廣西桂林市2024年八年級數(shù)學第二學期期末檢測試題含解析_第1頁
廣西桂林市2024年八年級數(shù)學第二學期期末檢測試題含解析_第2頁
廣西桂林市2024年八年級數(shù)學第二學期期末檢測試題含解析_第3頁
廣西桂林市2024年八年級數(shù)學第二學期期末檢測試題含解析_第4頁
廣西桂林市2024年八年級數(shù)學第二學期期末檢測試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

廣西桂林市2024年八年級數(shù)學第二學期期末檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.如圖所示的數(shù)字圖形中是中心對稱圖形的有()A.1個 B.2個 C.3個 D.4個2.下列各組數(shù)據(jù)中,能作為直角三角形三邊長的是()A.4,5,6 B.5,12,13 C.6,7,8 D.8,9,103.關于函數(shù),下列說法正確的是()A.自變量的取值范圍是 B.時,函數(shù)的值是0C.當時,函數(shù)的值大于0 D.A、B、C都不對4.若,則下列不等式一定成立的是().A. B. C. D.5.下列調(diào)查中,最適合采用全面調(diào)查(普查)方式的是()A.對重慶市初中學生每天閱讀時間的調(diào)查B.對端午節(jié)期間市場上粽子質(zhì)量情況的調(diào)查C.對某批次手機的防水功能的調(diào)查D.對某校九年級3班學生肺活量情況的調(diào)查6.若分式的值為0,則x的值等于A.0 B.3 C. D.7.在□ABCD中,對角線AC與BD相交于點O,AC10,BD6,則下列線段不可能是□ABCD的邊長的是()A.5 B.6 C.7 D.88.下面有四個定理:①平行四邊形的兩組對邊分別相等;②平行四邊形的兩組對角分別相等;③平行四邊形的兩組對邊分別平行;④平行四邊形的對角線互相平分;其逆命題正確的有()A.1個 B.2個 C.3個 D.4個9.為了了解我市2019年中考數(shù)學學科各分數(shù)段成績分布情況,從中抽取150名考生的中考數(shù)學成績進行統(tǒng)計分析。在這個問題中,樣本是指()A.150 B.被抽取的150名考生C.我市2019年中考數(shù)學成績 D.被抽取的150名考生的中考數(shù)學成績10.已知△ABC的三邊分別是a、b、c,下列條件中不能判斷△ABC為直角三角形的是()A.a(chǎn)2+b2=c2 B.∠A+∠B=90°C.a(chǎn)=3,b=4,c=5 D.∠A:∠B:∠C=3:4:5二、填空題(每小題3分,共24分)11.如圖,AO=OC,BD=16cm,則當OB=___cm時,四邊形ABCD是平行四邊形.12.若二次根式有意義,則實數(shù)x的取值范圍是__________.13.方程的解為_________.14.計算:(?)2=________;=_________.15.直角三角形的兩邊長分別為5和4,則該三角形的第三邊的長為_____.16.如圖,已知△ABC中,AB=AC,AD平分∠BAC,E是AB的中點,若AC=6,則DE的長為_____________17.四邊形ABCD中,AD∥BC,AD=BC,對角線AC、BD相交于點O,若CD=3cm,△BOC的周長比△AOB的周長大2cm,則四邊形ABCD的周長=______cm.18.如圖,在平面直角坐標系中,OA=AB,點A的坐標為(2,4),將△OAB繞點B旋轉(zhuǎn)180°,得到△BCD,再將△BCD繞點D旋轉(zhuǎn)180°,得到△DEF,如此進行下去,…,得到折線OA-AC-CE…,點P(2017,b)是此折線上一點,則b的值為_______________.三、解答題(共66分)19.(10分)(問題情境)如圖,四邊形ABCD是正方形,M是BC邊上的一點,E是CD邊的中點,AE平分∠DAM.(探究展示)(1)直接寫出AM、AD、MC三條線段的數(shù)量關系:;(2)AM=DE+BM是否成立?若成立,請給出證明;若不成立,請說明理由.(拓展延伸)(3)若四邊形ABCD是長與寬不相等的矩形,其他條件不變,如圖,探究展示(1)、(2)中的結論是否成立,請分別作出判斷,不需要證明.20.(6分)五一期間,某商場計劃購進甲、乙兩種商品,已知購進甲商品1件和乙商品3件共需240元;購進甲商品2件和乙商品1件共需130元.(1)求甲、乙兩種商品每件的進價分別是多少元?(2)商場決定甲商品以每件40元出售,乙商品以每件90元出售,為滿足市場需求,需購進甲、乙兩種商品共100件,且甲種商品的數(shù)量不少于乙種商品數(shù)量的4倍,請你求出獲利最大的進貨方案,并確定最大利潤.21.(6分)如圖,A,B是直線y=x+4與坐標軸的交點,直線y=-2x+b過點B,與x軸交于點C.(1)求A,B,C三點的坐標;(2)點D是折線A—B—C上一動點.①當點D是AB的中點時,在x軸上找一點E,使ED+EB的和最小,用直尺和圓規(guī)畫出點E的位置(保留作圖痕跡,不要求寫作法和證明),并求E點的坐標.②是否存在點D,使△ACD為直角三角形,若存在,直接寫出D點的坐標;若不存在,請說明理由22.(8分)已知:如圖,在四邊形ABCD中,∠B=90°,AB=BC=2,CD=3,AD=1,求∠DAB的度數(shù).23.(8分)已知:,求得值.24.(8分)如圖,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,點D為AC邊上的個動點,點D從點A出發(fā),沿邊AC向C運動,當運動到點C時停止,設點D運動時間為t秒,點D運動的速度為每秒1個單位長度的.(1)當t=2時,求CD的長;(2)求當t為何值時,線段BD最短?25.(10分)若b2﹣4ac≥0,計算:26.(10分)在平行四邊形ABCD中,對角線AC、BD交于點O,點E、F在AC上,且AE=CF,求證:DE=BF.

