山東省威海市文登市2024年數(shù)學八年級下冊期末綜合測試試題含解析_第1頁
山東省威海市文登市2024年數(shù)學八年級下冊期末綜合測試試題含解析_第2頁
山東省威海市文登市2024年數(shù)學八年級下冊期末綜合測試試題含解析_第3頁
山東省威海市文登市2024年數(shù)學八年級下冊期末綜合測試試題含解析_第4頁
山東省威海市文登市2024年數(shù)學八年級下冊期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

山東省威海市文登市2024年數(shù)學八年級下冊期末綜合測試試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題3分,共30分)1.如圖,在平面直角坐標系xOy中,點A、C、F在坐標軸上,E是OA的中點,四邊形AOCB是矩形,四邊形BDEF是正方形,若點C的坐標為(3,0),則點D的坐標為()A.(1,3) B.(1,) C.(1,) D.(,)2.下列四組線段中??梢詷?gòu)成直角三角形的是()A.4,5,6 B.1.5,2,2.5 C.2,3,4 D.1,3,33.四邊形對角線、交于,若、,則四邊形是()A.平行四邊形 B.等腰梯形 C.矩形 D.以上都不對4.下列各數(shù)中,是不等式的解的是A. B.0 C.1 D.35.如圖,正方形的邊長為4,點是的中點,點從點出發(fā),沿移動至終點,設點經(jīng)過的路徑長為,的面積為,則下列圖象能大致反映與函數(shù)關(guān)系的是()A. B. C. D.6.如果,下列各式中不正確的是A. B. C. D.7.如圖,在4×4的正方形網(wǎng)格中,每個小正方形的邊長均為1,△ABC的三個頂點均在格點上,則該三角形最長邊的長為()A. B.3 C. D.58.甲、乙、丙、丁四人進行射擊測試,每人10次射擊成績的平均數(shù)都為8.8環(huán),方差分別為,,=0.48,=0.45,則四人中成績最穩(wěn)定的是()A.甲 B.乙 C.丙 D.丁9.現(xiàn)有一組數(shù)據(jù):3、4、5、5、6、6、6、6、7,若去掉其中一個數(shù)6則不受影響的是()A.眾數(shù) B.中位數(shù) C.平均數(shù) D.眾數(shù)和中位數(shù)10.如圖,平行四邊形ABCD中,∠B=60°,AB⊥AC,AC的垂直平分線交AD于點E,△CDE的周長是15,則平行四邊形ABCD的面積為()A. B.40 C.50 D.二、填空題(每小題3分,共24分)11.如圖,正方形ABCD的邊長為8,點E是BC上的一點,連接AE并延長交射線DC于點F,將△ABE沿直線AE翻折,點B落在點N處,AN的延長線交DC于點M,當AB=2CF時,則NM的長為_____.12.已知線段a,b,c能組成直角三角形,若a=3,b=4,則c=_____.13.換元法解方程時,可設,那么原方程可化為關(guān)于的整式方程為_________.14.已知,如圖,正方形ABCD的面積為25,菱形PQCB的面積為20,則陰影部分的面積為________.15.如圖,在四邊形ABCD中,對角線AC、BD互相垂直平分,若使四邊形ABCD是正方形,則需要再添加的一個條件為___________.(圖形中不再添加輔助線,寫出一個條件即可)16.當x=______時,分式的值是1.17.已知點,在雙曲線上,軸于點,軸于點,與交于點,是的中點,若的面積為4,則_______.18.