2023-2024學年山西省忻州市達標名校十校聯(lián)考最后數(shù)學試題含解析_第1頁
2023-2024學年山西省忻州市達標名校十校聯(lián)考最后數(shù)學試題含解析_第2頁
2023-2024學年山西省忻州市達標名校十校聯(lián)考最后數(shù)學試題含解析_第3頁
2023-2024學年山西省忻州市達標名校十校聯(lián)考最后數(shù)學試題含解析_第4頁
2023-2024學年山西省忻州市達標名校十校聯(lián)考最后數(shù)學試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年山西省忻州市達標名校十校聯(lián)考最后數(shù)學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,△ABC的三個頂點分別為A(1,2)、B(4,2)、C(4,4).若反比例函數(shù)y=在第一象限內的圖象與△ABC有交點,則k的取值范圍是()A.1≤k≤4 B.2≤k≤8 C.2≤k≤16 D.8≤k≤162.已知點,為是反比例函數(shù)上一點,當時,m的取值范圍是()A. B. C. D.3.計算x﹣2y﹣(2x+y)的結果為()A.3x﹣y B.3x﹣3y C.﹣x﹣3y D.﹣x﹣y4.如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,與x軸的一個交點坐標為(-1,0),其部分圖象如圖所示,下列結論:①4ac<b2;②方程ax2+bx+c=0的兩個根是x1=-1,x2=3;③3a+c>0;④當y>0時,x的取值范圍是-1≤x<3;⑤當x<0時,y隨x增大而增大.其中結論正確的個數(shù)是()A.4個 B.3個 C.2個 D.1個5.甲、乙兩名同學進行跳高測試,每人10次跳高的平均成績恰好都是1.6米,方差分別是S甲2=A.甲 B.乙 C.甲乙同樣穩(wěn)定 D.無法確定6.如圖,AD為△ABC的中線,點E為AC邊的中點,連接DE,則下列結論中不一定成立的是()A.DC=DE B.AB=2DE C.S△CDE=S△ABC D.DE∥AB7.如圖,在△ABC中,過點B作PB⊥BC于B,交AC于P,過點C作CQ⊥AB,交AB延長線于Q,則△ABC的高是()A.線段PB B.線段BC C.線段CQ D.線段AQ8.如圖,已知△ABC,△DCE,△FEG,△HGI是4個全等的等腰三角形,底邊BC,CE,EG,GI在同一直線上,且AB=2,BC=1.連接AI,交FG于點Q,則QI=()A.1 B. C. D.9.已知反比例函數(shù)y=﹣,當1<x<3時,y的取值范圍是()A.0<y<1 B.1<y<2 C.﹣2<y<﹣1 D.﹣6<y<﹣210.如圖,在矩形AOBC中,O為坐標原點,OA、OB分別在x軸、y軸上,點B的坐標為(0,3),∠ABO=30°,將△ABC沿AB所在直線對折后,點C落在點D處,則點D的坐標為()A.(,) B.(2,) C.(,) D.(,3﹣)11.若式子在實數(shù)范圍內有意義,則x的取值范圍是()A.x>1 B.x>﹣1 C.x≥1 D.x≥﹣112.把不等式組的解集表示在數(shù)軸上,正確的是()A. B.C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.拋物線(為非零實數(shù))的頂點坐標為_____________.14.已知a+1a=3,則a15.在一個不透明的袋子里裝有除顏色外其它均相同的紅、藍小球各一個,每次從袋中摸出一個小球記下顏色后再放回,摸球三次,“僅有一次摸到紅球”的概率是_____.16.如圖,平行于x軸的直線AC分別交拋物線y1=x2(x≥0)與y2=(x≥0)于B、C兩點,過點C作y軸的平行線交y1于點D,直線DE∥AC,交y2于點E,則=______.17.如圖,已知正方形ABCD的邊長為4,⊙B的半徑為2,點P是⊙B上的一個動點,則PD﹣PC的最大值為_____.18.如圖,在△ABC中,∠B=40°,∠C=45°,AB的垂直平分線交BC于點D,AC的垂直平分線交BC于點E,則∠DAE=______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)為響應市政府“創(chuàng)建國家森林城市”的號召,某小區(qū)計劃購進A、B兩種樹苗共17棵,已知A種樹苗每棵80元,B種樹苗每棵60元.若購進A、B兩種樹苗剛好用去1220元,問購進A、B兩種樹苗各多少棵?若購買B種樹苗的數(shù)量少于A種樹苗的數(shù)量,請你給出一種費用最省的方案,并求出該方案所需費用.20.(6分)周末,甲、乙兩名大學生騎自行車去距學校6000米的凈月潭公園.兩人同時從學校出發(fā),以a米/分的速度勻速行駛.出發(fā)4.5分鐘時,甲同學發(fā)現(xiàn)忘記帶學生證,以1.5a米/分的速度按原路返回學校,取完學生證(在學校取學生證所用時間忽略不計),繼續(xù)以返回時的速度追趕乙.甲追上乙后,兩人以相同的速度前往凈月潭.乙騎自行車的速度始終不變.設甲、乙兩名大學生距學校的路程為s(米),乙同學行駛的時間為t(分),s與t之間的函數(shù)圖象如圖所示.(1)求a、b的值.(2)求甲追上乙時,距學校的路程.(3)當兩人相距500米時,直接寫出t的值是.21.(6分)我市某中學舉行“中國夢?校園好聲音”歌手大賽,高、初中部根據(jù)初賽成績,各選出5名選手組成初中代表隊和高中代表隊參加學校決賽.兩個隊各選出的5名選手的決賽成績如圖所示.根據(jù)圖示填寫下表;

