對(duì)稱點(diǎn)的
坐標(biāo)特點(diǎn):橫坐標(biāo)不變,縱坐標(biāo)符號(hào)改變可得答案.
解:點(diǎn)A(-3,-2)向右平移5個(gè)單位長(zhǎng)度得到的8的坐標(biāo)為(-3+5,-2),即(2,
-2),
則點(diǎn)5關(guān)于x軸的對(duì)稱點(diǎn)C的坐標(biāo)是(2,2),
故答案為:(2,2).
【點(diǎn)評(píng)】此題主要考查了坐標(biāo)與圖形變化-平移,以及關(guān)于x軸對(duì)稱點(diǎn)的坐標(biāo),關(guān)鍵是
掌握點(diǎn)的坐標(biāo)變化規(guī)律.
16.如圖,在aABC中,ZA=90°,BD、CD是AABC的角平分線,則/£>=
135°
【分析】先利用角平分線的性質(zhì)求出NDBC+/DCB的度數(shù),再由三角形的內(nèi)角和定理
便可求出/。的度數(shù).
解:C。是AABC的角平分線,
ZDBC=—ZABC,ZDCB=—ZACB,
22
:.ZDBC+ZDCB=—(180°-/A)=—(180°-90°)=45°,
22
.".ZD=180°-(NDBC+NDCB)=180°-45°=135°.
故答案為:135°.
【點(diǎn)評(píng)】本題考查的是角平分線的性質(zhì)及三角形內(nèi)角和定理,熟知三角形內(nèi)角和是180。
是解答此題的關(guān)鍵.
17.如圖所示,AB=AC,AD=AE,ZBAC=ZDAE,Zl=20°,Z2=25°,則N3=
45°.
【分析】根據(jù)等式的性質(zhì)得出N84O=NC4E,再利用全等三角形的判定和性質(zhì)解答即
可.
解:ZBAC=ZDAE,
:.ABAC-ZDAC=ZDAE-ZDAC,
即/BAO=/CAE,
在△BAO與△CAE中,
'AB=AC
-ZBAD=ZCAE-
AD=AE
:./\BAD^/\CAE(SAS),
AZABD=Z2=25°,
.*.N3=N1+NA8O=25°+20°=45°.
故答案為:45。.
【點(diǎn)評(píng)】此題考查全等三角形的判定和性質(zhì),關(guān)鍵是根據(jù)等式的性質(zhì)得出N8AO=N
CAE.
18.如圖,在△ABC中,。為8C的中點(diǎn),若AB=4,A£>=3,AC=x,則x的范圍是,
<x<10.
【分析】延長(zhǎng)AO到E,使。E=AO,連接BE,先證明△BOE四△CD4得到8E=AC,
再利用三角形三邊的關(guān)系即可得x的范圍.
解:延長(zhǎng)4。至點(diǎn)E,使連接BE,
?.?。是BC的中點(diǎn),
:.BD=CD,
在△BDE和△CD4中,
'BD=CD
>ZBDE=ZCDA>
DE=DA
:.^BDE^ACDA(SAS),
BE=AC=x,
:4E=2AO=6,AB=4,
.'.x-4<6<x+4,
解得2cxe10.
則x的范圍是2cxe10.
故答案為:2Vx<10.
【點(diǎn)評(píng)】本題考查了全等三角形的性質(zhì)和判定的應(yīng)用,能正確根據(jù)定理進(jìn)行推理是解此
題的關(guān)鍵.
三、解答題(本大題共6小題,共66分)
19.如圖,在△A8C中,ZBAC=95°,NB=25°,ZCAD=75°,求NAOC的度數(shù).
【分析】由角的和差關(guān)系可得/3AO的度數(shù),利用三角形外角性質(zhì)可求解NAOC的度
數(shù).
解:;NBAC=95°,/。。=75°,
:.ZBAD=ZBAC-ZCA£>=95°-75°=20°,
VZB=25°,
AZADC=ZB+ZBAD=25°+20°=45°.
【點(diǎn)評(píng)】本題主要考查三角形的內(nèi)角和定理,三角形外角性質(zhì),靈活運(yùn)用三角形的內(nèi)角
和定理及外角性質(zhì)求解角的度數(shù)是解題的關(guān)鍵.
20.已知:如圖,點(diǎn)E,A,C在同一直線上,AB//CD,AB=CE,AC=CD.
