2024屆山東省臨沂市青云鎮(zhèn)中學心中學中考適應性考試數(shù)學試題含解析_第1頁
2024屆山東省臨沂市青云鎮(zhèn)中學心中學中考適應性考試數(shù)學試題含解析_第2頁
2024屆山東省臨沂市青云鎮(zhèn)中學心中學中考適應性考試數(shù)學試題含解析_第3頁
2024屆山東省臨沂市青云鎮(zhèn)中學心中學中考適應性考試數(shù)學試題含解析_第4頁
2024屆山東省臨沂市青云鎮(zhèn)中學心中學中考適應性考試數(shù)學試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆山東省臨沂市青云鎮(zhèn)中學心中學中考適應性考試數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.甲、乙兩輛汽車沿同一路線從A地前往B地,甲車以a千米/時的速度勻速行駛,途中出現(xiàn)故障后停車維修,修好后以2a千米/時的速度繼續(xù)行駛;乙車在甲車出發(fā)2小時后勻速前往B地,比甲車早30分鐘到達.到達B地后,乙車按原速度返回A地,甲車以2a千米/時的速度返回A地.設甲、乙兩車與A地相距s(千米),甲車離開A地的時間為t(小時),s與t之間的函數(shù)圖象如圖所示.下列說法:①a=40;②甲車維修所用時間為1小時;③兩車在途中第二次相遇時t的值為5.25;④當t=3時,兩車相距40千米,其中不正確的個數(shù)為()A.0個 B.1個 C.2個 D.3個2.的絕對值是()A.﹣4 B. C.4 D.0.43.如圖,直角邊長為的等腰直角三角形與邊長為3的等邊三角形在同一水平線上,等腰直角三角形沿水平線從左向右勻速穿過等邊三角形時,設穿過時間為t,兩圖形重合部分的面積為S,則S關于t的圖象大致為()A. B.C. D.4.如圖所示的幾何體,它的左視圖是()A. B. C. D.5.等腰三角形三邊長分別為,且是關于的一元二次方程的兩根,則的值為()A.9 B.10 C.9或10 D.8或106.如圖分別是某班全體學生上學時乘車、步行、騎車人數(shù)的分布直方圖和扇形統(tǒng)計圖(兩圖都不完整),下列結論錯誤的是()A.該班總人數(shù)為50 B.步行人數(shù)為30C.乘車人數(shù)是騎車人數(shù)的2.5倍 D.騎車人數(shù)占20%7.如圖,直角坐標平面內有一點,那么與軸正半軸的夾角的余切值為()A.2 B. C. D.8.某運動器材的形狀如圖所示,以箭頭所指的方向為左視方向,則它的主視圖可以是()A.B.C.D.9.在學校演講比賽中,10名選手的成績折線統(tǒng)計圖如圖所示,則下列說法正確的是()A.最高分90 B.眾數(shù)是5 C.中位數(shù)是90 D.平均分為87.510.下列運算正確的是()A.5a+2b=5(a+b) B.a(chǎn)+a2=a3C.2a3?3a2=6a5 D.(a3)2=a5二、填空題(本大題共6個小題,每小題3分,共18分)11.從﹣1,2,3,﹣6這四個數(shù)中任選兩數(shù),分別記作m,n,那么點(m,n)在函數(shù)圖象上的概率是.12.如圖,直線a∥b,∠BAC的頂點A在直線a上,且∠BAC=100°.若∠1=34°,則∠2=_____°.13.如圖,△ABC中,AB=BD,點D,E分別是AC,BD上的點,且∠ABD=∠DCE,若∠BEC=105°,則∠A的度數(shù)是_____.14.已知(x-ay)(x+ay),那么a=_______15.如圖,從一塊直徑是8m的圓形鐵皮上剪出一個圓心角為90°的扇形,將剪下的扇形圍成一個圓錐,圓錐的高是_________m.16.函數(shù)y=中自變量x的取值范圍是___________.三、解答題(共8題,共72分)17.(8分)某校為了解全校學生對新聞、體育、動畫、娛樂、戲曲五類電視節(jié)目的喜愛情況,隨機選取該校部分學生進行調查,要求每名學生從中選出一類最喜愛的電視節(jié)目,以下是根據(jù)調查結果繪制的不完整統(tǒng)計表:節(jié)目代號ABCDE節(jié)目類型新聞體育動畫娛樂戲曲喜愛人數(shù)1230m549請你根據(jù)以上的信息,回答下列問題:(1)被調查學生的總數(shù)為人,統(tǒng)計表中m的值為.扇形統(tǒng)計圖中n的值為;(2)被調查學生中,最喜愛電視節(jié)目的“眾數(shù)”;(3)該校共有2000名學生,根據(jù)調查結果,估計該校最喜愛新聞節(jié)目的學生人數(shù).18.(8分)在一個不透明的盒子中,裝有3個分別寫有數(shù)字1,2,3的小球,他們的形狀、大小、質地完全相同,攪拌均勻后,先從盒子里隨機抽取1個小球,記下小球上的數(shù)字后放回盒子,攪拌均勻后再隨機取出1個小球,再記下小球上的數(shù)字.(1)用列表法或樹狀圖法寫出所有可能出現(xiàn)的結果;(2)求兩次取出的小球上的數(shù)字之和為奇數(shù)的概率P.19.(8分)已知拋物線y=a(x-1)2+3(a≠0)與y軸交于點A(0,2),頂點為B,且對稱軸l1與x軸交于點M(1)求a的值,并寫出點B的坐標;(2)將此拋物線向右平移所得新的拋物線與原拋物線交于點C,且新拋物線的對稱軸l2與x軸交于點N,過點C做DE∥x軸,分別交l1、l2于點D、E,若四邊形MDEN是正方形,求平移后拋物線的解析式.20.(8分)如圖,四邊形ABCD內接于圓,對角線AC與BD相交于點E,F(xiàn)在AC上,AB=AD,∠BFC=∠BAD=2∠DFC.求證:(1)CD⊥DF;(2)BC=2CD.21.(8分)Rt△ABC中,∠ABC=90°,以AB為直徑作⊙O交AC邊于點D,E是邊BC的中點,連接DE,OD.(1)如圖①,求∠ODE的大小;(2)如圖②,連接OC交DE于點F,若OF=CF,求∠A的大?。?2.(10分)某同學用兩個完全相同的直角三角形紙片重疊在一起(如圖1)固定△ABC不動,將△DEF沿線段AB向右平移.(1)若∠A=60°,斜邊AB=4,設AD=x(0≤x≤4),兩個直角三角形紙片重疊部分的面積為y,試求出y與x的函數(shù)關系式;(2)在運動過程中,四邊形CDBF能否為正方形,若能,請指出此時點D的位置,并說明理由;若不能,請你添加一個條件,并說明四邊形CDBF為正方形?23.(12分)如圖,在矩形ABCD中,對角線AC,BD相交于點O.(1)畫出△AOB平移后的三角形,其平移后的方向為射線AD的方向,平移的距離為AD的長.(2)觀察平移后的圖形,除了矩形ABCD外,還有一種特殊的平行四邊形?請證明你的結論.24.許昌文峰塔又稱文明寺塔,為全國重點文物保護單位,某校初三數(shù)學興趣小組的同學想要利用學過的知識測量文峰塔的高度,他們找來了測角儀和卷尺,在點A處測得塔頂C的仰角為30°,向塔的方向移動60米后到達點B,再次測得塔頂C的仰角為60°,試通過計算求出文峰塔的高度CD.(結果保留兩位小數(shù))

