2023-2024學(xué)年貴州省志誠實驗學(xué)校高三第二次聯(lián)考數(shù)學(xué)試卷含解析_第1頁
2023-2024學(xué)年貴州省志誠實驗學(xué)校高三第二次聯(lián)考數(shù)學(xué)試卷含解析_第2頁
2023-2024學(xué)年貴州省志誠實驗學(xué)校高三第二次聯(lián)考數(shù)學(xué)試卷含解析_第3頁
2023-2024學(xué)年貴州省志誠實驗學(xué)校高三第二次聯(lián)考數(shù)學(xué)試卷含解析_第4頁
2023-2024學(xué)年貴州省志誠實驗學(xué)校高三第二次聯(lián)考數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年貴州省志誠實驗學(xué)校高三第二次聯(lián)考數(shù)學(xué)試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在直角中,,,,若,則()A. B. C. D.2.已知正方體的體積為,點,分別在棱,上,滿足最小,則四面體的體積為A. B. C. D.3.ΔABC中,如果lgcosA=lgsinA.等邊三角形 B.直角三角形 C.等腰三角形 D.等腰直角三角形4.設(shè)復(fù)數(shù)滿足,則在復(fù)平面內(nèi)的對應(yīng)點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.設(shè)集合A={y|y=2x﹣1,x∈R},B={x|﹣2≤x≤3,x∈Z},則A∩B=()A.(﹣1,3] B.[﹣1,3] C.{0,1,2,3} D.{﹣1,0,1,2,3}6.已知滿足,則()A. B. C. D.7.用一個平面去截正方體,則截面不可能是()A.正三角形 B.正方形 C.正五邊形 D.正六邊形8.在中,為上異于,的任一點,為的中點,若,則等于()A. B. C. D.9.已知函數(shù),則不等式的解集為()A. B. C. D.10.《周易》是我國古代典籍,用“卦”描述了天地世間萬象變化.如圖是一個八卦圖,包含乾、坤、震、巽、坎、離、艮、兌八卦(每一卦由三個爻組成,其中“”表示一個陽爻,“”表示一個陰爻)若從八卦中任取兩卦,這兩卦的六個爻中恰有兩個陽爻的概率為()A. B. C. D.11.設(shè)a=log73,,c=30.7,則a,b,c的大小關(guān)系是()A. B. C. D.12.設(shè)數(shù)列的各項均為正數(shù),前項和為,,且,則()A.128 B.65 C.64 D.63二、填空題:本題共4小題,每小題5分,共20分。13.中,角的對邊分別為,且成等差數(shù)列,若,,則的面積為__________.14.設(shè)、分別為橢圓:的左、右兩個焦點,過作斜率為1的直線,交于、兩點,則________15.已知向量與的夾角為,||=||=1,且⊥(λ),則實數(shù)_____.16.如圖,網(wǎng)格紙上小正方形的邊長為,粗實線畫出的是某幾何體的三視圖,則該幾何體的體積為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)函數(shù),,其中,為正實數(shù).(1)若的圖象總在函數(shù)的圖象的下方,求實數(shù)的取值范圍;(2)設(shè),證明:對任意,都有.18.(12分)已知函數(shù),.(1)討論的單調(diào)性;(2)當(dāng)時,證明:.19.(12分)已知函數(shù),記不等式的解集為.(1)求;(2)設(shè),證明:.20.(12分)已知橢圓C:(a>b>0)過點(0,),且滿足a+b=3.(1)求橢圓C的方程;(2)若斜率為的直線與橢圓C交于兩個不同點A,B,點M坐標(biāo)為(2,1),設(shè)直線MA與MB的斜率分別為k1,k2,試問k1+k2是否為定值?并說明理由.21.(12分)設(shè)函數(shù).(Ⅰ)討論函數(shù)的單調(diào)性;(Ⅱ)如果對所有的≥0,都有≤,求的最小值;(Ⅲ)已知數(shù)列中,,且,若數(shù)列的前n項和為,求證:.22.(10分)如圖,己知圓和雙曲線,記與軸正半軸、軸負(fù)半軸的公共點分別為、,又記與在第一、第四象限的公共點分別為、.(1)若,且恰為的左焦點,求的兩條漸近線的方程;(2)若,且,求實數(shù)的值;(3)若恰為的左焦點,求證:在軸上不存在這樣的點,使得.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