參考答案一、選擇題(每小題3分,共30分)1、C【解析】

根據(jù)中心對稱圖形的概念解答即可.【詳解】A.是中心對稱圖形,B.是中心對稱圖形,C.是中心對稱圖形,D.不是中心對稱圖形,因為找不到任何這樣的一點,使它繞這一點旋轉(zhuǎn)180度以后,能夠與它本身重合.綜上所述:是中心對稱圖形的有3個,故選C.【點睛】本題考查的是中心對稱圖形的概念,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.熟練掌握中心對稱圖形的定義是解題關鍵.2、B【解析】

欲判斷是否為勾股數(shù),必須根據(jù)勾股數(shù)是正整數(shù),同時還需驗證兩小邊的平方和是否等于最長邊的平方.【詳解】A、∵42+52=41≠62,∴不能作為直角三角形三邊長,故本選項錯誤;B、∵52+122=169=132,∴能作為直角三角形三邊長,故本選項正確;C、∵62+72=85≠82,∴不能作為直角三角形三邊長,故本選項錯誤;D、∵82+92=141≠102,∴不能作為直角三角形三邊長,故本選項錯誤.故選B.【點睛】本題考查了勾股數(shù)的定義,及勾股定理的逆定理:已知△ABC的三邊滿足a2+b2=c2,則△ABC是直角三角形.3、C【解析】

根據(jù)該函數(shù)的性質(zhì)進行判斷即可.【詳解】A.根據(jù)可得,自變量的取值范圍是,錯誤;B.將代入函數(shù)解析式中,無意義,錯誤;C.當時,,正確;D.A、B錯誤,C正確,故選項D錯誤;故答案為:C.【點睛】本題考查了函數(shù)的性質(zhì)問題,掌握函數(shù)的定義以及性質(zhì)是解題的關鍵.4、C【解析】

按照不等式的性質(zhì)逐項排除即可完成解答.【詳解】∵x>y∴,A錯誤;3x>3y,B錯誤;,即C正確;,錯誤;故答案為C;【點睛】本題考查了不等式的基本性質(zhì),即給不等式兩邊同加或減去一個整數(shù),不等號方向不變;給不等式兩邊同乘以一個正數(shù),不等號方向不變;給不等式兩邊同乘以一個負數(shù),不等號方向改變;5、D【解析】

A、對重慶市初中學生每天閱讀時間的調(diào)查,調(diào)查范圍廣適合抽樣調(diào)查,故A錯誤;B、對端午節(jié)期間市場上粽子質(zhì)量情況的調(diào)查,調(diào)查具有破壞性,適合抽樣調(diào)查,故B錯誤;C、對某批次手機的防水功能的調(diào)查,調(diào)查具有破壞性,適合抽樣調(diào)查,故C錯誤;D、對某校九年級3班學生肺活量情況的調(diào)查,人數(shù)較少,適合普查,故D正確;故選D.6、C【解析】

