版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
云南省昆明市盤龍區(qū)2024屆八年級下冊數(shù)學(xué)期末經(jīng)典試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.如圖,平行四邊形ABCD的對角線AC與BD相交于點O,AE⊥BC于E,AB=,AC=2,BD=4,則AE的長為()A. B. C. D.2.正方形具有而菱形不一定具有的性質(zhì)是()A.四邊相等 B.對角線相等 C.對角線互相垂直 D.對角線互相平分3.如圖,平行四邊形ABCD的對角線相交于點O,且AD≠CD,過點0作OM⊥AC,交AD于點M.如果△CDM的周長為8,那么平行四邊形ABCD的周長是()A.8 B.12 C.16 D.204.某正比例函數(shù)的圖象如圖所示,則此正比例函數(shù)的表達式為()A.y=x B.y=x C.y=-2x D.y=2x5.如圖,直線l上有三個正方形a,b,c,若a,c的面積分別為5和11,則b的面積為()A.6 B.8 C.16 D.556.如圖是可以自由轉(zhuǎn)動的轉(zhuǎn)盤,轉(zhuǎn)盤被等分成三個扇形,并分別標(biāo)上1,2,3,轉(zhuǎn)盤停止后,則指針指向的數(shù)字為偶數(shù)的概率是()A. B. C. D.7.如圖,某工廠有甲、乙兩個大小相同的蓄水池,且中間有管道連通,現(xiàn)要向甲池中注水,若單位時間內(nèi)的注水量不變,那么從注水開始,乙水池水面上升的高度h與注水時間t之間的函數(shù)關(guān)系圖象可能是()A. B. C. D.8.李華根據(jù)演講比賽中九位評委所給的分數(shù)制作了表格:如果要去掉一個最高分和一個最低分,則表中數(shù)據(jù)一定不發(fā)生變化的是()平均數(shù)中位數(shù)眾數(shù)方差8.5分8.3分8.1分0.15A.平均數(shù) B.眾數(shù) C.方差 D.中位數(shù)9.如圖,D、E分別是AB、AC的中點,過點C作CF∥BD交DE的延長線于點F,則下列結(jié)論正確的是()A.EF=CF B.EF=DEC.CF<BD D.EF>DE10.一元二次方程x2+3x=0的解是(A.x=0 B.x=-3C.x1=0,二、填空題(每小題3分,共24分)11.若有意義,則m能取的最小整數(shù)值是__.12.若解分式方程產(chǎn)生增根,則m=_____.13.a(chǎn)與5的和的3倍用代數(shù)式表示是________.14.如圖,直角三角形DEF是直角三角形ABC沿BC平移得到的,如果AB=6,BE=2,DH=1,則圖中陰影部分的面積是____.15.如圖,菱形ABCD中,點M、N分別在AD,BC上,且AM=CN,MN與AC交于點O,連接DO,若∠BAC=28°,則∠ODC=_____.16.如圖,在△ABC中,AB=AC,點E在CA延長線上,EP⊥BC于點P,交AB于點F,若AF=2,BF=3,則CE的長度為.17.如圖中的虛線網(wǎng)格為菱形網(wǎng)格,每一個小菱形的面積均為1,網(wǎng)格中虛線的交點稱為格點,頂點都在格點的多邊形稱為格點多邊形,如:格點?ABCD的面積是1.(1)格點△PMN的面積是_____;(2)格點四邊形EFGH的面積是_____.18.如圖中的螺旋由一系列直角三角形組成,則第2019個三角形的面積為_______.三、解答題(共66分)19.(10分)請閱讀材料,并完成相應(yīng)的任務(wù).阿波羅尼奧斯(約公元前262~190年),古希臘數(shù)學(xué)家,與歐幾里得、阿基米德齊名.他的著作《圓錐曲線論》是古代世界光輝的科學(xué)成果,可以說是代表了希臘幾何的最高水平.