版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省鹽城市大豐區(qū)實驗初級中學2024年八年級數學第二學期期末聯考模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.方程3+9=0的根為()A.3 B.-3 C.±3 D.無實數根2.觀察下列命題:(1)如果a<0,b>0,那么a+b<0;(2)如果兩個三角形的3個角對應相等,那么這兩個三角形全等;(3)同角的補角相等;(4)直角都相等.其中真命題的個數是().A.0 B.1 C.2 D.33.如圖,已知AB∥CD,OA:OD=1:4,點M、N分別是OC、OD的中點,則ΔABO與四邊形CDNM的面積比為().A.1:4 B.1:8 C.1:12 D.1:164.把一元二次方程2x2-3x-1=0配方后可得(
)A.x-322=114
B.x-3225.如圖,在中,平分交于點,平分,,交于點,若,則()A.75 B.100 C.120 D.1256.如果=2﹣x,那么()A.x<2 B.x≤2 C.x>2 D.x≥27.已知點(-2,),(-1,),(1,)都在直線y=-3x+b上,則、、的值大小關系是()A.>> B.>> C.<< D.<<8.若一次函數的圖象上有兩點,則下列大小關系正確的是()A. B. C. D.9.如圖,在正方形ABCD中,E、F分別是邊CD、AD上的點,且CE=DF.AE與BF相交于點O,則下列結論錯誤的是()A.AE=BF B.AE⊥BFC.AO=OE D.S△AOB=S四邊形DEOF10.如圖,已知正方形ABCD的邊長為1,以頂點A、B為圓心,1為半徑的兩弧交于點E,以頂點C、D為圓心,1為半徑的兩弧交于點F,則EF的長為()A. B. C. D.11.下列函數中,y總隨x的增大而減小的是()A.y=4x B.y=﹣4x C.y=x﹣4 D.y=x212.為了解某校計算機考試情況,抽取了50名學生的計算機考試成績進行統計,統計結果如表所示,則50名學生計算機考試成績的眾數、中位數分別為()考試分數(分)2016128人數241853A.20,16 B.l6,20 C.20,l2 D.16,l2二、填空題(每題4分,共24分)13.圖,矩形中,,,點是矩形的邊上的一動點,以為邊,在的右側構造正方形,連接,則的最小值為_____.14.若關于的分式方程的解是非負數,則的取值范圍是__________.15.如圖,有一塊菱形紙片ABCD,沿高DE剪下后拼成一個矩形,矩形的長和寬分別是5cm,3cm.EB的長是______.16.如圖平行四邊形ABCD中,AE⊥BC于E,AF⊥CD于F,∠B=50°時,∠EAF的度數是______°.17.計算:______.18.如圖,在平行四邊形ABCD中,∠BAD的平分線AE交邊CD于E,?ABCD的周長是16cm,EC=2cm,則BC=______.三、解答題(共78分)19.(8分)為響應綠色出行號召,越來越多市民選擇租用共享單車出行,已知某共享單車公司為市民提供了手機支付和會員卡支付兩種支付方式,如圖描述了兩種方式應支付金額y(元)與騎行時間x(時)之間的函數關系,根據圖象回答下列問題:(1)求手機支付金額y(元)與騎行時間x(時)的函數關系式;(2)李老師經常騎行共享單車,請根據不同的騎行時間幫他確定選擇哪種支付方式比較合算.20.(8分)學校組織八年級350名學生參加“漢字聽寫”大賽,賽后發(fā)現所有參賽學生的成績均不低于50分,為了更好地了解本次大賽的成績分布情況,隨機抽取了其中若干名學生的成績作為樣本進行整理,得到下列不完整的統計圖表:成績x/分頻數頻率50≤x<6020.0460≤x<7060.1270≤x<809b80≤x<90a0.3690≤x≤100150.30請根據所給信息,解答下列問題:(1)求a和b的值;(2)請補全頻數分布直方圖。21.(8分)房山某中學改革學生的學習模式,變“老師要學生學習”為“學生自主學習”,培養(yǎng)了學生自主學習的能力.小華與小明同學就“最喜歡哪種學習方式”隨機調查了他們周圍的一些同學,根據收集到的數據繪制了以下的兩個統計圖.