關(guān)于一元二次方程的一個根為,則另一個根為__________.三、解答題(共66分)19.(10分)某公司欲招聘一名部門經(jīng)理,對甲、乙、丙三名候選人進行了筆試與面試,甲、乙、丙三人的筆試成績分別為95分、94分和94分.他們的面試成績?nèi)绫恚汉蜻x人評委1評委2評委3甲948990乙929094丙918894(1)分別求出甲、乙、丙三人的面試成績的平均分、、;(2)若按筆試成績的40%與面試成績的60%的和作為綜合成績,綜合成績高者將被錄用,請你通過計算判斷誰將被錄用.20.(6分)如圖,已知:在平行四邊形ABCD中,AB=2,AD=4,∠ABC=60°,E為AD上一點,連接CE,AF∥CE且交BC于點F.(1)求證:四邊形AECF為平行四邊形.(2)證明:△AFB≌△CED.(3)DE等于多少時,四邊形AECF為菱形.(4)DE等于多少時,四邊形AECF為矩形.21.(6分)“四書五經(jīng)”是中國的“圣經(jīng)”,“四書五經(jīng)”是《大學》、《中庸》、《論語》和《孟子》(四書)及《詩經(jīng)》、《尚書》、《易經(jīng)》、《禮記》、《春秋》(五經(jīng))的總稱,這是一部被中國人讀了幾千年的教科書,包含了中國古代的政治理想和治國之道,是我們了解中國古代社會的一把鑰匙,學校計劃分階段引導學生讀這些書,計劃先購買《論語》和《孟子》供學生使用,已知用500元購買《孟子》的數(shù)量和用800元購買《論語》的數(shù)量相同,《孟子》的單價比《論語》的單價少15元.(1)求《論語》和《孟子》這兩種書的單價各是多少?(2)學校準備一次性購買這兩種書本,但總費用不超過元,那么這所學校最多購買多少本《論語》?22.(8分)已知三個實數(shù)x,y,z滿足,求的值.23.(8分)解不等式組:,并把解集在數(shù)軸上表示出來。24.(8分)全國兩會民生話題成為社會焦點.合肥市記者為了了解百姓“兩會民生話題”的聚焦點,隨機調(diào)查了合肥市部分市民,并對調(diào)查結(jié)果進行整理.繪制了如圖所示的不完整的統(tǒng)計圖表.組別焦點話題頻數(shù)(人數(shù))A食品安全80B教育醫(yī)療mC就業(yè)養(yǎng)老nD生態(tài)環(huán)保120E其他60請根據(jù)圖表中提供的信息解答下列問題:(1)填空:m=,n=.扇形統(tǒng)計圖中E組所占的百分比為%;(2)合肥市人口現(xiàn)有750萬人,請你估計其中關(guān)注D組話題的市民人數(shù);(3)若在這次接受調(diào)查的市民中,隨機抽查一人,則此人關(guān)注C組話題的概率是多少?25.(10分)如圖,拋物線y=ax2+bx﹣3過A(1,0),B(﹣3,0),直線AD交拋物線于點D,點D的橫坐標為﹣2,點P(m,n)是線段AD上的動點.(1)求直線AD及拋物線的解析式;(2)過點P的直線垂直于x軸,交拋物線于點Q,求線段PQ的長度l與m的關(guān)系式,m為何值時,PQ最長?(3)在平面內(nèi)是否存在整點(橫、縱坐標都為整數(shù))R,使得P,Q,D,R為頂點的四邊形是平行四邊形?若存在,直接寫出點R的坐標;若不存在,說明理由.26.(10分)如圖,正方形網(wǎng)格中的每個小正方形的邊長都是1,每個小正方形的頂點叫作格點.ΔABC的三個頂點A,B,C都在格點上,將ΔABC繞點A按順時針方向旋轉(zhuǎn)90°得到ΔA(1)在正方形網(wǎng)格中,畫出ΔAB(2)畫出ΔAB'C'向左平移(3)計算線段AB在變換到AB'