在直角三角形ABC中,求得,再由向量的加減運算,運用平面向量基本定理,結(jié)合向量數(shù)量積的定義和性質(zhì):向量的平方即為模的平方,化簡計算即可得到所求值.【詳解】在直角中,,,,,

,

若,則故選C.【點睛】本題考查向量的加減運算和數(shù)量積的定義和性質(zhì),主要是向量的平方即為模的平方,考查運算能力,屬于中檔題.2、D【解析】

由題意畫出圖形,將所在的面延它們的交線展開到與所在的面共面,可得當(dāng)時最小,設(shè)正方體的棱長為,得,進(jìn)一步求出四面體的體積即可.【詳解】解:如圖,

∵點M,N分別在棱上,要最小,將所在的面延它們的交線展開到與所在的面共面,三線共線時,最小,

設(shè)正方體的棱長為,則,∴.

取,連接,則共面,在中,設(shè)到的距離為,

設(shè)到平面的距離為,

.

故選D.【點睛】本題考查多面體體積的求法,考查了多面體表面上的最短距離問題,考查計算能力,是中檔題.3、B【解析】

化簡得lgcosA=lgsinCsinB=﹣lg2,即cosA=sinCsinB=12,結(jié)合0<A<π,可求A=π【詳解】由lgcosA=lgsinC-lgsinB=-lg2,可得lgcosA=∵0<A<π,∴A=π3,B+C=2π3,∴sinC=12sinB=12sin2π3-C=34cosC+故選:B【點睛】本題主要考查了對數(shù)的運算性質(zhì)的應(yīng)用,兩角差的正弦公式的應(yīng)用,解題的關(guān)鍵是靈活利用基本公式,屬于基礎(chǔ)題.4、C【解析】

化簡得到,得到答案.【詳解】,故,對應(yīng)點在第三象限.故選:.【點睛】本題考查了復(fù)數(shù)的化簡和對應(yīng)象限,意在考查學(xué)生的計算能力.5、C【解析】

先求集合A,再用列舉法表示出集合B,再根據(jù)交集的定義求解即可.【詳解】解:∵集合A={y|y=2x﹣1,x∈R}={y|y>﹣1},B={x|﹣2≤x≤3,x∈Z}={﹣2,﹣1,0,1,2,3},∴A∩B={0,1,2,3},故選:C.【點睛】本題主要考查集合的交集運算,屬于基礎(chǔ)題.6、A【解析】

利用兩角和與差的余弦公式展開計算可得結(jié)果.【詳解】,.故選:A.【點睛】本題考查三角求值,涉及兩角和與差的余弦公式的應(yīng)用,考查計算能力,屬于基礎(chǔ)題.7、C【解析】試題分析:畫出截面圖形如圖顯然A正三角形,B正方形:D正六邊形,可以畫出五邊形但不是正五邊形;故選C.考點:平面的基本性質(zhì)及推論.8、A【解析】

根據(jù)題意,用表示出與,求出的值即可.【詳解】解:根據(jù)題意,設(shè),則,又,,,故選:A.【點睛】本題主要考查了平面向量基本定理的應(yīng)用,關(guān)鍵是要找到一組合適的基底表示向量,是基礎(chǔ)題.9、D【解析】

先判斷函數(shù)的奇偶性和單調(diào)性,得到,且,解不等式得解.【詳解】由題得函數(shù)的定義域為.因為,所以為上的偶函數(shù),因為函數(shù)都是在上單調(diào)遞減.所以函數(shù)在上單調(diào)遞減.因為,所以,且,解得.故選:D【點睛】本題主要考查函數(shù)的奇偶性和單調(diào)性的判斷,考查函數(shù)的奇偶性和單調(diào)性的應(yīng)用,意在考查學(xué)生對這些知識的理解掌握水平.10、C【解析】