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】解:①由函數(shù)圖象,得a=120÷3=40,故①正確,②由題意,得5.5﹣3﹣120÷(40×2),=2.5﹣1.5,=1.∴甲車維修的時間為1小時;故②正確,③如圖:∵甲車維修的時間是1小時,∴B(4,120).∵乙在甲出發(fā)2小時后勻速前往B地,比甲早30分鐘到達.∴E(5,240).∴乙行駛的速度為:240÷3=80,∴乙返回的時間為:240÷80=3,∴F(8,0).設BC的解析式為y1=k1t+b1,EF的解析式為y2=k2t+b2,由圖象得,,,解得,,∴y1=80t﹣200,y2=﹣80t+640,當y1=y2時,80t﹣200=﹣80t+640,t=5.2.∴兩車在途中第二次相遇時t的值為5.2小時,故弄③正確,④當t=3時,甲車行的路程為:120km,乙車行的路程為:80×(3﹣2)=80km,∴兩車相距的路程為:120﹣80=40千米,故④正確,故選A.2、B【解析】分析:根據(jù)絕對值的性質,一個負數(shù)的絕對值等于其相反數(shù),可有相反數(shù)的意義求解.詳解:因為-的相反數(shù)為所以-的絕對值為.故選:B點睛:此題主要考查了求一個數(shù)的絕對值,關鍵是明確絕對值的性質,一個正數(shù)的絕對值等于本身,0的絕對值是0,一個負數(shù)的絕對值為其相反數(shù).3、B【解析】

