版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
第10講6.4.3第1課時(shí)余弦定理課程標(biāo)準(zhǔn)學(xué)習(xí)目標(biāo)①掌握余弦定理的兩種表示形式及證明方法。②會(huì)運(yùn)用余弦定理解決兩類基本的解三角形問題。1.通過閱讀課本知識(shí)的學(xué)習(xí)弄懂余弦定理的形式與證明方法,提升公式變形技巧,靈活掌握余弦定理;2.在熟練學(xué)習(xí)基礎(chǔ)知識(shí)的基礎(chǔ)上,會(huì)運(yùn)用余弦定理解決兩類基本的解三角形問題,并能夠靈活應(yīng)用;知識(shí)點(diǎn)01:余弦定理(1)余弦定理的描述①文字語言:三角形中任何一邊的平方等于其他兩邊的平方的和減去這兩邊與它們的夾角的余弦的積的兩倍.②符號(hào)語言:在中,內(nèi)角,所對(duì)的邊分別是,則:;【即學(xué)即練1】(2023上·全國·高三專題練習(xí))在中,,,,則(
)A. B.5 C.10 D.【答案】B【詳解】由余弦定理得,即,解得(負(fù)值已舍去).故選:B.(2)余弦定理的推論;;【即學(xué)即練2】(2023上·全國·高三專題練習(xí))的內(nèi)角,,所對(duì)的邊分別為,,.已知,則.【答案】//【詳解】在中,由余弦定理知,又,所以,又,所以.故答案為:.知識(shí)點(diǎn)02:解三角形(1)解三角形一般地,三角形的三個(gè)角和它們的對(duì)邊叫做三角形的元素.已知三角形的幾個(gè)元素求其他元素的過程叫做解三角形.【即學(xué)即練3】(2023·全國·高一課堂例題)根據(jù)下列條件解三角形(邊長精確到0.01,角度精確到0.1°,):(1)已知,,,求a;(2)已知,,,求A.【答案】(1)(2)【詳解】(1)由余弦定理,得,所以.(2)由余弦定理,得,所以.(2)余弦定理在解三角形中的應(yīng)用①已知三角形的三邊解三角形連續(xù)用余弦定理求出兩角;由三角形內(nèi)角和定理求出第三個(gè)角.②已知兩邊和它們的夾角解三角形用余弦定理求出第三邊;用余弦定理求出第二個(gè)角;由三角形內(nèi)角和定理求出第三個(gè)角.③已知兩邊及其中一邊的對(duì)角解三角形例如已知及角,可以根據(jù)余弦定理列出以邊為未知數(shù)的一元二次方程,根據(jù)解一元二次方程的方法,求邊,然后應(yīng)用余弦定理和三角形內(nèi)角和定理,求出其他兩個(gè)角.題型01已知三邊解三角形【典例1】(2023上·新疆·高二學(xué)業(yè)考試)在中,已知,,,則.【典例2】(2023·全國·高一課堂例題)已知的三邊分別為,和,試求最大內(nèi)角的度數(shù).【變式1】(2023上·上海寶山·高三??计谥校┮阎慕茿、B、C對(duì)應(yīng)邊長分別為a、b、c,,,,則【變式2】(2023·全國·高一隨堂練習(xí))的三邊之比為.求這個(gè)三角形的最大角.題型02已知兩邊及一角解三角形【典例1】(2023上·新疆·高二學(xué)業(yè)考試)在中,角的對(duì)邊分別是,已知,,,則等于(
)A.1 B.2 C. D.【典例2】(2023·海南省直轄縣級(jí)單位·??寄M預(yù)測)的內(nèi)角A,B,C的對(duì)邊分別為,已知,,,則(
)A. B. C. D.【典例3】6.(2021上·廣東·高二)在中,已知.(1)求的長(2)求的值【變式1】(2023上·湖南常德·高二校聯(lián)考期中)在△ABC中,,,,則(
)A.2 B. C.3 D.【變式2】(2023上·全國·高三專題練習(xí))在銳角中,,的面積為,則=.【變式3】(2023上·上海長寧·高三上海市延安中學(xué)校考期中)在中,,則.題型03判斷三角形的形狀【典例1】(2023下·河北保定·高一保定一中??茧A段練習(xí))在中,其內(nèi)角的對(duì)邊分別為,若,則的形狀是(
)A.等腰三角形 B.直角三角形C.等腰直角三角形 D.等腰或直角三角形【典例2】(2023下·海南??凇じ咭缓D现袑W(xué)校考期中)在中,,,所對(duì)的邊分別為,,,若,,,則是(
)A.銳角三角形 B.鈍角三角形C.直角三角形 D.以上答案都不對(duì)【典例3】(2023上·全國·高三專題練習(xí))在中,角,,所對(duì)的邊分別為,,,,.是否存在正整數(shù),使得為鈍角三角形?若存在,求;若不存在,說明理由.【變式1】(2023下·江蘇宿遷·高一統(tǒng)考期末)在中,角所對(duì)的邊分別為.若,則為(
)A.等腰三角形 B.直角三角形C.等腰直角三角形 D.等腰或直角三角形【變式2】(2023下·黑龍江哈爾濱·高一哈爾濱市第三十二中學(xué)校校考期中)在中,若,,則的形狀是()A.等腰直角三角形 B.直角三角形C.等腰三角形 D.等邊三角形【變式3】(2023下·上海青浦·高一上海市青浦高級(jí)中學(xué)??计谥校┰凇鰽BC中,角A,B,C所對(duì)的邊為a,b,c(1)若,求∠B;(2)若,試判斷△ABC的形狀.題型04求三角形中邊長(周長)取值范圍【典例1】(2023上·全國·高三專題練習(xí))設(shè)是鈍角三角形的三邊長,則的取值范圍是()A. B. C. D.【典例2】(2023下·四川成都·高一樹德中學(xué)??计谀┮阎g角的角,,所對(duì)的邊分別為,,,,,則最大邊的取值范圍為(
