安徽省黃山市田家炳實驗中學高二數學文下學期摸底試題含解析_第1頁
安徽省黃山市田家炳實驗中學高二數學文下學期摸底試題含解析_第2頁
安徽省黃山市田家炳實驗中學高二數學文下學期摸底試題含解析_第3頁
安徽省黃山市田家炳實驗中學高二數學文下學期摸底試題含解析_第4頁
安徽省黃山市田家炳實驗中學高二數學文下學期摸底試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

安徽省黃山市田家炳實驗中學高二數學文下學期摸底試題含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1.設是定義在R上的奇函數,且,當時,有恒成立,則不等式的解集是(

)A.(-2,0)∪(2,+∞)

B.(-2,0)∪(0,2)C.(-∞,-2)∪(2,+∞)

D.(-∞,-2)∪(0,2)參考答案:D略2.若不等式f(x)=ax2﹣x﹣c>0的解集{x|﹣2<x<1},則函數y=f(﹣x)的圖象為()A. B. C. D.參考答案:B【考點】函數的圖象.【分析】由已知,求出a,c,確定f(x),再求出y=f(﹣x)的解析式,確定圖象.【解答】解:由已知得,﹣2,1是方程ax2﹣x﹣c=0的兩根,分別代入,解得a=﹣1,c=﹣2.∴f(x)=﹣x2﹣x+2.從而函數y=f(﹣x)=﹣x2+﹣x+2=﹣(x﹣2)(x+1)

它的圖象是開口向下的拋物線,與x軸交與(﹣1,0)(2,0)兩點.故選B.3.若a,b,c>0且,則2a+b+c的最小值為A.

B.

C.3

D.

參考答案:D4.若直線被圓截得的弦長為4,則的最小值是(

)A.

B. C.3 D.參考答案:A5.已知函數,則

)(A)在(2,+)上是增函數

(B)在(2,+)上是減函數(C)在(2,+)上是增函數

(D)在(2,+)上是減函數參考答案:D6.點A(2,1)到拋物線y2=ax準線的距離為1,則a的值為()A.或 B.或 C.﹣4或﹣12 D.4或12參考答案:C【考點】K8:拋物線的簡單性質.【分析】求出拋物線的準線方程,根據距離列出方程解出a的值.【解答】解:拋物線的準線方程為x=﹣,∴點A(2,1)到拋物線y2=ax準線的距離為|2+|=1解得a=4或a=﹣12.故選C.7.已知:全集,集合,則(

)A、(1,3)

B、

C、

D、參考答案:C8.執(zhí)行如圖所示的程序框圖,若輸入x的值為4,則輸出的結果是(

)A.1 B. C. D.參考答案:C【考點】程序框圖.【專題】計算題;圖表型;分類討論;分析法;算法和程序框圖.【分析】根據程序框圖依次計算框圖運行的x、y值,直到滿足條件|y﹣x|<1終止運行,輸出y值.【解答】解:由程序框圖得第一次運行y=×4﹣1=1,第二次運行x=1,y=×1﹣1=﹣,第三次運行x=﹣,y=×(﹣)﹣1=﹣,此時|y﹣x|=,滿足條件|y﹣x|<1終止運行,輸出﹣.故選:C.【點評】本題是直到型循環(huán)結構的程序框圖,解答的關鍵是讀懂框圖的運行流程,屬于基礎題.9.已知函數f(x)=x3﹣12x,若f(x)在區(qū)間(2m,m+1)上單調遞減,則實數m的取值范圍是()A.[﹣1,1] B.(﹣1,1] C.(﹣1,1) D.[﹣1,1)參考答案:D【考點】利用導數研究函數的單調性.【分析】由函數f(x)=x3﹣12x在(2m,m+1)內單調遞減轉化成f′(x)≤0在(2m,m+1)內恒成立,得到關于m的關系式,即可求出m的范圍.【解答】解:∵函數f(x)=x3﹣12x在(2m,m+1)上單調遞減,∴f'(x)=3x2﹣12≤0在(2m,m+1)上恒成立.故