直接利用分式的值為0的條件以及分式有意義的條件進而得出答案.【詳解】分式的值為0,,,解得:,故選C.【點睛】本題考查了分式的值為零的條件,熟知“分子為0且分母不為0時,分式的值為0”是解題的關鍵.7、D【解析】

根據(jù)平行四邊形的性質(zhì)求出OA、OB,根據(jù)三角形的三邊關系定理得到OA-OB<AB<OA+OB,代入求出即可.【詳解】如圖:,∵四邊形ABCD是平行四邊形,AC=10,BD=6,∴OA=OC=5,OD=OB=3,在△OAB中,OA?OB<AB<OA+OB,∴5?3<AB<5+3,即2<AB<8.同理可得AD、CD、BC的取值范圍和AB相同.故選D.【點睛】本題主要考查三角形的三邊關系和平行四邊形的性質(zhì).牢記三角形的三邊關系和平行四邊形的性質(zhì)是解題的關鍵.8、D【解析】

分別寫出各個命題的逆命題,根據(jù)平行四邊形的判定定理判斷即可.【詳解】解:平行四邊形的兩組對邊分別相等的逆命題是兩組對邊分別相等的四邊形是平行四邊形,是真命題;平行四邊形的兩組對角分別相等的逆命題是兩組對角分別相等的四邊形是平行四邊形,是真命題;平行四邊形的兩組對邊分別平行的逆命題是兩組對邊分別平行的四邊形是平行四邊形,是真命題;平行四邊形的對角線互相平分的逆命題是對角線互相平分的四邊形是平行四邊形,是真命題。故選:D【點睛】本題考查的是命題的真假判斷和逆命題的概念,兩個命題中,如果第一個命題的條件是第二個命題的結論,而第一個命題的結論又是第二個命題的條件,那么這兩個命題叫做互逆命題.其中一個命題稱為另一個命題的逆命題.9、D【解析】

總體是指考查的對象的全體,個體是總體中的每一個考查的對象,樣本是總體中所抽取的一部分個體,而樣本容量則是指樣本中個體的數(shù)目.我們在區(qū)分總體、個體、樣本、樣本容量,這四個概念時,首先找出考查的對象.從而找出總體、個體.再根據(jù)被收集數(shù)據(jù)的這一部分對象找出樣本,最后再根據(jù)樣本確定出樣本容量.【詳解】樣本是抽取150名考生的中考數(shù)學成績,故選:D.【點睛】此題考查總體、個體、樣本、樣本容量,難度不大10、D【解析】分析:利用直角三角形的定義和勾股定理的逆定理逐項判斷即可.詳解:A.a2=b2+c2,符合勾股定理的逆定理,能夠判定△ABC為直角三角形,不符合題意;B.∠A+∠B=∠C,此時∠C是直角,能夠判定△ABC是直角三角形,不符合題意;C.52=32+42,符合勾股定理的逆定理,能夠判定△ABC為直角三角形,不符合題意;D.∠A:∠B:∠C=3:4:5,那么∠A=45°、∠B=60°、∠C=75°,△ABC不是直角三角形;故選D.點睛:此題主要考查了直角三角形的判定方法,只有三角形的三邊長構成勾股數(shù)或三個內(nèi)角中有一個是直角的情況下,才能判定三角形是直角三角形.二、填空題(每小題3分,共24分)11、1【解析】

根據(jù)對角線互相平分的四邊形是平行四邊形可得OB=1cm時,四邊形ABCD是平行四邊形.【詳解】當OB=1cm時,四邊形ABCD是平行四邊形,∵BD=16cm,OB=1cm,∴BO=DO,又∵AO=OC,∴四邊形ABCD是平行四邊形,故答案為1.【點睛】本題考查了平行四邊形的判定,熟練掌握平行四邊形的判定方法是解題的關鍵.12、【解析】

根據(jù)二次根式有意義的條件可得x-4≥0,再解即可.【詳解】由題意得:x?4?0,解得:x?4,故答案為:x?4【點睛】此題考查二次根式有意義的條件,解題關鍵在于二次根式有意義的條件得到x-4≥013、【解析】