請根據下面兩個不完整的統計圖回答以下問題:(1)這次抽樣調查中,共調查了名學生;(2)補全兩幅統計圖;(3)根據抽樣調查的結果,估算該校1000名學生中大約有多少人選擇“小組合作學習”?22.(10分)如圖,在?ABCD中,AC、BD交于點O,BD⊥AD于點D,將△ABD沿BD翻折得到△EBD,連接EC、EB.(1)求證:四邊形DBCE是矩形;(2)若BD=4,AD=3,求點O到AB的距離.23.(10分)如圖,在菱形ABCD中,對角線AC,BD交于點O,過點A作AE⊥BC于點E,延長BC至F,使CF=BE,連接DF.(1)求證:四邊形AEFD是矩形;(2)若AC=4,∠ABC=60°,求矩形AEFD的面積.24.(10分)一個多邊形的內角和比它的外角和的2倍還大180度,求這個多邊形的邊數.25.(12分)如圖,的對角線,相交于點,,是上的兩點,并且,連接,.(1)求證;(2)若,連接,,判斷四邊形的形狀,并說明理由.26.某單位欲從內部招聘管理人員一名,對甲、乙、丙三名候選人進行了筆試和面試兩項測試,三人的測試成績如下表所示:根據錄用程序,組織200名職工對三人利用投票推薦的方式進行民主評議,三人得票率(沒有棄權票,每位職工只能推薦1人)如扇形圖所示,每得一票記作1分.(l)如果根據三項測試的平均成績確定錄用人選,那么誰將被錄用(精確到0.01)?(2)根據實際需要,單位將筆試、面試、民主評議三項測試得分按5:2:3的比例確定個人成績,那么誰將被錄用?
參考答案一、選擇題(每題4分,共48分)1、D【解析】原方程可化為:,∵負數沒有平方根,∴原方程無實數根.故選D.2、C【解析】
根據不等式的運算、相似三角形的判定定理、補角的性質、直角的性質對各命題進行判斷即可.【詳解】(1)如果a<0,b>0,那么a+b的值不確定,錯誤;(2)如果兩個三角形的3個角對應相等,那么這兩個三角形相似,錯誤;(3)同角的補角相等,正確;(4)直角都相等,正確;故真命題的個數是2個故答案為:C.【點睛】本題考查了命題的問題,掌握不等式的運算、相似三角形的判定定理、補角的性質、直角的性質是解題的關鍵.3、C【解析】∵AB∥CD,OA:OD=1:4,∴ΔABO與ΔDCO的面積比為1:16又∵點M、N分別是OC、OD的中點,∴ΔOMN與四邊形CDNM的面積比為1:3∴ΔABO與四邊形CDNM的面積比為1:124、C【解析】
方程移項后,方程兩邊除以2變形得到結果,即可判定.【詳解】方程移項得:2x2﹣3x=1,方程兩邊除以2得:x2-32x=12,配方得:x2-32x+9故選C.【點睛】本題考查了解一元二次方程﹣配方法,熟練掌握配方法是解答本題的關鍵.5、B【解析】
根據角平分線的定義推出△ECF為直角三角形,然后根據勾股定理求得CE1+CF1=EF1.【詳解】∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,∴CM=EM=MF=5,EF=10,由勾股定理可知CE1+CF1=EF1=2.故選:B【點睛】本題考查角平分線的定義,直角三角形的判定以及勾股定理的運用.6、B【解析】試題分析:根據二次根式的性質,,可知x-2≤0,即x≤2.故選B考點:二次根式的性質7、B【解析】
先根據直線y=-1x+b判斷出函數的圖象特征,再根據各點橫坐標的大小進行判斷即可.【詳解】∵直線y=-1x+b,k=-1<0,∴y隨x的增大而減小,又∵-2<-1<1,∴y1>y2>y1.故選B.【點睛】本題考查的是一次函數的圖像與性質,即一次函數y=kx+b(k≠0)中,當k>0,y隨x的增大而增大;當k<0,y隨x的增大而減?。?、B【解析】
首先觀察一次函數的x項的系數,當x項的系數大于0,則一次函數隨著x的增大而增大,當x小于0,則一次函數隨著x的減小而增大.因此只需要比較A、B點的橫坐標即可.【詳解】解:根據一次函數的解析式可得此一次函數隨著x的增大而減小因為根據-2<1,可得故選B.【點睛】本題主要考查一次函數的一次項系數的含義,這是必考點,必須熟練掌握.9、C【解析】試題解析:A、∵在正方形ABCD中,
又
∴≌
故此選項正確;
B、∵≌
故此選項正確;
C、連接
假設AO=OE,
∴
∴≌
又
∴AB不可能等于BE,
∴假設不成立,即
故此選項錯誤;
D、∵≌
∴S△AOB=S四邊形DEOF,故此選項正確.