阿波羅尼奧斯定理,是歐氏幾何的定理,表述三角形三邊和中線的長度關(guān)系,即三角形任意兩邊的平方和等于第三邊的一半與該邊中線的平方和的2倍.(1)下面是該結(jié)論的部分證明過程,請在框內(nèi)將其補充完整;已知:如圖1所示,在銳角中,為中線..求證:證明:過點作于點為中線設(shè),,,在中,在中,__________在中,____________________(2)請直接利用阿波羅尼奧斯定理解決下面問題:如圖2,已知點為矩形內(nèi)任一點,求證:(提示:連接、交于點,連接)20.(6分)已知:△AOB和△COD均為等腰直角三角形,∠AOB=∠COD=90°.連接AD,BC,點H為BC中點,連接OH.(1)如圖1所示,求證:且(2)將△COD繞點O旋轉(zhuǎn)到圖2、圖3所示位置時,線段OH與AD又有怎樣的關(guān)系,并選擇一個圖形證明你的結(jié)論21.(6分)解方程:-=1.22.(8分)如圖,已知正方形ABCD的對角線AC、BD交于點O,CE⊥AC與AD邊的延長線交于點E.(1)求證:四邊形BCED是平行四邊形;(2)延長DB至點F,聯(lián)結(jié)CF,若CF=BD,求∠BCF的大?。?3.(8分)如圖,平行四邊形ABCD中,點E為AB邊上一點,請你用無刻度的直尺,在CD邊上畫出點F,使四邊形AECF為平行四邊形,并說明理由.24.(8分)如圖,將邊長為4的正方形ABCD紙片沿EF折疊,點C落在AB邊上的點G處,點D與點H重合,CG與EF交于點p,取GH的中點Q,連接PQ,則△GPQ的周長最小值是__25.(10分)因式分解:(1)a(m﹣1)+b(1﹣m).(1)(m1+4)1﹣16m1.26.(10分)近幾年,隨著電子產(chǎn)品的廣泛應(yīng)用,學(xué)生的近視發(fā)生率出現(xiàn)低齡化趨勢,引起了相關(guān)部門的重視.某區(qū)為了了解在校學(xué)生的近視低齡化情況,對本區(qū)7-18歲在校近視學(xué)生進行了簡單的隨機抽樣調(diào)查,并繪制了以下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中信息,回答下列問題:(1)這次抽樣調(diào)查中共調(diào)查了近視學(xué)生人;(2)請補全條形統(tǒng)計圖;(3)扇形統(tǒng)計圖中10-12歲部分的圓心角的度數(shù)是;(4)據(jù)統(tǒng)計,該區(qū)7-18歲在校學(xué)生近視人數(shù)約為10萬,請估計其中7-12歲的近視學(xué)生人數(shù).
參考答案一、選擇題(每小題3分,共30分)1、D【解析】
由勾股定理的逆定理可判定△BAC是直角三角形,繼而根據(jù)求出平行四邊形ABCD的面積即可求解.【詳解】解:∵AC=2,BD=4,四邊形ABCD是平行四邊形,∴AO=AC=1,BO=BD=2,∵AB=,∴AB2+AO2=BO2,∴∠BAC=90°,∵在Rt△BAC中,BC=,S△BAC=×AB×AC=×BC×AE,∴×2=AE,∴AE=,故選:D.【點睛】本題考查了勾股定理的逆定理和平行四邊形的性質(zhì),能得出△BAC是直角三角形是解此題的關(guān)鍵.2、B【解析】
觀察四個選項,分別涉及了四條邊和對角線,我們應(yīng)對照正方形和菱形邊及對角線的性質(zhì),找出不同即可.【詳解】正方形和菱形的四條邊均相等,每條對角線均平分一組對角,正方形兩條對角線相等且互相垂直平分,菱形對角線互相垂直且平分,但不相等.故選B.【點睛】本題考查了正方形和菱形性質(zhì)的知識,解決本題的關(guān)鍵是熟練掌握正方形和菱形的性質(zhì).3、C【解析】
先證明MO為AC的線段垂直平分線,則MC=AM,依次通過△CDM周長值可得AD+DC值,則平行四邊形周長為2(AD+DC).【詳解】解:∵四邊形ABCD是平行四邊形,
∴AO=CO.