采用分解因式法解方程即可.【詳解】解:,解得.【點睛】本題考查了分解因式法解方程.14、5π-1【解析】

根據(jù)二次根式的性質(zhì)計算即可.【詳解】解:.故答案為:5,π-1.【點睛】本題考查的是二次根式的化簡,掌握二次根式的性質(zhì)是解題的關鍵.15、3或【解析】試題分析:當5為斜邊時,則第三邊長為:=3;當5和4為直角邊時,則第三邊長為:,即第三邊長為3或.考點:直角三角形的勾股定理16、3【解析】∵AB=AC,AD平分∠BAC,∴D是BC中點.∵E是AB的中點,∴DE是△ABC的中位線,.17、16【解析】

根據(jù)條件可得:四邊形ABCD是平行四邊形,得,根據(jù)△BOC的周長比△AOB的周長大2cm,可得的長,求解即可.【詳解】∵四邊形ABCD中,AD∥BC,AD=BC∴四邊形ABCD是平行四邊形∴OA=OC,AB=CD=3∵△BOC的周長比△AOB的周長大2cm∴OB+OC+BC=OB+OA+AB+2∴BC=AB+2=5∴四邊形ABCD的周長:5+5+3+3=16(cm)故答案為:16【點睛】本題考查了平行四邊形邊長的問題,掌握平行四邊形的性質(zhì)是解題的關鍵.18、2【解析】分析:根據(jù)規(guī)律發(fā)現(xiàn)點O到點D為一個周期,根據(jù)其坐標規(guī)律即可解答.詳解:∵點A的坐標為(2,4)且OA=AB,∴O(0,0),B(4,0),C(6,-4),D(8,0),2017÷8=252……1,∴b==2.點睛:本題主要考查了點的坐標,發(fā)現(xiàn)其坐標規(guī)律是解題的關鍵.三、解答題(共66分)19、(1)證明見解析;(2)成立.證明見解析;(3)(1)成立;(2)不成立【解析】

(1)從平行線和中點這兩個條件出發(fā),延長AE、BC交于點N,如圖1(1),易證△ADE≌△NCE,從而有AD=CN,只需證明AM=NM即可.(2)作FA⊥AE交CB的延長線于點F,易證AM=FM,只需證明FB=DE即可;要證FB=DE,只需證明它們所在的兩個三角形全等即可.(3)在圖2(1)中,仿照(1)中的證明思路即可證到AM=AD+MC仍然成立;在圖2(2)中,采用反證法,并仿照(2)中的證明思路即可證到AM=DE+BM不成立.【詳解】解:(1)證明:延長AE、BC交于點N,如圖1(1),∵四邊形ABCD是正方形,∴AD∥BC.∴∠DAE=∠ENC.∵AE平分∠DAM,∴∠DAE=∠MAE.∴∠ENC=∠MAE.∴MA=MN.∴△ADE≌△NCE(AAS)∴AD=NC.∴MA=MN=NC+MC=AD+MC.(2)AM=DE+BM成立.證明:過點A作AF⊥AE,交CB的延長線于點F,如圖1(2)所示.∵四邊形ABCD是正方形,∴∠BAD=∠D=∠ABC=90°,AB=AD,AB∥DC.∵AF⊥AE,∴∠FAE=90°.∴∠FAB=90°﹣∠BAE=∠DAE.∴△ABF≌△ADE(ASA).∴BF=DE,∠F=∠AED.∵AB∥DC,∴∠AED=∠BAE.∵∠FAB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠FAB=∠FAM.∴∠F=∠FAM.∴AM=FM.∴AM=FB+BM=DE+BM.(3)①結論AM=AD+MC仍然成立.證明:延長AE、BC交于點P,如圖2(1),∵四邊形ABCD是矩形,∴AD∥BC.∴∠DAE=∠EPC.∵AE平分∠DAM,∴∠DAE=∠MAE.∴∠EPC=∠MAE.∴MA=MP.∴△ADE≌△PCE(AAS).∴AD=PC.∴MA=MP=PC+MC=AD+MC.②結論AM=DE+BM不成立.證明:假設AM=DE+BM成立.過點A作AQ⊥AE,交CB的延長線于點Q,如圖2(2)所示.∵四邊形ABCD是矩形,∴∠BAD=∠D=∠ABC=90°,AB∥DC.∵AQ⊥AE,∴∠QAE=90°.∴∠QAB=90°﹣∠BAE=∠DAE.∴∠Q=90°﹣∠QAB=90°﹣∠DAE=∠AED.∵AB∥DC,∴∠AED=∠BAE.∵∠QAB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠QAB∴∠Q=∠QAM.∴AM=QM.∴AM=QB+BM.∵AM=DE+BM,∴QB=DE.∴△ABQ≌△ADE(AAS)∴AB=AD.與條件“AB≠AD“矛盾,故假設不成立.∴AM=DE+BM不成立.【點睛】本題是四邊形綜合題,主要考查了正方形和矩形的性質(zhì),全等三角形的性質(zhì)和判定,等腰三角形的判定,平行線的性質(zhì),角平分線的定義等,考查了基本的模型構造:平行和中點構造全等三角形.有較強的綜合性.20、(1)甲商品每件進價30元,乙商品每件進價70元;(2)甲商品進80件,乙商品進20件,最大利潤是1200元.【解析】