)A. B. C.D.【典例3】(2023·全國·高三專題練習(xí))在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,滿足,,則b+c的取值范圍是(
)A. B. C. D.【典例4】(2023下·安徽馬鞍山·高一統(tǒng)考期末)已知△ABC是鈍角三角形,角A,B,C的對(duì)邊依次是a,b,c,且,,則邊c的取值范圍是.【典例5】(2023上·貴州遵義·高三統(tǒng)考階段練習(xí))在中,,在邊上,且.(1)若,求的周長;【變式1】(2023上·上海嘉定·高二上海市嘉定區(qū)第一中學(xué)校考期中)在鈍角中,角所對(duì)的邊分別為,若,則最大邊的取值范圍是(
)A. B. C. D.【變式2】(2023下·江蘇揚(yáng)州·高一統(tǒng)考期中)已知銳角三角形邊長分別為1,2,x,則x的取值范圍是()A. B. C. D.不確定【變式3】(多選)(2023下·福建福州·高一校聯(lián)考期末)已知是鈍角三角形,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,若,,則最大的邊c的取值可能是(
)A.4.5 B.5 C.6 D.6.5【變式4】(2023下·江蘇南京·高一南京外國語學(xué)校??茧A段練習(xí))在中,角為鈍角,內(nèi)角的對(duì)邊分別為,若,則的取值范圍是.【變式5】(2023上·遼寧遼陽·高三統(tǒng)考期末)在①,②D是邊的中點(diǎn)且,這兩個(gè)條件中任選一個(gè),補(bǔ)充在下面問題中,并作答.問題:在中,內(nèi)角A,B,C的對(duì)邊分別是a,b,c,且.(1)求A;(2)若__________,求的最大值.注:如果選擇兩個(gè)條件分別解答,按第一個(gè)解答計(jì)分.A夯實(shí)基礎(chǔ)B能力提升C綜合素養(yǎng)A夯實(shí)基礎(chǔ)一、單選題1.(2023下·吉林通化·高一校考階段練習(xí))在中,已知,則角為(
)A. B. C. D.2.(2023上·浙江金華·高二浙江省東陽市外國語學(xué)校??奸_學(xué)考試)在中,角所對(duì)的邊分別為,若,則角(
)A. B. C. D.3.(2023下·湖南長沙·高一長沙一中??计谀┰谥校?,,,則最長邊(
)A. B. C.或 D.4.(2023下·貴州黔西·高一校考期中)在中,已知,則角A等于(
)A.150° B.120° C.60° D.30°5.(2024上·黑龍江哈爾濱·高三哈爾濱市第六中學(xué)校??茧A段練習(xí))密位制是度量角的一種方法,把一周角等分為6000份,每一份叫作1密位的角.在角的密位制中,單位可省去不寫,采用四個(gè)數(shù)碼表示角的大小,在百位數(shù)與十位數(shù)之間畫一條短線,如1周角等于6000密位,寫成“”,578密位寫成“”.若在中,分別是角所對(duì)的邊,且有.則角用密位制表示正確的是(
)A. B. C. D.6.(2023·山東·統(tǒng)考一模)已知的內(nèi)角的對(duì)邊分別是,面積為S,且,則角的值為(
)A. B. C. D.7.(2023上·江西南昌·高三校聯(lián)考期中)在公元前500年左右的畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家們堅(jiān)信,“萬物皆(整)數(shù)與(整)數(shù)之比”,但后來的數(shù)學(xué)家發(fā)現(xiàn)了無理數(shù),引發(fā)了數(shù)學(xué)史上的第一次數(shù)學(xué)危機(jī).下圖是公元前400年古希臘數(shù)學(xué)家泰特拖斯用來構(gòu)造無理數(shù)、、,……的圖形,此圖形中的余弦值是(
)A. B. C. D.8.(2023上·云南昆明·高二云南師大附中校聯(lián)考期中)三角形中,,,,則(
)A. B. C. D.2二、多選題9.(2023下·廣東湛江·高一湛江市第二中學(xué)校考期中)已知中,角,,的對(duì)邊分別為,,,且,,,則(
)A. B. C.3 D.10.(2023下·廣東東莞·高一統(tǒng)考期末)在中,,,,則可能的取值有(
)A. B.2 C.3 D.4三、填空題11.(2024·浙江臺(tái)州·統(tǒng)考一模)在中,角A,,所對(duì)的分別為,,.若角A為銳角,,,則的周長可能為.(寫出一個(gè)符合題意的答案即可)12.(2023上·福建福州·高二??茧A段練習(xí))在中,角,,所對(duì)的邊分別為,,,若,且,,則的值為.四、解答題13.(2023上·福建泉州·高二統(tǒng)考階段練習(xí))已知的內(nèi)角,,的對(duì)邊分別為,,,且.(1)若,求;(2)若,當(dāng)最大時(shí),求的周長.14.(2023上·河南·高三校聯(lián)考期中)在銳角中,角所對(duì)的邊分別為,已知.(1)求;(2)若,求周長的最大值.B能力提升1.(2023·陜西·校聯(lián)考模擬預(yù)測)的內(nèi)角的對(duì)邊分別為.(1)求;(2)若,求的周長最小值.2.(2023·四川成都·校聯(lián)考模擬預(yù)測)已知的內(nèi)角,,所對(duì)的邊分別為,,,且.(1)求角;(2)若,,,求的長.3.(2023上·云南·高三云南師大附中??茧A段練習(xí))在梯形中,,是上一點(diǎn),滿足,是上一動(dòng)點(diǎn),.