參考答案一、選擇題(每小題3分,共30分)1、A【解析】

過D作DH⊥y軸于H,根據(jù)矩形和正方形的性質(zhì)得到AO=BC,DE=EF=BF,∠AOC=∠DEF=∠BFE=∠BCF=90°,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論.【詳解】過D作DH⊥y軸于H,∵四邊形AOCB是矩形,四邊形BDEF是正方形,∴AO=BC,DE=EF=BF,∠AOC=∠DEF=∠BFE=∠BCF=90°,∴∠OEF+∠EFO=∠BFC+∠EFO=90°,∴∠OEF=∠BFO,∴△EOF≌△FCB(ASA),∴BC=OF,OE=CF,∴AO=OF,∵E是OA的中點,∴OE=OA=OF=CF,∵點C的坐標為(3,0),∴OC=3,∴OF=OA=2,AE=OE=CF=1,同理△DHE≌△EOF(ASA),∴DH=OE=1,HE=OF=2,∴OH=2,∴點D的坐標為(1,3),故選A.【點睛】本題考查了正方形的性質(zhì),坐標與圖形性質(zhì),矩形的性質(zhì),全等三角形的判定和性質(zhì),正確的識別圖形是解題的關(guān)鍵.2、B【解析】

由勾股定理的逆定理,只要驗證兩小邊的平方和等于最長邊的平方即可.【詳解】解:A.42+52≠62,不可以構(gòu)成直角三角形,故A選項錯誤;B.1.52+22=2.52,可以構(gòu)成直角三角形,故B選項正確.C、22+32≠42,不可以構(gòu)成直角三角形,故C選項錯誤;

D、12+32≠32,不可以構(gòu)成直角三角形,故D選項錯誤;故選:B【點睛】本題考查勾股定理的逆定理:如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形就是直角三角形.3、D【解析】

由四邊形ABCD對角線AC、BD交于O,若AO=OD、BO=OC,易得AC=BD,AD∥BC,然后分別從AD=BC與AD≠BC去分析求解,即可求得答案.【詳解】∵AO=OD、BO=OC,∴AC=BD,∠OAD=∠ODA=,∠OBC=∠OCB=,∵∠AOD=∠BOC,∴∠OAD=∠OCB,∴AD∥BC,①若AD=BC,則四邊形ABCD是平行四邊形,∵AC=BD,∴平行四邊形ABCD是矩形;②若AD≠BC,則四邊形ABCD是梯形,∵AC=BD,∴四邊形ABCD是等腰梯形.故答案選D.【點睛】本題考查了平行四邊形的性質(zhì)和矩形與等腰梯形的判定,解題的關(guān)鍵是熟練的掌握平行四邊形的性質(zhì)和矩形與等腰梯形的判定.4、D【解析】

判斷各個選項是否滿足不等式的解即可.【詳解】滿足不等式x>2的值只有3,故選:D.【點睛】本題考查不等式解的求解,關(guān)鍵是明白解的取值范圍.5、C【解析】

結(jié)合題意分情況討論:①當點P在AE上時,②當點P在AD上時,③當點P在DC上時,根據(jù)三角形面積公式即可得出每段的y與x的函數(shù)表達式.【詳解】①當點在上時,∵正方形邊長為4,為中點,∴,∵點經(jīng)過的路徑長為,∴,∴,②當點在上時,∵正方形邊長為4,為中點,∴,∵點經(jīng)過的路徑長為,∴,,∴,,,,③當點在上時,∵正方形邊長為4,為中點,∴,∵點經(jīng)過的路徑長為,∴,,∴,綜上所述:與的函數(shù)表達式為:.故答案為:C.【點睛】本題考查動點問題的函數(shù)圖象,解決動點問題的函數(shù)圖象問題關(guān)鍵是發(fā)現(xiàn)y隨x的變化而變化的趨勢.6、B【解析】

根據(jù)不等式兩邊加上(或減去)同一個數(shù),不等號方向不變對A進行判斷;根據(jù)不等式兩邊乘以(或除以)同一個負數(shù),不等號方向改變可對B、D進行判斷.根據(jù)不等式兩邊乘以(或除以)同一個正數(shù),不等號方向不變可對C進行判斷.【詳解】、,則,所以選項的結(jié)論正確;、,則,所以選項的結(jié)論錯誤;、,則,所以選項的結(jié)論正確;、,則,所以選項的結(jié)論正確.故選.【點睛】本題考查了不等式的性質(zhì):不等式兩邊加上(或減去)同一個數(shù),不等號方向不變;不等式兩邊乘以(或除以)同一個正數(shù),不等號方向不變;不等式兩邊乘以(或除以)同一個負數(shù),不等號方向改變.7、B【解析】