分類討論,僅有一個陽爻的有坎、艮、震三卦,從中取兩卦;從僅有兩個陽爻的有巽、離、兌三卦中取一個,再取沒有陽爻的坤卦,計算滿足條件的種數(shù),利用古典概型即得解.【詳解】由圖可知,僅有一個陽爻的有坎、艮、震三卦,從中取兩卦滿足條件,其種數(shù)是;僅有兩個陽爻的有巽、離、兌三卦,沒有陽爻的是坤卦,此時取兩卦滿足條件的種數(shù)是,于是所求的概率.故選:C【點睛】本題考查了古典概型的應(yīng)用,考查了學(xué)生綜合分析,分類討論,數(shù)學(xué)運算的能力,屬于基礎(chǔ)題.11、D【解析】

,,得解.【詳解】,,,所以,故選D【點睛】比較不同數(shù)的大小,找中間量作比較是一種常見的方法.12、D【解析】

根據(jù),得到,即,由等比數(shù)列的定義知數(shù)列是等比數(shù)列,然后再利用前n項和公式求.【詳解】因為,所以,所以,所以數(shù)列是等比數(shù)列,又因為,所以,.故選:D【點睛】本題主要考查等比數(shù)列的定義及等比數(shù)列的前n項和公式,還考查了運算求解的能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、.【解析】

由A,B,C成等差數(shù)列得出B=60°,利用正弦定理得進(jìn)而得代入三角形的面積公式即可得出.【詳解】∵A,B,C成等差數(shù)列,∴A+C=2B,又A+B+C=180°,∴3B=180°,B=60°.故由正弦定理,故所以S△ABC,故答案為:【點睛】本題考查了等差數(shù)列的性質(zhì),三角形的面積公式,考查正弦定理的應(yīng)用,屬于基礎(chǔ)題.14、【解析】

由橢圓的標(biāo)準(zhǔn)方程,求出焦點的坐標(biāo),寫出直線方程,與橢圓方程聯(lián)立,求出弦長,利用定義可得,進(jìn)而求出?!驹斀狻坑芍裹c,所以直線:,代入得,即,設(shè),,故由定義有,,所以。【點睛】本題主要考查橢圓的定義、橢圓的簡單幾何性質(zhì)、以及直線與橢圓位置關(guān)系中弦長的求法,注意直線過焦點,位置特殊,采取合適的弦長公式,簡化運算。15、1【解析】

根據(jù)條件即可得出,由即可得出,進(jìn)行數(shù)量積的運算即可求出λ.【詳解】∵向量與的夾角為,||=||=1,且;∴;∴λ=1.故答案為:1.【點睛】考查向量數(shù)量積的運算及計算公式,以及向量垂直的充要條件.16、【解析】

根據(jù)三視圖知該幾何體是三棱柱與半圓錐的組合體,結(jié)合圖中數(shù)據(jù)求出它的體積.【詳解】根據(jù)三視圖知,該幾何體是三棱柱與半圓錐的組合體,如圖所示:結(jié)合圖中數(shù)據(jù),計算它的體積為.故答案為:.【點睛】本題考查了根據(jù)三視圖求簡單組合體的體積應(yīng)用問題,是基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】

(1)據(jù)題意可得在區(qū)間上恒成立,利用導(dǎo)數(shù)討論函數(shù)的單調(diào)性,從而求出滿足不等式的的取值范圍;(2)不等式整理為,由(1)可知當(dāng)時,,利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性從而證明在區(qū)間上成立,從而證明對任意,都有.【詳解】(1)解:因為函數(shù)的圖象恒在的圖象的下方,所以在區(qū)間上恒成立.設(shè),其中,所以,其中,.①當(dāng),即時,,所以函數(shù)在上單調(diào)遞增,,故成立,滿足題意.②當(dāng),即時,設(shè),則圖象的對稱軸,,,所以在上存在唯一實根,設(shè)為,則,,,所以在上單調(diào)遞減,此時,不合題意.綜上可得,實數(shù)的取值范圍是.(2)證明:由題意得,因為當(dāng)時,,,所以.令,則,所以在上單調(diào)遞增,,即,所以,從而.由(1)知當(dāng)時,在上恒成立,整理得.令,則要證,只需證.因為,所以在上單調(diào)遞增,所以,即在上恒成立.綜上可得,對任意,都有成立.【點睛】本題考查導(dǎo)數(shù)在研究函數(shù)中的作用,利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性與求函數(shù)最值,利用導(dǎo)數(shù)證明不等式,屬于難題.18、(1)見解析;(2)見解析【解析】