,即成立.解得:﹣1≤m<1,故選:D.10.等比數列{an}的前n項和為Sn,已知a2a5=2a3,且a4與2a7的等差中項為,則S5=()A.29 B.31 C.33 D.36參考答案:B【考點】等比數列的前n項和.【分析】利用a2?a3=2a1,且a4與2a7的等差中項為,求出數列的首項與公比,再利用等比數列的求和公式,即可得出結論.【解答】解:∵數列{an}是等比數列,a2?a3=2a1=a1q?=a1?a4,∴a4=2.∵a4與2a7的等差中項為,∴a4+2a7=,故有a7=.∴q3==,∴q=,∴a1==16.∴S5==31.故選:B.【點評】本題主要考查等差數列的定義和性質,等比數列的通項公式,等比數列的前n項和公式,屬于中檔題.二、填空題:本大題共7小題,每小題4分,共28分11.(5分)已知圓C的圓心在直線2x﹣y﹣3=0上,且過點A(5,2)和點B(3,﹣2),則圓C的方程為.參考答案:(x﹣2)2+(y﹣1)2=10【考點】:圓的標準方程.【專題】:直線與圓.【分析】:根據條件求出圓心和半徑即可得到結論.解:∵圓C的圓心在直線2x﹣y﹣3=0上,∴設圓心坐標為(a,2a﹣3),由|CA|=|CB|得=,即(a﹣5)2+(2a﹣5)2=(a﹣3)2+(2a﹣1)2,整理得a=2,即圓心C(2,1),半徑R=|CA|==,故圓C的方程為(x﹣2)2+(y﹣1)2=10,故答案為:(x﹣2)2+(y﹣1)2=10,【點評】:本題主要考查圓的標準方程的求解,以及兩點間的距離公式的應用,根據條件求出圓心和半徑是解決本題的關鍵.12.盒中有5個紅球,11個藍球。紅球中有2個玻璃球,3個木質球;藍球中有4個玻璃球,7個木質球。現(xiàn)從中任取一球,假設每個球摸到的可能性都相同,若已知取到的球是玻璃球,則它是藍球的概率是———————參考答案:2/313.在平面直角坐標系xOy,橢圓C的中心為原點,焦點F1F2在x軸上,離心率為.過Fl的直線交于A,B兩點,且△ABF2的周長為16,那么C的方程為

.參考答案:+=1【考點】橢圓的簡單性質.【分析】根據題意,△ABF2的周長為16,即BF2+AF2+BF1+AF1=16,結合橢圓的定義,有4a=16,即可得a的值;又由橢圓的離心率,可得c的值,進而可得b的值;由橢圓的焦點在x軸上,可得橢圓的方程.【解答】解:根據題意,△ABF2的周長為16,即BF2+AF2+BF1+AF1=16;根據橢圓的性質,有4a=16,即a=4;橢圓的離心率為,即=,則a=c,將a=c,代入可得,c=2,則b2=a2﹣c2=8;則橢圓的方程為+=1;故答案為:+=1.14.已知為等差數列,,則等于___________參考答案:1

略15.下列命題成立的是

.(寫出所有正確命題的序號).①,;

②當時,函數,∴當且僅當即時取最小值;

③當時,;④當時,的最小值為.參考答案:16.已知圓C:,過點P(2,—1)作圓C的切線,切點為A、B。(1)求直線PA與PB的方程;(2)過P點的圓C的切線長。參考答案:略17.,若在R上可導,則=