∵OM⊥AC,
∴MA=MC.
∴△CDM周長=MD+MC+CD=MD+MA+CD=AD+DC=1.
∴平行四邊形ABCD周長=2(AD+DC)=2.
故選:C.【點睛】本題考查了平行四邊形的性質(zhì)、線段垂直平分線的性質(zhì),解決平行四邊形周長問題一般是先求解兩鄰邊之和.4、A【解析】
本題可設(shè)該正比例函數(shù)的解析式為y=kx,然后結(jié)合圖象可知,該函數(shù)圖象過點A(-2,1),由此可利用方程求出k的值,進而解決問題.【詳解】解:正比例函數(shù)的圖象過點M(?2,1),∴將點(?2,1)代入y=kx,得:1=?2k,∴k=﹣,∴y=﹣x,故選A.【點睛】本題考查了待定系數(shù)法求正比例函數(shù)解析式,牢牢掌握該法求函數(shù)解析式是解答本題的關(guān)鍵.5、C【解析】
運用正方形邊長相等,結(jié)合全等三角形和勾股定理來求解即可.【詳解】解:∵a、b、c都是正方形,∴AC=CD,∠ACD=90°;∵∠ACB+∠DCE=∠ACB+∠BAC=90°,∴∠BAC=∠DCE,∵∠ABC=∠CED=90°,AC=CD,∴△ACB≌△DCE,∴AB=CE,BC=DE;在Rt△ABC中,由勾股定理得:AC2=AB2+BC2=AB2+DE2,即Sb=Sa+Sc=11+5=16,故選:C.【點睛】此題主要考查對全等三角形和勾股定理的綜合運用,結(jié)合圖形求解,對圖形的理解能力要比較強.6、D【解析】
轉(zhuǎn)盤轉(zhuǎn)動共有三種結(jié)果,轉(zhuǎn)盤停止后指向偶數(shù)的情況一種,所以概率公式求解即可.【詳解】因為一共三種結(jié)果,轉(zhuǎn)盤停止后指向偶數(shù)的情況一種,所以P(指向偶數(shù))=故答案為D.【點睛】本題考查的是概率公式的應(yīng)用.7、D【解析】
開始一段時間內(nèi),乙不進行水,當(dāng)甲的水到過連接處時,乙開始進水,此時水面開始上升,速度較快,水到達連接的地方,水面上升比較慢,最后水面持平后繼續(xù)上升,故選D.8、D【解析】
由一組按大小順序排列起來的數(shù)據(jù)中處于中間位置的數(shù)叫做中位數(shù);接下來根據(jù)中位數(shù)的定義,結(jié)合去掉一個最高分和一個最低分,不難得出答案.【詳解】解:中位數(shù)是將一組數(shù)從小到大的順序排列,取中間位置或中間兩個數(shù)的平均數(shù)得到,所以如果要去掉一個最高分和一個最低分,則表中數(shù)據(jù)一定不發(fā)生變化的是中位數(shù).故選D.【點睛】本題主要考查平均數(shù)、眾數(shù)、方差、中位數(shù)的定義,其中一組按大小順序排列起來的數(shù)據(jù)中處于中間位置的數(shù)叫做中位數(shù).9、B【解析】
首先根據(jù)E是AC的中點得出AE=EC,然后根據(jù)CF∥BD得出∠ADE=∠F,繼而根據(jù)AAS證得△ADE≌△CFE,最后根據(jù)全等三角形的性質(zhì)即可推出EF=DE.【詳解】∵E為AC中點,∴AE=EC,∵CF∥BD,∴∠ADE=∠F,在△ADE和△CFE中,∵∠ADE=∴△ADE≌△CFE(AAS),∴DE=FE.故選B.【點睛】本題考查了三角形中位線定理和全等三角形的判定與性質(zhì),解答本題的關(guān)鍵是根據(jù)中位線定理和平行線的性質(zhì)得出AE=EC、∠ADE=∠F,判定三角形的全等.10、D【解析】