根據(jù)風格特點利用勾股定理求出三邊長,比較即可得.【詳解】AB=,BC=,AC=,<<3,所以中長邊的長為3,故選B.【點睛】本題考查了勾股定理的應用,熟練掌握網(wǎng)格的結(jié)構(gòu)特征以及勾股定理的內(nèi)容是解題的關(guān)鍵.8、D【解析】

根據(jù)方差的意義進行判斷.【詳解】解:∵<<<∴四人中成績最穩(wěn)定的是?。蔬x:D.【點睛】本題考查了方差:方差是反映一組數(shù)據(jù)的波動大小的一個量.方差越大,則平均值的離散程度越大,穩(wěn)定性也越??;反之,則它與其平均值的離散程度越小,穩(wěn)定性越好.9、A【解析】

根據(jù)眾數(shù)、平均數(shù)和中位數(shù)的定義分別對每一項進行分析,即可得出答案.【詳解】A、這組數(shù)據(jù)3、4、5、5、6、6、6、6、7的眾數(shù)是6,若去掉其中一個數(shù)6時,眾數(shù)還是6,故本選項正確;

B、原數(shù)據(jù)的中位數(shù)是6,若去掉其中一個數(shù)6時,中位數(shù)是=5.5,故本選項錯誤;

C、原數(shù)據(jù)的平均數(shù)是,若去掉其中一個數(shù)6時,平均數(shù)是,故本選項錯誤;

D、眾數(shù)不變,中位數(shù)發(fā)生改變,故本選項錯誤;

故選A.【點睛】考查了確定一組數(shù)據(jù)的中位數(shù)、平均數(shù)和眾數(shù)的能力.一些學生往往對這個概念掌握不清楚,計算方法不明確而誤選其它選項,注意找中位數(shù)的時候一定要先排好順序,然后再根據(jù)奇數(shù)和偶數(shù)個來確定中位數(shù),如果數(shù)據(jù)有奇數(shù)個,則正中間的數(shù)字即為所求,如果是偶數(shù)個則找中間兩位數(shù)的平均數(shù).10、D【解析】

首先證明AD+CD=15,再證明AD=2CD,推出CD=5,AD=10,利用勾股定理求出AC即可解決問題;【詳解】∵點E在AC的垂直平分線上∴EA=EC∴△CDB的周長=CD+DE+EC=CD+DE+EA=CD+DA=15∵四邊形ABCD是平行四邊形∴∠B=∠D=60°,AB∥CD∵AB⊥AC,∴AC⊥CD∴∠ACD=90°∴∠CAD=30°∴AD=2CD∴CD=5,AD=10∴AC=S=2S△ADC=2×5×5=25故選D【點睛】此題考查平行四邊形的性質(zhì)和勾股定理,解題關(guān)鍵在于先證明AD+CD=15,再證明AD=2CD二、填空題(每小題3分,共24分)11、【解析】