,參考答案:略三、解答題:本大題共5小題,共72分。解答應寫出文字說明,證明過程或演算步驟18.已知不等式ax2﹣3x+2>0的解集為{x|x<1或x>b}.(1)求a、b的值;(2)解不等式ax2﹣(a+b)x+b<0.參考答案:【考點】一元二次不等式的應用.【分析】(1)根據題意得到1、b為方程ax2﹣3x+2=0的兩根,且b>1,a>0,然后將兩根代入方程建立方程組,解之即可;(2)將a與b的值代入不等式,因式分解,結合二次不等式的解法可求出不等式的解集.【解答】解:(1)∵不等式ax2﹣3x+2>0的解集為{x|x<1或x>b}.∴1、b為方程ax2﹣3x+2=0的兩根,且b>1,a>0.∴,解得a=1,b=2(b=1舍去).…9′(2)∵a=1,b=2∴原不等式即為x2﹣3x+2<0即(x﹣1)(x﹣2)<0∴1<x<2.…13′不等式ax2﹣(a+b)x+b<0的解集為{x|1<x<2}19.(本小題滿分12分)已知橢圓的方程為,雙曲線的左、右焦點分別為的左、右頂點,而的左、右頂點分別是的左、右焦點.(Ⅰ)求雙曲線的方程;(Ⅱ)若直線與橢圓及雙曲線都恒有兩個不同的交點,且與的兩個交點A和B滿足(其中O為原點),求k的取值范圍.參考答案:(Ⅰ)設雙曲線C2的方程為,則故C2的方程為

解此不等式得:

③由①、②、③得:故k的取值范圍為20.(14分)如圖,多面體ABCD—EFG中,底面ABCD為正方形,GD//FC//AE,AE⊥平面ABCD,其正視圖、俯視圖及相關數據如圖:(1)求證:平面AEFC⊥平面BDG;(2)求該幾何體的體積;(3)求點C到平面BDG的距離.參考答案:(1)連接AC,BD,正方形ABCD中,AC⊥BD,又AE∥GD∥FC,AE⊥平面ABCD,∴GD⊥平面ABCD,又AC平面ABCD,則AC⊥GD,又AC⊥BD,,∴AC⊥平面BDG,又AC平面AEFC,∴平面AEFC⊥平面BDG;(2)原幾何體可以劃分為兩個四棱錐:B-CFGD和B-AEGD,而,,∴所給幾何體的體積為:;(3)由條件可知GD⊥平面ABCD,故平面BDG⊥平面ABCD.過C作CH⊥BD于H,則CH⊥平面BDG則CH的長即為點C到平面BDG的距離.在Rt△BCD中,由面積公式可得,則,即點C到平面BDG的距離為21.(本小題滿分13分)泉州市組織群眾性登清源山健身活動,招募了名師生志愿者,現(xiàn)將所有志愿者按年齡情況分為等六組,其頻率分布直方圖如下圖所示:已知之間的志愿者共人.(1)求和之間的志愿者人數;(2)已知和之間各有名數學教師,現(xiàn)從這兩個組中各選取人擔任接待工作,設兩組的選擇互不影響,求兩組選出的人中都至少有名數學教師的概率?(3)組織者從之間的志愿者(其中共有名女教師,其余全為男教師)中隨機選取名擔任后勤保障工作,其中女教師的人數為,求的分布列和數學期望.

參考答案:解:(1)設頻率分布直方圖中個組的頻率分別為,所以,……………2分由題意而所以,之間的志愿者人數…………2分(2)之間有人……………5分設從之間取人擔任接待工作,其中至少有1名數學教師的事件為;從之間取人擔任接待工作,其中至少有1名數學教師的事件為因為兩組的選擇互不影響,為相互獨立事件,……………2分與為相互獨立事件,同時發(fā)生可記做所以,……………2分(3)之間共有人,其中名女教師,名男教師從中選取三人,則女教師的數量為的取值可為

所以

;;……………3分所以,分布列為………1分所以,數學期望為……………1分22.已知直線l經過直線3x+4y﹣2=0與直線2x+y+2=0的交點P,且垂直于直線x﹣2y﹣1=0.求:(Ⅰ)直線l的方程;(Ⅱ)直線l與兩坐標軸圍成的三角形的面積S.參考答案:【考點】直線的一般式方程;兩條直線的交點坐標.【分析】(Ⅰ)聯(lián)立兩直線方程得到方程組,求出方程組的解集即可得到交點P的坐標,根據直線l與x﹣2y﹣1垂直,利用兩直線垂直時斜率乘積為﹣1,可設出直線l的方程,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論