用因式分解法求解即可.【詳解】解:x2+1x=0,x(x+1)=0,所以x=0或x+1=0,解得:x1=0,x2=-1.故選:D.【點睛】本題考查了一元二次方程的解法,根據(jù)方程的特點選擇恰當(dāng)?shù)姆椒ㄊ墙鉀Q此題的關(guān)鍵.二、填空題(每小題3分,共24分)11、1【解析】
根據(jù)二次根式的意義,先求m的取值范圍,再在范圍內(nèi)求m的最小整數(shù)值.【詳解】∵若有意義∴3m﹣1≥0,解得m≥故m能取的最小整數(shù)值是1【點睛】本題考查了二次根式的意義以及不等式的特殊解等相關(guān)問題.12、-5【解析】
試題分析:根據(jù)分式方程增根的產(chǎn)生的條件,可知x+4=0,解得x=-4,然后把分式方程化為整式方程x-1=m,解得m=-5故答案為-5.13、3(a+5)【解析】根據(jù)題意,先求和,再求倍數(shù).解:a與5的和為a+5,a與5的和的3倍用代數(shù)式表示是3(a+5).列代數(shù)式的關(guān)鍵是正確理解文字語言中的關(guān)鍵詞,比如該題中的“倍”、“和”等,從而明確其中的運算關(guān)系,正確地列出代數(shù)式.14、11【解析】
根據(jù)平移的性質(zhì)可得到相等的邊與角,利用平行線分線段成比例可求出EC,再根據(jù)即可得到答案.【詳解】解:由平移的性質(zhì)知,DE=AB=6,HE=DE-DH=5,CF=BE=2,HC∥DF,∠DEF=∠B=90°,∴HE:DE=EC:EF=EC:(EC+CF),即5:6=EC:(EC+2),∴EC=10,EF=EC+CF=10+2=12故答案為:11.【點睛】本題利用了平行線截線段對應(yīng)成比例和平移的基本性質(zhì):①平移不改變圖形的形狀和大小;②經(jīng)過平移,對應(yīng)點所連的線段平行且相等,對應(yīng)線段平行且相等,對應(yīng)角相等.15、62°【解析】
證明≌,根據(jù)全等三角形的性質(zhì)得到AO=CO,根據(jù)菱形的性質(zhì)有:AD=DC,根據(jù)等腰三角形三線合一的性質(zhì)得到DO⊥AC,即∠DOC=90°.根據(jù)平行線的性質(zhì)得到∠DCA=28°,根據(jù)三角形的內(nèi)角和即可求解.【詳解】四邊形ABCD是菱形,AD//BC,在與中,,≌;AO=CO,AD=DC,∴DO⊥AC,∴∠DOC=90°.∵AD∥BC,∴∠BAC=∠DCA.∵∠BAC=28°,∠BAC=∠DCA.,∴∠DCA=28°,∴∠ODC=90°-28°=62°.故答案為62°【點睛】考查菱形的性質(zhì),等腰三角形的性質(zhì),平行線的性質(zhì),三角形的內(nèi)角和定理等,比較基礎(chǔ),數(shù)形結(jié)合是解題的關(guān)鍵.16、7【解析】試題分析:如圖,過點A做BC邊上高,所以EPAM,所以?BFP~?BAM,?CAM~CEP,因為AF=2,BF=3,AB=AC=5,所以,BM=CM,所以,因此CE=717、12【解析】解:(1)如圖,S△PMN=?S平行四邊形MNEF=×12=1.故答案為1.(2)S四邊形EFGH=S平行四邊形LJKT﹣S△LEH﹣S△HTG﹣S△FKG﹣S△EFJ=10﹣2﹣9﹣1﹣15=2.故答案為2.故答案為1,2.點睛:本題考查了菱形的性質(zhì)、平行四邊形的性質(zhì)等知識,解題的關(guān)鍵是學(xué)會用分割法求面積,屬于中考??碱}型.18、【解析】