(1)根據(jù)購進甲商品1件和乙商品3件共需240元,甲商品2件和乙商品1件共需130元可以列出相應的方程組,從而可以求得甲、乙兩種商品每件的進價分別是多少元;

(2)根據(jù)題意可以得到利潤與購買甲種商品的函數(shù)關系式,從而可以解答本題.【詳解】(1)設商品每件進價x元,乙商品每件進價y元,得解得:,答:甲商品每件進價30元,乙商品每件進價70元;(2)設甲商品進a件,乙商品(100﹣a)件,由題意得,a≥4(100﹣a),a≥80,設利潤為y元,則,y=10a+20(100﹣a)=﹣10a+2000,∵y隨a的增大而減小,∴要使利潤最大,則a取最小值,∴a=80,∴y=2000﹣10×80=1200,答:甲商品進80件,乙商品進20件,最大利潤是1200元.【點睛】本題考查一次函數(shù)的應用、二元一次方程組的應用、一元一次不等式的應用,解答本題的關鍵是明確題意,利用一次函數(shù)的性質(zhì)和不等式的性質(zhì)解答.21、(1)A(-4,0);B(0,4);C(2,0);(2)①點E的位置見解析,E(,0);②D點的坐標為(-1,3)或(,)【解析】

(1)先利用一次函數(shù)圖象上點的坐標特點求得點A、B的坐標;然后把B點坐標代入y=?2x+b求出b的值,確定此函數(shù)解析式,然后再求C點坐標;

(2)①根據(jù)軸對稱—最短路徑問題畫出點E的位置,由待定系數(shù)法確定直線DB1的解析式為y=?3x?4,易得點E的坐標;

②分兩種情況:當點D在AB上時,當點D在BC上時.當點D在AB上時,由等腰直角三角形的性質(zhì)求得D點的坐標為(?1,3);當點D在BC上時,設AD交y軸于點F,證△AOF與△BOC全等,得OF=2,點F的坐標為(0,2),求得直線AD的解析式為,與y=?2x+4組成方程組,求得交點D的坐標為(,).【詳解】(1)在y=x+4中,令x=0,得y=4,令y=0,得x=-4,∴A(-4,0),B(0,4)把B(0,4)代入y=-2x+b,得b=4,∴直線BC為:y=-2x+4在y=-2x+4中,令y=0,得x=2,∴C點的坐標為(2,0);(2)①如圖∵點D是AB的中點∴D(-2,2)點B關于x軸的對稱點B1的坐標為(0,-4),設直線DB1的解析式為,把D(-2,2),B1(0,-4)代入,得,解得k=-3,b=-4,∴該直線為:y=-3x-4,令y=0,得x=,∴E點的坐標為(,0).②存在,D點的坐標為(-1,3)或(,).當點D在AB上時,∵OA=OB=4,∴∠BAC=45°,∴△ACD是以∠ADC為直角的等腰直角三角形,∴點D的橫坐標為,當x=-1時,y=x+4=3,∴D點的坐標為(-1,3);當點D在BC上時,如圖,設AD交y軸于點F.∵∠FAO+∠AFO=∠CBO+∠BFD,∠AFO=∠BFD,∴∠FAO=∠CBO,又∵AO=BO,∠AOF=∠BOC,∴△AOF≌△BOC(ASA)∴OF=OC=2,∴點F的坐標為(0,2),設直線AD的解析式為,將A(-4,0)與F(0,2)代入得,解得,∴,聯(lián)立,解得:,∴D的坐標為(,).綜上所述:D點的坐標為(-1,3)或(,)【點睛】本題是一次函數(shù)的綜合題,難度適中,考查了利用待定系數(shù)法求一次函數(shù)的解析式、軸對稱的最短路徑問題、直角

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論