先根據(jù)折疊的性質(zhì)得∠EAB=∠EAN,AN=AB=8,再根據(jù)正方形的性質(zhì)得AB∥CD,則∠EAB=∠F,所以∠EAN=∠F,得到MA=MF,設CM=x,則AM=MF=4+x,DM=DC-MC=8-x,在Rt△ADM中,根據(jù)勾股定理,解得x,然后利用MN=AM-AN求解即可.【詳解】解:∵△ABE沿直線AE翻折,點B落在點N處,∴AN=AB=8,∠BAE=∠NAE,∵正方形對邊AB∥CD,∴∠BAE=∠F,∴∠NAE=∠F,∴AM=FM,設CM=x,∵AB=2CF=8,∴CF=4,∴DM=8﹣x,AM=FM=4+x,在Rt△ADM中,由勾股定理得,AM2=AD2+DM2,即(4+x)2=82+(8﹣x)2,解得x=,所以,AM=4+4=8,所以,NM=AM﹣AN=8﹣8=.故答案為:.【點睛】本題考查了折疊的性質(zhì):折疊是一種對稱變換,折疊前后圖形的形狀和大小不變,對應邊和對應角相等,也考查了正方形的性質(zhì)和勾股定理,熟練掌握正方形的性質(zhì)及折疊的性質(zhì)并能正確運用勾股定理是解題的關(guān)鍵.12、5或【解析】

由于沒有指明斜邊與直角邊,因此要分4為斜邊與4為直角邊兩種情況來求解.【詳解】分兩種情況,當4為直角邊時,c為斜邊,c==5;當長4的邊為斜邊時,c==,故答案為:5或.【點睛】本題利用了勾股定理求解,注意要討論c為斜邊或是直角邊的情況.13、【解析】

換元法即是整體思想的考查,解題的關(guān)鍵是找到這個整體,此題的整體是設,換元后整理即可求得.【詳解】解:把

代入方程得:,

方程兩邊同乘以y得:.

故答案為:【點睛】本題主要考查用換元法解分式方程,它能夠把一些分式方程化繁為簡,化難為易,對此應注意總結(jié)能用換元法解的分式方程的特點,尋找解題技巧.14、1【解析】

由題意易得AB=BC=BP=PQ=QC=5,EC=4,在Rt△QEC中,可根據(jù)勾股定理求得EQ=3,又有PE=PQ-EQ=2,進而可得S陰影的值.【詳解】∵正方形ABCD的面積是25,∴AB=BC=BP=PQ=QC=5,又∵S菱形PQCB=PQ×EC=5×EC=20,∴S菱形PQCB=BC?EC,即20=5?EC,∴EC=4,在Rt△QEC中,EQ==3;∴PE=PQ-EQ=2,∴S陰影=S正方形ABCD-S梯形PBCE=25-×(5+2)×4=25-14=1.故答案為1.【點睛】此題主要考查了菱形的性質(zhì)和面積計算以及正方形的性質(zhì),根據(jù)已知得出EC=8,進而求出EQ的長是解題關(guān)鍵.15、AC=BD答案不唯一【解析】

由四邊形ABCD的對角線互相垂直平分,可得四邊形ABCD是菱形,再添加∠DAB=90°,即可得出四邊形ABCD是正方形.【詳解】解:可添加AC=BD,

理由如下:

∵四邊形ABCD的對角線互相平分,

∴四邊形ABCD是平行四邊形,

∵AC⊥BD,∴平行四邊形ABCD是菱形,

∵∠DAB=90°,

∴四邊形ABCD是正方形.

故答案為:AC=BD(答案不唯一).【點睛】本題是考查正方形的判定,判別一個四邊形為正方形主要根據(jù)正方形的概念,途經(jīng)有兩種:①先說明它是矩形,再說明有一組鄰邊相等;②先說明它是菱形,再說明它有一個角為直角.16、1【解析】

直接利用分式的值為零則分子為零進而得出答案.【詳解】∵分式的值是1,∴x=1.故答案為:1.【點睛】此題主要考查了分式的值為零的條件,正確把握分式的性質(zhì)是解題關(guān)鍵.17、2【解析】

如圖,由△ABP的面積為4,知BP?AP=1.根據(jù)反比例函數(shù)中k的幾何意義,知本題k=OC?AC,由反比例函數(shù)的性質(zhì),結(jié)合已知條件P是AC的中點,得出OC=BP,AC=2AP,進而求出k的值.【詳解】如圖解:∵△ABP的面積為BP?AP=4,

∴BP?AP=1,

∵P是AC的中點,

∴A點的縱坐標是B點縱坐標的2倍,

又∵點A、B都在雙曲線(x>0)上,

∴B點的橫坐標是A點橫坐標的2倍,

∴OC=DP=BP,

∴k=OC?AC=BP?2AP=2.