根據(jù)勾股定理逐一進行計算,從中找到規(guī)律,即可得到答案.【詳解】第一個三角形中,第二個三角形中,第三個三角形中,…第n個三角形中,當(dāng)時,故答案為:.【點睛】本題主要考查勾股定理及三角形面積公式,掌握勾股定理,找到規(guī)律是解題的關(guān)鍵.三、解答題(共66分)19、(1),,;(2)見解析【解析】
(1)利用勾股定理即可寫出答案;(2)連接、交于點,根據(jù)矩形的性質(zhì)能證明O是AC、BD的中點,在和中利用阿波羅尼奧斯定理可以證明結(jié)論.【詳解】(1)在中,在中,∴故答案是:;;;(2)證明:連接、交于點,連接∵四邊形為矩形,∴OA=OC,OB=OD,AC=BD,由阿波羅尼奧斯定理得.【點睛】本題考查了矩形的性質(zhì)及勾股定理的運用,能充分理解題意并運用性質(zhì)定理推理論證是解題的關(guān)鍵.20、(1)詳見解析;(2)詳見解析.【解析】
(1)首先證明△AOD≌△BOC(SAS),利用全等三角形的性質(zhì)得到BC=AD,再利用直角三角形斜邊中線的性質(zhì)即可得到OH=BC=AD,然后通過全等三角形對應(yīng)角相等以及直角三角形兩銳角互余證明OH⊥AD;(2)如圖2中,延長OH到E,使得HE=OH,連接BE,通過證明△BEO≌△ODA,可得OH=OE=AD以及∠DAO+∠AOH=∠EOB+∠AOH=90°,問題得證;如圖3中,延長OH到E,使得HE=OH,連接BE,延長EO交AD于G,同理可證OH=OE=AD,∠DAO+∠AOG=∠EOB+∠AOG=90°.【詳解】(1)證明:如圖1中,∵△OAB與△OCD為等腰直角三角形,∠AOB=∠COD=90°,∴OC=OD,OA=OB,在△AOD與△BOC中,∵OA=OB,∠AOD=∠BOC,OD=OC,∴△AOD≌△BOC(SAS),∴BC=AD∵H是BC中點,∴OH=BC=AD.∵△AOD≌△BOC∴∠ADO=∠BCO,∠OAD=∠OBC,∵點H為線段BC的中點,∴∠OBH=∠HOB=∠OAD,又∵∠OAD+∠ADO=90°,∴∠ADO+∠BOH=90°,∴OH⊥AD;(2)解:結(jié)論:OH⊥AD,OH=AD證明:如圖2中,延長OH到E,使得HE=OH,連接BE,易證△BEO≌△ODA,∴OE=AD,∴OH=OE=AD.由△BEO≌△ODA,知∠EOB=∠DAO,∴∠DAO+∠AOH=∠EOB+∠AOH=90°,∴OH⊥AD.如圖3中,結(jié)論不變.延長OH到E,使得HE=OH,連接BE,延長EO交AD于G.易證△BEO≌△ODA,∴OE=AD,∴OH=OE=AD.由△BEO≌△ODA,知∠EOB=∠DAO,∴∠DAO+∠AOG=∠EOB+∠AOG=90°,∴∠AGO=90°,∴OH⊥AD.【點睛】本題考查了旋轉(zhuǎn)變換,等腰直角三角形的性質(zhì),全等三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造全等三角形解決問題.21、x=–2【解析】試題分析:根據(jù)分式方程的解法即可求出答案.試題解析:解:去分母得:(x+3)2﹣4(x﹣3)=(x﹣3)(x+3)x2+6x+9﹣4x+12=x2﹣9,x=﹣2.把x=﹣2代入(x﹣3)(x+3)≠0,∴原分式方程的解為:x=﹣2.22、(1)見解析;(2)∠BCF=15°【解析】