求證:BC=ED.
【分析】首先由AB〃CD,根據(jù)平行線的性質(zhì)可得NBAC=NECD,再有條件AB=CE,
AC=C£)可證出△BAC和△EC。全等,再根據(jù)全等三角形對(duì)應(yīng)邊相等證出CB=ED.
【解答】證明:;AB〃C。,
:.NBAC=NECD,
'AB=EC
在△8AC和△灰刀中<ZBAC=ZECD.
AC=CD
:.ABAgAECD(SAS),
:.CB=ED.
【點(diǎn)評(píng)】此題主要考查了全等三角形的判定與性質(zhì),全等三角形的判定是結(jié)合全等三角
形的性質(zhì)證明線段和角相等的重要工具.在判定三角形全等時(shí),關(guān)鍵是選擇恰當(dāng)?shù)呐卸?/p>
條件.
21.已知:如圖,點(diǎn)力、D、C、尸在同一直線上,NB=NE,BC=EF.求證:
AD=CF.
【分析】利用平行線的性質(zhì)和全等三角形的判定與性質(zhì)解答即可.
【解答】證明:
在△ABC和中,
2A=NEDF
<NB=/E,
BC=EF
:.△ABCQlxDEF(A4S).
:.AC=DF,
:.AC-DC=DF-DC,
即:AD=CF.
【點(diǎn)評(píng)】本題主要考查了平行線的性質(zhì)和全等三角形的判定與性質(zhì),準(zhǔn)確利用全等三角
形的判定定理解答是解題的關(guān)鍵.
22.如圖,已知IAB=AC,DB=DC,P是AO上一點(diǎn),求證:ZABP=ZACP.
B
D
【分析】先利用線段的垂直平分線性質(zhì)求出△ABC,△BPC為等腰三角形后即可求出N
ABP=ZACP.
【解答】證明:連接BC,
':AB=AC,
:.ZABC=ZACB.
又BD=CD,
?.?兩點(diǎn)確定一條直線,
:.AD是線段BC的垂直平分線.
:.PB=PC.
:.ZPBC=ZPCB.
:.AABC-NPBC=NACB-NPCB.
:.NABP
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 學(xué)生資助先進(jìn)單位事跡15篇
- 幽默婚宴父親致辭(集合15篇)
- 感人的勵(lì)志演講稿
- 學(xué)生會(huì)活動(dòng)策劃部迎新
- 開學(xué)安全教育學(xué)習(xí)
- 開學(xué)講話稿15篇
- 考慮邊界層相互作用的雙層葉片垂直軸風(fēng)力機(jī)氣動(dòng)特性研究
- 基于大型砂箱模擬試驗(yàn)的層狀包氣帶水分時(shí)空運(yùn)移特征研究
- 智研咨詢發(fā)布-2024年中國(guó)分布式能源管理系統(tǒng)行業(yè)現(xiàn)狀、發(fā)展環(huán)境及投資前景分析報(bào)告
- 動(dòng)漫知識(shí)大比拼
- 2025-2030年中國(guó)清真食品行業(yè)運(yùn)行狀況及投資發(fā)展前景預(yù)測(cè)報(bào)告
- 廣東省茂名市電白區(qū)2024-2025學(xué)年七年級(jí)上學(xué)期期末質(zhì)量監(jiān)測(cè)生物學(xué)試卷(含答案)
- 《教育強(qiáng)國(guó)建設(shè)規(guī)劃綱要(2024-2035年)》全文
- 2025年河南洛陽(yáng)市孟津區(qū)引進(jìn)研究生學(xué)歷人才50人歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025年度軍人軍事秘密保護(hù)保密協(xié)議與信息安全風(fēng)險(xiǎn)評(píng)估合同3篇
- 數(shù)字化轉(zhuǎn)型中的職業(yè)能力重構(gòu)
- 2025屆高中數(shù)學(xué)一輪復(fù)習(xí)專練:橢圓(含解析)
- 中國(guó)服裝零售行業(yè)發(fā)展環(huán)境、市場(chǎng)運(yùn)行格局及前景研究報(bào)告-智研咨詢(2025版)
- 汽車車身密封條設(shè)計(jì)指南
- 2024建安杯信息通信建設(shè)行業(yè)安全競(jìng)賽題庫(kù)(試題含答案)
- 術(shù)后譫妄及護(hù)理
評(píng)論
0/150
提交評(píng)論