故選C.10、D【解析】
連接AE,BE,DF,CF,可證明三角形AEB是等邊三角形,利用等邊三角形的性質和勾股定理即可求出邊AB上的高線,同理可求出CD邊上的高線,進而求出EF的長.【詳解】解:連接AE,BE,DF,CF.
∵以頂點A、B為圓心,1為半徑的兩弧交于點E,AB=1,
∴AB=AE=BE,
∴△AEB是等邊三角形,
∴邊AB上的高線為EN=,
延長EF交AB于N,并反向延長EF交DC于M,則E、F、M,N共線,
則EM=1-EN=1-,
∴NF=EM=1-,
∴EF=1-EM-NF=-1.
故選:D.【點睛】本題考查正方形的性質和等邊三角形的判定和性質以及勾股定理的運用,解題的關鍵是添加輔助線構造等邊三角形,利用等邊三角形的性質解答即可.11、B【解析】
結合各個選項中的函數解析式,根據相關函數的性質即可得到答案.【詳解】y=4x中y隨x的增大而增大,故選項A不符題意,y=﹣4x中y隨x的增大而減小,故選項B符合題意,y=x﹣4中y隨x的增大而增大,故選項C不符題意,y=x2中,當x>0時,y隨x的增大而增大,當x<0時,y隨x的增大而減小,故選項D不符合題意,故選B.【點睛】本題考查了二次函數的性質、一次函數的性質、正比例函數的性質,解答本題的關鍵是明確題意,利用一次函數和二次函數的性質解答.12、A【解析】
找中位數要把數據按從小到大的順序排列,位于最中間的一個數(或兩個數的平均數)為中位數,眾數是一組數據中出現次數最多的數據,注意眾數可以不止一個.【詳解】解:在這一組數據中20是出現次數最多的,故眾數是20;將這組數據從大到小的順序排列后,處于中間位置的數是1,1,那么這組數據的中位數1.故選:A.【點睛】本題為統計題,考查眾數與中位數的意義,中位數是將一組數據從小到大(或從大到?。┲匦屡帕泻螅钪虚g的那個數(最中間兩個數的平均數),叫做這組數據的中位數.眾數是一組數據中出現次數最多的數.二、填空題(每題4分,共24分)13、【解析】
過作,利用正方形的性質和全等三角形的判定得出,進而利用勾股定理解答即可.【詳解】解:過作,正方形,,,,,,且,,,,,當時,的最小值為故答案為:【點睛】本題考查正方形的性質,關鍵是利用正方形的性質和全等三角形的判定得出.14、且【解析】
分式方程去分母轉化為整式方程,由分式方程的解是非負數,確定出a的范圍即可.【詳解】去分母得:,即,由分式方程的解為非負數,得到≥0,且≠2,解得:且,故答案為:且.【點睛】此題考查了分式方程的解,以及解一元一次不等式,熟練掌握運算法則是解本題的關鍵.15、1cm【解析】
根據菱形的四邊相等,可得AB=BC=CD=AD=5,在Rt△AED中,求出AE即可解決問題.【詳解】解:∵四邊形ABCD是菱形,∴AB=BC=CD=AD=5(cm),∵DE⊥AB,DE=3(cm),在Rt△ADE中,AE==4,∴BE=AB?AE=5?4=1(cm),故答案為1cm.【點睛】本題考查了菱形的性質、勾股定理等知識,解題的關鍵是理解題意,靈活運用所學知識解決問題,試題難度不大.16、1【解析】
先根據平行四邊形的性質,求得∠C的度數,再根據四邊形內角和,求得∠EAF的度數.【詳解】解:∵平行四邊形ABCD中,∠B=1°,
∴∠C=130°,
又∵AE⊥BC于E,AF⊥CD于F,
∴四邊形AECF中,∠EAF=360°-180°-130°=1°,