(1)利用正方形的性質(zhì)得出AC⊥DB,BC//AD,再利用平行線的判定與性質(zhì)結(jié)合平行四邊形的判定方法得出答案;(2)利用正方形的性質(zhì)結(jié)合直角三角形的性質(zhì)得出∠OFC=30°,即可得出答案.【詳解】解:(1)證明:∵ABCD是正方形,∴AC⊥DB,BC∥AD∵CE⊥AC∴∠AOD=∠ACE=90°∴BD∥CE∴BCED是平行四邊形(2)如圖:連接AF,∵ABCD是正方形,∴BD⊥AC,BD=AC=2OB=2OC,即OB=OC∴∠OCB=45°∵Rt△OCF中,CF=BD=2OC,∴∠OFC=30°∴∠BCF=60°-45°=15°【點睛】本題考查了正方形的性質(zhì)以及平行四邊形的判定和直角三角形的性質(zhì),掌握正方形的性質(zhì)是解題關(guān)鍵.23、見詳解.【解析】
連接AC、BD交于點O,連接EO并延長交CD于點F;由平行四邊形的性質(zhì)得出AB∥CD,OA=OC,證明△AEO≌△CFO,得出AE=CF,即可得出結(jié)論.【詳解】解:連接AC、BD交于點O,連接EO并延長交CD于點F;
則四邊形AECF為平行四邊形;理由如下:
∵四邊形ABCD是平行四邊形,
∴AB∥CD,OA=OC,
∴∠EAO=∠FCO,
在△AEO和△CFO中,,
∴△AEO≌△CFO(ASA),
∴AE=CF,
又∵AE∥CF,
∴四邊形AECF為平行四邊形.【點睛】本題考查平行四邊形的判定與性質(zhì)、全等三角形的判定與性質(zhì);熟練掌握平行四邊形的判定與性質(zhì),證明三角形全等是解題的關(guān)鍵.24、2【解析】
如圖,取CD的中點N,連接PN,PB,BN.首先證明PQ=PN,PB=PG,推出PQ+PG
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 【正版授權(quán)】 ISO/TS 7815-1:2025 EN Intelligent transport systems - Telematics applications for regulated commercial freight vehicles (TARV) using ITS stations - Part 1: Secure vehicle in
- 精餾塔苯甲苯課程設(shè)計
- 統(tǒng)計信源熵課程設(shè)計
- 移動通信秒表課程設(shè)計
- 泵與泵站課程設(shè)計概要
- 2024招聘考試高頻考點題庫試題含答案
- 線描狗狗創(chuàng)意課程設(shè)計
- 山地自行車行業(yè)銷售工作總結(jié)
- 自然教育課程設(shè)計大賽
- 學(xué)校班主任的食品安全教育策略計劃
- 南京工業(yè)大學(xué)《建筑結(jié)構(gòu)與選型》2021-2022學(xué)年第一學(xué)期期末試卷
- 派出所考勤制度管理制度
- 網(wǎng)絡(luò)評論員培訓(xùn)
- 2024年西藏中考語文真題
- 某大廈10kv配電室增容改造工程施工方案
- 中建“大商務(wù)”管理實施方案
- 2024年航空職業(yè)技能鑒定考試-航空乘務(wù)員危險品考試近5年真題集錦(頻考類試題)帶答案
- 表 6-1-12? 咽喉部檢查法評分標(biāo)準
- 2024-2025學(xué)年四年級科學(xué)上冊第一單元《聲音》測試卷(教科版)
- 2024年湖南省長沙市中考數(shù)學(xué)試題(含解析)
- 2024年大學(xué)華西醫(yī)院運營管理部招考聘用3人高頻難、易錯點500題模擬試題附帶答案詳解
評論
0/150
提交評論