先根據(jù)等腰直角三角形斜邊為2,而等邊三角形的邊長為3,可得等腰直角三角形沿水平線從左向右勻速穿過等邊三角形時,出現(xiàn)等腰直角三角形完全處于等邊三角形內部的情況,進而得到S關于t的圖象的中間部分為水平的線段,再根據(jù)當t=0時,S=0,即可得到正確圖象【詳解】根據(jù)題意可得,等腰直角三角形斜邊為2,斜邊上的高為1,而等邊三角形的邊長為3,高為,故等腰直角三角形沿水平線從左向右勻速穿過等邊三角形時,出現(xiàn)等腰直角三角形完全處于等邊三角形內部的情況,故兩圖形重合部分的面積先增大,然后不變,再減小,S關于t的圖象的中間部分為水平的線段,故A,D選項錯誤;當t=0時,S=0,故C選項錯誤,B選項正確;故選:B【點睛】本題考查了動點問題的函數(shù)圖像,根據(jù)重復部分面積的變化是解題的關鍵4、A【解析】

從左面觀察幾何體,能夠看到的線用實線,看不到的線用虛線.【詳解】從左邊看是等寬的上下兩個矩形,上邊的矩形小,下邊的矩形大,兩矩形的公共邊是虛線,

故選:A.【點睛】本題主要考查的是幾何體的三視圖,熟練掌握三視圖的畫法是解題的關鍵.5、B【解析】

由題意可知,等腰三角形有兩種情況:當a,b為腰時,a=b,由一元二次方程根與系數(shù)的關系可得a+b=6,所以a=b=3,ab=9=n-1,解得n=1;當2為腰時,a=2(或b=2),此時2+b=6(或a+2=6),解得b=4(a=4),這時三邊為2,2,4,不符合三角形三邊關系:兩邊之和大于第三邊,兩邊之差小于第三邊,故不合題意.所以n只能為1.故選B6、B【解析】

根據(jù)乘車人數(shù)是25人,而乘車人數(shù)所占的比例是50%,即可求得總人數(shù),然后根據(jù)百分比的含義即可求得步行的人數(shù),以及騎車人數(shù)所占的比例.【詳解】A、總人數(shù)是:25÷50%=50(人),故A正確;B、步行的人數(shù)是:50×30%=15(人),故B錯誤;C、乘車人數(shù)是騎車人數(shù)倍數(shù)是:50%÷20%=2.5,故C正確;D、騎車人數(shù)所占的比例是:1-50%-30%=20%,故D正確.由于該題選擇錯誤的,故選B.【點睛】本題考查讀頻數(shù)分布直方圖的能力和利用統(tǒng)計圖獲取信息的能力;利用統(tǒng)計圖獲取信息時,必須認真觀察、分析、研究統(tǒng)計圖,才能作出正確的判斷和解決問題.7、B【解析】

作PA⊥x軸于點A,構造直角三角形,根據(jù)三角函數(shù)的定義求解.【詳解】過P作x軸的垂線,交x軸于點A,

∵P(2,4),

∴OA=2,AP=4,.

∴∴.故選B.【點睛】本題考查的知識點是銳角三角函數(shù)的定義,解題關鍵是熟記三角函數(shù)的定義.8、B【解析】從幾何體的正面看可得下圖,故選B.9、C【解析】試題分析:根據(jù)折線統(tǒng)計圖可得:最高分為95,眾數(shù)為90;中位數(shù)90;平均分=(80×2+85+90×5+95×2)÷(2+1+5+2)=88.5.10、C【解析】