(1)求導(dǎo)得,分類討論和,利用導(dǎo)數(shù)研究含參數(shù)的函數(shù)單調(diào)性;(2)根據(jù)(1)中求得的的單調(diào)性,得出在處取得最大值為,構(gòu)造函數(shù),利用導(dǎo)數(shù),推出,即可證明不等式.【詳解】解:(1)由于,得,當(dāng)時,,此時在上遞增;當(dāng)時,由,解得,若,則,若,,此時在遞增,在上遞減.(2)由(1)知在處取得最大值為:,設(shè),則,令,則,則在單調(diào)遞減,∴,即,則在單調(diào)遞減∴,∴,∴.【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和最值,涉及分類討論和構(gòu)造新函數(shù),通過導(dǎo)數(shù)證明不等式,考查轉(zhuǎn)化思想和計算能力.19、(1);(2)證明見解析【解析】

(1)利用零點分段法將表示為分段函數(shù)的形式,由此解不等式求得不等式的解集.(2)將不等式坐標(biāo)因式分解,結(jié)合(1)的結(jié)論證得不等式成立.【詳解】(1)解:,由,解得,故.(2)證明:因為,所以,,所以,所以.【點睛】本小題主要考查絕對值不等式的解法,考查不等式的證明,屬于基礎(chǔ)題.20、(1)(2)k1+k2為定值0,見解析【解析】

(1)利用已知條件直接求解,得到橢圓的方程;(2)設(shè)直線在軸上的截距為,推出直線方程,然后將直線與橢圓聯(lián)立,設(shè),利用韋達(dá)定理求出,然后化簡求解即可.【詳解】(1)由橢圓過點(0,),則,又a+b=3,所以,故橢圓的方程為;(2),證明如下:設(shè)直線在軸上的截距為,所以直線的方程為:,由得:,由得,設(shè),則,所以,又,所以,故.【點睛】本題主要考查了橢圓的標(biāo)準(zhǔn)方程的求解,直線與橢圓的位置關(guān)系的綜合應(yīng)用,考查了方程的思想,轉(zhuǎn)化與化歸的思想,考查了學(xué)生的運算求解能力.21、(Ⅰ)函數(shù)在上單調(diào)遞減,在單調(diào)遞增;(Ⅱ);(Ⅲ)證明見解析.【解析】

(Ⅰ)先求出函數(shù)f(x)的導(dǎo)數(shù),通過解關(guān)于導(dǎo)數(shù)的不等式,從而求出函數(shù)的單調(diào)區(qū)間;(Ⅱ)設(shè)g(x)=f(x)﹣ax,先求出函數(shù)g(x)的導(dǎo)數(shù),通過討論a的范圍,得到函數(shù)的單調(diào)性,從而求出a的最小值;(Ⅲ)先求出數(shù)列是以為首項,1為公差的等差數(shù)列,,,問題轉(zhuǎn)化為證明:,通過換元法或數(shù)學(xué)歸納法進(jìn)行證明即可.【詳解】解:(Ⅰ)f(x)的定義域為(﹣1,+∞),,當(dāng)時,f′(x)<2,當(dāng)時,f′(x)>2,所以函數(shù)f(x)在上單調(diào)遞減,在單調(diào)遞增.(Ⅱ)設(shè),則,因為x≥2,故,(ⅰ)當(dāng)a≥1時,1﹣a≤2,g′(x)≤2,所以g(x)在[2,+∞)單調(diào)遞減,而g(2)=2,所以對所有的x≥2,g(x)≤2,即f(x)≤ax;(ⅱ)當(dāng)1<a<1時,2<1﹣a<1,若,則g′(x)>2,g(x)單調(diào)遞增,而g(2)=2,所以當(dāng)時,g(x)>2,即f(x)>ax;(ⅲ)當(dāng)a≤1時,1﹣a≥1,g′(x)>2,所以g(x)在[2,+∞)單調(diào)遞增,而g(2)=2,所以對所有的x>2,g(x)>2,即f(x)>ax;綜上,a的最小值為1.(Ⅲ)由(1﹣an+1)(1+an)=1得,an﹣an+1=an?an+1,由a1=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論