(1)如圖1,若,,求的長;(2)如圖2,,,且,,三條直線交于同一點(diǎn),求的長.C綜合素養(yǎng)1.(2023上·江西·高三校聯(lián)考階段練習(xí))《孔雀東南飛》中曾敘“十三能織素,十四學(xué)裁衣,十五彈箜篌,十六誦詩書.”箜篌歷史悠久?源遠(yuǎn)流長,音域?qū)拸V?音色柔美清澈,表現(xiàn)力強(qiáng).如圖是箜篌的一種常見的形制,對(duì)其進(jìn)行繪制,發(fā)現(xiàn)近似一扇形,在圓弧的兩個(gè)端點(diǎn)A,B處分別作切線相交于點(diǎn)C,測得切線,根據(jù)測量數(shù)據(jù)可估算出該圓弧所對(duì)圓心角的余弦值為(
)
A.0.62 B.0.56 C.-0.56 D.-0.622.(2023上·江蘇南通·高三統(tǒng)考期末)我國油紙傘的制作工藝巧妙.如圖(1),傘不管是張開還是收攏,傘柄始終平分同一平面內(nèi)兩條傘骨所成的角,且,從而保證傘圈能夠沿著傘柄滑動(dòng).如圖(2),傘完全收攏時(shí),傘圈已滑動(dòng)到的位置,且、、三點(diǎn)共線,,為的中點(diǎn),當(dāng)傘從完全張開到完全收攏,傘圈沿著傘柄向下滑動(dòng)的距離為,則當(dāng)傘完全張開時(shí),的余弦值是()
A. B. C. D.3.(2023下·江蘇連云港·高一江蘇省海頭高級(jí)中學(xué)校考期末)曲柄連桿機(jī)構(gòu)的示意圖如圖所示,當(dāng)曲柄OA在水平位置OB時(shí),連桿端點(diǎn)P在Q的位置,當(dāng)OA自O(shè)B按順時(shí)針方向旋轉(zhuǎn)角時(shí),P和Q之間的距離是cm,若,,,則
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 人造革箱產(chǎn)品入市調(diào)查研究報(bào)告
- 拖把桶產(chǎn)品入市調(diào)查研究報(bào)告
- 房屋租賃合同直接打印版三篇
- 職業(yè)技能發(fā)展培訓(xùn)協(xié)議
- 制圖用刮刀市場洞察報(bào)告
- 店鋪負(fù)責(zé)人聘用合同案例
- 簡易工程協(xié)議書
- 終止租賃合同協(xié)議書編寫要點(diǎn)
- 中學(xué)實(shí)驗(yàn)室技術(shù)人員聘用協(xié)議
- 頭巾產(chǎn)品入市調(diào)查研究報(bào)告
- 4.1數(shù)列的概念(第2課時(shí))-高中數(shù)學(xué)人教A版(2019)選擇性必修第二冊
- 英文科技論文寫作的100個(gè)常見錯(cuò)誤
- 新湘科版小學(xué)三年級(jí)科學(xué)上冊-全冊教案
- 2023飛輪儲(chǔ)能技術(shù)在新能源一次調(diào)頻上的應(yīng)用
- 第7講-化學(xué)工程的倫理問題-201912092040097
- 激素類藥物使用規(guī)范
- 全面預(yù)算管理項(xiàng)目啟動(dòng)培訓(xùn)課件PPT
- 北師大版2023-2024五年級(jí)數(shù)學(xué)上冊期中測試卷
- 第十六章-組織創(chuàng)新-管理學(xué)馬工程-課件
- 全球航路的開辟(共31張)
- 東方管理智慧儒道禪的視閾
評(píng)論
0/150
提交評(píng)論