故答案為:1.【點睛】本題主要考查了平行四邊形的性質,解題時注意:平行四邊形的鄰角互補,四邊形的內角和等于360°.17、【解析】
根據三角形法則依次進行計算即可得解.【詳解】如圖,∵=,,∴.故答案為:.【點睛】本題考查了平面向量,主要利用了三角形法則求解,作出圖形更形象直觀并有助于對問題的理解.18、1【解析】
由平行四邊形的性質和已知條件證出∠BAE=∠DEA,證出AD=DE;求出AD+DC=8,得出BC=1.【詳解】∵四邊形ABCD是平行四邊形,
∴AB∥DC,AB=CD,AD=BC,
∴∠BAE=∠DEA,
∵平行四邊形ABCD的周長是16,
∴AD+DC=8,
∵AE是∠BAD的平分線,
∴∠BAE=∠DAE,
∴∠BAE=∠AEB,
∴AD=DE,
∵EC=2,
∴AD=1,
∴BC=1,
故答案為:1.【點睛】本題考查平行線的性質和角平分線的性質,解題的關鍵是掌握平行線的性質和角平分線的性質.三、解答題(共78分)19、(1)手機支付金額y(元)與騎行時間x(時)的函數關系式是y=;(2)當x=2時,李老師選擇兩種支付方式一樣;當x>2時,會員卡支付比較合算;當0<x<2時,李老師選擇手機支付比較合算.【解析】試題分析:(1)由圖可知,“手機支付”的函數圖象過點(0.5,0)和點(1,0.5),由此即可由“待定系數法”求得對應的函數解析式;(2)先用“待定系數法”求得“會員支付”的函數解析式,結合(1)中所得函數解析式組成方程組,即可求得兩個函數圖象的交點坐標,由交點坐標結合圖象即可得到本題答案;試題解析:(1)由題意和圖象可設:手機支付金額y(元)與騎行時間x(時)的函數解析式為:,由圖可得:,解得:,∴手機支付金額y(元)與騎行時間x(時)的函數解析式為:;(2)由題意和圖象可設會員支付y(元)與騎行時間x(時)的函數解析式為:,由圖可得:,由可得:,∴圖中兩函數圖象的交點坐標為(2,1.5),又∵,∴結合圖象可得:當時,李老師用“手機支付”更合算;當時,李老師選擇兩種支付分式花費一樣多;當時,李老師選擇“會員支付”更合算.點睛:本題是一道一次函數的實際問題,解題時有兩個要點:(1)由圖中所得信息,求出兩個函數的解析式;(2)由兩函數的解析式組成方程組求得兩函數圖象的交點坐標,結合兩函數圖象的位置關系即可得到第2問的答案.20、(1)18,0.18;(2)見解析【解析】
(1)根據第一組的人數是2,對應的頻率是0.04即可求得總人數,然后根據頻率的公式即可求得;(2)根據(1)即可補全直方圖;【詳解】(1)抽取的總人數是2÷0.04=50(人),a=50×0.36=18,b==0.18;故答案是:18,0.18;(2)【點睛】此題考查頻數(率)分布表,頻數(率)分布直方圖,解題關鍵在于看懂圖中數據.21、(1)500(2)見解析(3)300人【解析】
(1)根據“個人自學后老師點撥”與所占的百分比進行計算即可得解.(2)求出“教師傳授”的人數:(人)補全條形統計圖;求出“教師傳授”所占百分比:和“小組合作學習”所占百分比:補全扇形統計圖.(3)用樣本估計總體.【詳解】解:(1)根據“個人自學后老師點撥”300人.占60%,得(人).(2)補全統計圖如下:(3)∵(人),∴根據抽樣調查的結果,估計該校1000名學生中大約有300人選擇“小組合作學習”.考點:1.條形統計圖;2.扇形統計圖;3.用樣本估計總體.22、(1)見解析;(2)點O到AB的距離為.【解析】