故答案為:2.【點睛】主要考查了反比例函數(shù)中k的幾何意義,即過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|,是經(jīng)??疾榈囊粋€知識點;這里體現(xiàn)了數(shù)形結(jié)合的思想,做此類題時一定要正確理解k的幾何意義.18、1【解析】

利用根與系數(shù)的關(guān)系可得出方程的兩根之積為-1,結(jié)合方程的一個根為-1,可求出方程的另一個根,此題得解.【詳解】∵a=1,b=m,c=-1,

∴x1?x2==-1.

∵關(guān)于x一元二次方程x2+mx-1=0的一個根為x=-1,

∴另一個根為-1÷(-1)=1.

故答案為:1.【點睛】此題考查根與系數(shù)的關(guān)系以及一元二次方程的解,牢記兩根之積等于是解題的關(guān)鍵.三、解答題(共66分)19、:(1)=91分,=92分,=91分;(2)乙將被錄用.【解析】

(1)根據(jù)算術(shù)平均數(shù)的含義和求法,分別用三人的面試的總成績除以3,求出甲、乙、丙三人的面試的平均分、和即可;(2)首先根據(jù)加權(quán)平均數(shù)的含義和求法,分別求出三人的綜合成績各是多少;然后比較大小,判斷出誰的綜合成績最高,即可判斷出誰將被錄用.【詳解】解:(1)=(94+89+90)÷3=273÷3=91(分),=(92+90+94)÷3=276÷3=92(分),=(91+88+94)÷3=273÷3=91(分),∴甲的面試成績的平均分是91分,乙的面試成績的平均分是92分,丙的面試成績的平均分是91分;(2)甲的綜合成績=40%×95+60%×91=38+54.6=92.6(分),乙的綜合成績=40%×94+60%×92=37.6+55.2=92.8(分),丙的綜合成績=40%×94+60%×91=37.6+54.6=92.2(分),∵92.8>92.6>92.2,∴乙將被錄用.故答案為(1)=91分,=92分,=91分;(2)乙將被錄用.【點睛】本題主要考查了加權(quán)平均數(shù)的含義和求法,要熟練掌握,解答此題的關(guān)鍵是要明確:數(shù)據(jù)的權(quán)能夠反映數(shù)據(jù)的相對“重要程度”,要突出某個數(shù)據(jù),只需要給它較大的“權(quán)”,權(quán)的差異對結(jié)果會產(chǎn)生直接的影響.還考查了算術(shù)平均數(shù)的含義和求法,要熟練掌握,解答此題的關(guān)鍵是要明確:算術(shù)平均數(shù)是加權(quán)平均數(shù)的一種特殊情況,加權(quán)平均數(shù)包含算術(shù)平均數(shù),當加權(quán)平均數(shù)中的權(quán)相等時,就是算術(shù)平均數(shù).20、(1)見解析;(2)見解析;(3)DE=2;(4)DE=1.【解析】