直接利用合并同類項法則以及單項式乘以單項式、冪的乘方運算法則分別化簡得出答案.【詳解】A、5a+2b,無法計算,故此選項錯誤;B、a+a2,無法計算,故此選項錯誤;C、2a3?3a2=6a5,故此選項正確;D、(a3)2=a6,故此選項錯誤.故選C.【點睛】此題主要考查了合并同類項以及單項式乘以單項式、冪的乘方運算,正確掌握運算法則是解題關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、.【解析】試題分析:畫樹狀圖得:∵共有12種等可能的結果,點(m,n)恰好在反比例函數(shù)圖象上的有:(2,3),(﹣1,﹣6),(3,2),(﹣6,﹣1),∴點(m,n)在函數(shù)圖象上的概率是:=.故答案為.考點:反比例函數(shù)圖象上點的坐標特征;列表法與樹狀圖法.12、46【解析】試卷分析:根據(jù)平行線的性質和平角的定義即可得到結論.解:∵直線a∥b,∴∠3=∠1=34°,∵∠BAC=100°,∴∠2=180°?34°?100°=46°,故答案為46°.13、85°【解析】

設∠A=∠BDA=x,∠ABD=∠ECD=y,構建方程組即可解決問題.【詳解】解:∵BA=BD,∴∠A=∠BDA,設∠A=∠BDA=x,∠ABD=∠ECD=y(tǒng),則有,解得x=85°,故答案為85°.【點睛】本題考查等腰三角形的性質,三角形的外角的性質,三角形的內角和定理等知識,解題的關鍵是熟練掌握基本知識,屬于中考常考題型.14、±4【解析】

根據(jù)平方差公式展開左邊即可得出答案.【詳解】∵(x-ay)(x+ay)=又(x-ay)(x+ay)∴解得:a=±4故答案為:±4.【點睛】本題考查的平方差公式:.15、【解析】分析:首先連接AO,求出AB的長度是多少;然后求出扇形的弧長弧BC為多少,進而求出扇形圍成的圓錐的底面半徑是多少;最后應用勾股定理,求出圓錐的高是多少即可.詳解:如圖1,連接AO,∵AB=AC,點O是BC的中點,∴AO⊥BC,又∵∴∴∴弧BC的長為:(m),∴將剪下的扇形圍成的圓錐的半徑是:(m),∴圓錐的高是:故答案為.點睛:考查圓錐的計算,正確理解圓錐的側面展開圖與原來扇形之間的關系式解決本題的關鍵.16、x≥﹣且x≠1【解析】

試題解析:根據(jù)題意得:解得:x≥﹣且x≠1.故答案為:x≥﹣且x≠1.三、解答題(共8題,共72分)17、(1)150;45,36,(2)娛樂(3)1【解析】

(1)由“體育”的人數(shù)及其所占百分比可得總人數(shù),用總人數(shù)減去其它節(jié)目的人數(shù)即可得求得動畫的人數(shù)m,用娛樂的人數(shù)除以總人數(shù)即可得n的值;(2)根據(jù)眾數(shù)的定義求解可得;(3)用總人數(shù)乘以樣本中喜愛新聞節(jié)目的人數(shù)所占比例.【詳解】解:(1)被調查的學生總數(shù)為30÷20%=150(人),m=150?(12+30+54+9)=45,n%=×100%=36%,即n=36,故答案為150,45,36;(2)由題意知,最喜愛電視節(jié)目為“娛樂”的人數(shù)最多,∴被調查學生中,最喜愛電視節(jié)目的“眾數(shù)”為娛樂,故答案為娛樂;(3)估計該校最喜愛新聞節(jié)目的學生人數(shù)為2000×=1.【點睛】本題考查了統(tǒng)計表、扇形統(tǒng)計圖、樣本估計總體等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考??碱}型.18、(1見解析;(2).【解析】

(1)根據(jù)題意先畫出樹狀圖,得出所有可能出現(xiàn)的結果數(shù);

(2)根據(jù)(1)可得共有9種情況,兩次取出小球上的數(shù)字和為奇數(shù)的情況,再根據(jù)概率公式即可得出答案.【詳解】(1)列表得,(2)兩次取出的小球上的數(shù)字之和為奇數(shù)的共有4種,∴P兩次取出的小球上數(shù)字之和為奇數(shù)的概率P=.【點睛】此題可以采用列表法或者采用樹狀圖法,列表法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件.樹狀圖法適用于兩步或兩步以上完成的事件.解題時還要注意是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.19、(1)a=-1,B坐標為(1,3);(2)y=-(x-3)2+3,或y=-(x-7)2+3.【解析】