(1)先利用折疊的性質和平行四邊形的性質得出DE∥BC,DE=BC,則四邊形DBCE是平行四邊形,再利用BE=CD即可證明四邊形DBCE是矩形;(2)過點O作OF⊥AB,垂足為F,先利用勾股定理求出AB的長度,然后利用面積即可求出OF的長度,則答案可求.【詳解】(1)由折疊性質可得:AD=DE,BA=BE,∵四邊形ABCD是平行四邊形,∴AD=BC,AD∥BC,BA=CD,∴DE∥BC,DE=BC,∴四邊形DBCE是平行四邊形,又∵BE=CD,∴四邊形DBCE是矩形.(2)過點O作OF⊥AB,垂足為F,∵BD⊥AD,∴∠ADB=90°,在Rt△ADB中,BD=4,AD=3,由勾股定理得:AB=,又∵四邊形ABCD是平行四邊形,∴OB=OD=,∴答:點O到AB的距離為.【點睛】本題主要考查平行四邊形的性質,矩形的判定,勾股定理,掌握平行四邊形的性質,矩形的判定,勾股定理并能夠利用三角形面積進行轉化是解題的關鍵.23、(1)見解析;(2).【解析】
(1)根據已知條件推知四邊形AEFD是平行四邊形,AE⊥BC,則平行四邊形AEFD是矩形;(2)先證明△ABE≌△DCF,得出△ABC是等邊三角形,在利用面積公式列式計算即可得解.【詳解】(1)證明:∵菱形ABCD∴AD∥BC,AD=BC∵CF=BE∴BC=EF∴AD∥EF,AD=EF∴四邊形AEFD是平行四邊形∵AE⊥BC∴∠AEF=90°∴平行四邊形AEFD是矩形(2)根據題意可知∠ABE=∠DCF,AB=CD,CF=BE∴△ABE≌△DCF(SAS)∴矩形AEFD的面積=菱形ABCD的面積∵∠ABC=60°,∴△ABC是等邊三角形AC=4,AO=2,AB=4,由菱形的對角線互相垂直可得BO=矩形AEFD的面積=菱形ABCD的面積=【點睛】此題考查全等三角形的判定與性質,矩形的判定,菱形的性質,解題關鍵在于先求出AEFD是平行四邊形.24、這個多邊形的邊數是1.【解析】試題分析:設這個多邊形的邊數為n,根據多邊形的內角和公式(n﹣2)?180°與外角和定理列出方程,求解即可.試題解析:設這個多邊形的邊數為n,根據題意,得(n﹣2)×180°=2×360°+180°,解得n=1.故這個多邊形的邊數是1.25、(1)詳見解析
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度年福建省高校教師資格證之高等教育法規(guī)綜合檢測試卷B卷含答案
- 2024年垃圾焚燒發(fā)電設備項目資金申請報告代可行性研究報告
- 四年級數學(簡便運算)計算題專項練習與答案
- 2024年期貨船租賃協議條款匯編
- 2024年醫(yī)生招聘協議樣本下載
- 學習先進教師心得體會
- 2024年車輛信用擔保服務正式協議
- 2024專項水穩(wěn)層鋪設項目協議樣本
- 2024采購部常用商品買賣協議模板
- 2024年商鋪租賃協議模板范例
- 智能電網-課件
- 慢阻肺健康知識宣教完整版課件
- 閑魚玩法實戰(zhàn)班課件
- 人教統編版二年級語文上冊《7 媽媽睡了》教學課件PPT小學公開課
- 中考作文指導:考場作文擬題(共23張PPT)
- 人體解剖學:神經系統課件
- 鍵盤的使用教案課件
- 《材料分析測試技術》全套教學課件
- 六年級上冊數學課件-6.2 百分數的認識丨蘇教版 (共24張PPT)
- 工程項目軟硬件平臺和集成服務采購技術投標文件
- 形位公差檢驗標準
評論
0/150
提交評論