(1)根據(jù)兩組對邊分別平行的四邊形是平行四邊形進行證明即可得;(2)根據(jù)ABCD為平行四邊形,可得AB=CD,AD=BC,再根據(jù)AECF為平行四邊形,可得AF=CE,AE=FC,繼而可得DE=BF,根據(jù)SSS即可證明△AFB≌△CED;(3)當DE=2時,AECF為菱形,理由:由AB=DC=2,∠ABC=∠EDC=60°可得△EDC為等邊三角形,繼而可得到AE=EC,根據(jù)鄰邊相等的平行四邊形是菱形即可得;(4)當DE=1時,AECF為矩形,理由:若AECF為矩形則有∠DEC=90°,再根據(jù)DC=2,∠D=60°,則可得∠DCE=30°,繼而可得DE=1.【詳解】(1)∵為平行四邊形,∴,即,又∵(已知),∴為平行四邊形;(2)∵為平行四邊形,∴,,∵為平行四邊形,∴,∴,在與中,,∴;(3)當時,為菱形,理由如下:∵,∴為等邊三角形,,,即:,∴平行四邊形為菱形;(4)當時,為矩形,理由如下:若為矩形得:,∵,,∴,∴.【點睛】本題考查了平行四邊形的判定與性質(zhì)、菱形的判定、矩形的判定與性質(zhì)等,熟練掌握相關(guān)的性質(zhì)與定理是解題的關(guān)鍵.21、(1)《孟子》的單價為25元/本,《論語》單價為40元/本;(2)最多購買12本.【解析】

(1)本題中有兩個相等關(guān)系:《孟子》的單價=《論語》的單價-15元,用500元購買《孟子》的數(shù)量=用800元購買《論語》的數(shù)量;據(jù)此設未知數(shù)列出分式方程,再解方程即可;(2)設購買《論語》本,據(jù)題意列出關(guān)于a的不等式,求出不等式的解集后,再取解集中的最大整數(shù)即可.【詳解】解:(1)設《孟子》的單價為元/本,則《論語》單價為元/本,根據(jù)題意,得,解得,經(jīng)檢驗為原方程的根,.答:《孟子》的單價為25元/本,《論語》單價為40元/本.(2)設購買《論語》本,則購買《孟子》本.根據(jù)題意,得,解得,答:這所學校最多購買12本《論語》.【點睛】本題考查了分式方程的應用和一元一次不等式的應用,正確理解題意列出分式方程和一元一次不等式是解題的關(guān)鍵.22、4【解析】

求得到,然后求出,分子分母同除以xyz得,即可求解?!驹斀狻拷猓骸摺唷喾肿臃帜竿詘yz得=4【點睛】本題考查了條件代數(shù)式求值問題,關(guān)鍵在于觀察條件和所求代數(shù)式直接的聯(lián)系;本題的聯(lián)系在于倒數(shù)的應用和分式基本性質(zhì)的應用。23、,解集在數(shù)軸上表示見解析【解析】試題分析:先解不等式組中的每一個不等式,得到不等式組的解集,再把不等式的解集表示在數(shù)軸上即可.試題解析:由①得:由②得:∴不等式組的解集為:解集在數(shù)軸上表示為:24、(1)40;100;15;(2)225萬人;(3).【解析】試題分析:(1)求得總?cè)藬?shù),然后根據(jù)百分比的定義即可求得;(2)利用總?cè)藬?shù)100萬,乘以所對應的比例即可求解;(3)利用頻率的計算公式即可求解.試題解析:解:(1)總?cè)藬?shù)是:80÷20%=400(人),則m=400×10%=40(人),C組的頻數(shù)n=400﹣80﹣40﹣120﹣60=100,E組所占的百分比是:×100%=15%;(2)750×=225(萬人);(3)隨機抽查一人,則此人關(guān)注C組話題的概率是=.故答案為40,100,15,.考點:頻數(shù)(率)分布表;用樣本估計總體;扇形統(tǒng)計圖;概率公式.25、(1)y=x2+2x﹣1;(2)當m=-時,PQ最長,最大值為;(1)R1(﹣2,﹣2),R2(﹣2,﹣4),R1(﹣2,﹣1),R4(﹣2,﹣5),R5(0,﹣1).【解析】

(1)根據(jù)待定系數(shù)法,可得拋物線的解析式;根據(jù)自變量與函數(shù)值的對應關(guān)系,可得D點坐標,再根據(jù)待定系數(shù)法,可得直線的解析式;(2)根據(jù)平行于y軸直線上兩點間的距離是較大的縱坐標減較小的縱坐標,可得二次函數(shù),根據(jù)二次函數(shù)的性質(zhì),可得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論