(1)利用待定系數(shù)法即可解決問題;(2)如圖,設拋物線向右平移后的解析式為y=-(x-m)2+3,再用m表示點C的坐標,需分兩種情況討論,用待定系數(shù)法即可解決問題.【詳解】(1)把點A(0,2)代入拋物線的解析式可得,2=a+3,∴a=-1,∴拋物線的解析式為y=-(x-1)2+3,頂點為(1,3)(2)如圖,設拋物線向右平移后的解析式為y=-(x-m)2+3,由解得x=∴點C的橫坐標為∵MN=m-1,四邊形MDEN是正方形,∴C(,m-1)把C點代入y=-(x-1)2+3,得m-1=-+3,解得m=3或-5(舍去)∴平移后的解析式為y=-(x-3)2+3,當點C在x軸的下方時,C(,1-m)把C點代入y=-(x-1)2+3,得1-m=-+3,解得m=7或-1(舍去)∴平移后的解析式為y=-(x-7)2+3綜上:平移后的解析式為y=-(x-3)2+3,或y=-(x-7)2+3.【點睛】此題主要考查二次函數(shù)的綜合問題,解題的關鍵是熟知正方形的性質與函數(shù)結合進行求解.20、(1)詳見解析;(2)詳見解析.【解析】

(1)利用在同圓中所對的弧相等,弦相等,所對的圓周角相等,三角形內角和可證得∠CDF=90°,則CD⊥DF;(2)應先找到BC的一半,證明BC的一半和CD相等即可.【詳解】證明:(1)∵AB=AD,∴弧AB=弧AD,∠ADB=∠ABD.∵∠ACB=∠ADB,∠ACD=∠ABD,∴∠ACB=∠ADB=∠ABD=∠ACD.∴∠ADB=(180°﹣∠BAD)÷2=90°﹣∠DFC.∴∠ADB+∠DFC=90°,即∠ACD+∠DFC=90°,∴CD⊥DF.(2)過F作FG⊥BC于點G,∵∠ACB=∠ADB,又∵∠BFC=∠BAD,∴∠FBC=∠ABD=∠ADB=∠ACB.∴FB=FC.∴FG平分BC,G為BC中點,∵在△FGC和△DFC中,∴△FGC≌△DFC(ASA),∴∴BC=2CD.【點睛】本題用到的知識點為:同圓中,相等的弧所對的弦相等,所對的圓周角相等,注意把所求角的度數(shù)進行合理分割;證兩條線段相等,應證這兩條線段所在的三角形全等.21、(1)∠ODE=90°;(2)∠A=45°.【解析】分析:(Ⅰ)連接OE,BD,利用全等三角形的判定和性質解答即可;(Ⅱ)利用中位線的判定和定理解答即可.詳解:(Ⅰ)連接OE,BD.∵AB是⊙O的直徑,∴∠ADB=90°,∴∠CDB=90°.∵E點是BC的中點,∴DE=BC=BE.∵OD=OB,OE=OE,∴△ODE≌△OBE,∴∠ODE=∠OBE.∵∠ABC=90°,∴∠ODE=90°;(Ⅱ)∵CF=OF,CE=EB,∴FE是△COB的中位線,∴FE∥OB,∴∠AOD=∠ODE,由(Ⅰ)得∠ODE=90°,∴∠AOD=90°.∵OA=OD,∴∠A=∠ADO=.點睛:本題考查了圓周角定理,關鍵是根據(jù)學生對全等三角形的判定方法及切線的判定等知識的掌握情況解答.22、(1)y=(0≤x≤4);(2)不能為正方形,添加條件:AC=BC時,當點D運動到AB中點位置時四邊形CDBF為正方形.【解析】分析:(1)根據(jù)平移的性質得到DF∥AC,所以由平行線的性質、勾股定理求得GD=,BG==,所以由三角形的面積公式列出函數(shù)關系式;(2)不能為正方形,添加條件:AC=BC時,點D運動到AB中點時,四邊形CDBF為正方形;當D運動到AB中點時,四邊形CDBF是菱形,根據(jù)“直角三角形斜邊上的中線等于斜邊的一半”推知CD=AB,BF=DE,所以AD=CD=BD=CF,又有BE=AD,則CD=BD=BF=CF,故四邊形CDBF是菱形,根據(jù)有一內角為直角的菱形是正方形來添加條件.詳解:(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論