平均數(shù)(分)

中位數(shù)(分)

眾數(shù)(分)

初中部

85

高中部

85

100

(2)結合兩隊成績的平均數(shù)和中位數(shù),分析哪個隊的決賽成績較好;計算兩隊決賽成績的方差并判斷哪一個代表隊選手成績較為穩(wěn)定.22.(8分)如圖,在4×4的正方形方格中,△ABC和△DEF的頂點都在邊長為1的小正方形的頂點上.填空:∠ABC=°,BC=;判斷△ABC與△DEF是否相似,并證明你的結論.23.(8分)如圖①,在Rt△ABC中,∠ABC=90o,AB是⊙O的直徑,⊙O交AC于點D,過點D的直線交BC于點E,交AB的延長線于點P,∠A=∠PDB.(1)求證:PD是⊙O的切線;(2)若AB=4,DA=DP,試求弧BD的長;(3)如圖②,點M是弧AB的中點,連結DM,交AB于點N.若tanA=12,求DN24.(10分)某校詩詞知識競賽培訓活動中,在相同條件下對甲、乙兩名學生進行了10次測驗,他們的10次成績如下(單位:分):整理、分析過程如下,請補充完整.(1)按如下分數(shù)段整理、描述這兩組數(shù)據(jù):成績x學生70≤x≤7475≤x≤7980≤x≤8485≤x≤8990≤x≤9495≤x≤100甲____________________________________乙114211(2)兩組數(shù)據(jù)的極差、平均數(shù)、中位數(shù)、眾數(shù)、方差如下表所示:學生極差平均數(shù)中位數(shù)眾數(shù)方差甲______83.7______8613.21乙2483.782______46.21(3)若從甲、乙兩人中選擇一人參加知識競賽,你會選______(填“甲”或“乙),理由為______.25.(10分)如圖,已知一次函數(shù)的圖象與反比例函數(shù)的圖象交于點,且與軸交于點;點在反比例函數(shù)的圖象上,以點為圓心,半徑為的作圓與軸,軸分別相切于點、.(1)求反比例函數(shù)和一次函數(shù)的解析式;(2)請連結,并求出的面積;(3)直接寫出當時,的解集.26.(12分)反比例函數(shù)在第一象限的圖象如圖所示,過點A(2,0)作x軸的垂線,交反比例函數(shù)的圖象于點M,△AOM的面積為2.求反比例函數(shù)的解析式;設點B的坐標為(t,0),其中t>2.若以AB為一邊的正方形有一個頂點在反比例函數(shù)的圖象上,求t的值.27.(12分)如圖,四邊形ABCD中,∠C=90°,AD⊥DB,點E為AB的中點,DE∥BC.(1)求證:BD平分∠ABC;(2)連接EC,若∠A=30°,DC=,求EC的長.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】試題解析:由于△ABC是直角三角形,所以當反比例函數(shù)經(jīng)過點A時k最小,進過點C時k最大,據(jù)此可得出結論.∵△ABC是直角三角形,∴當反比例函數(shù)經(jīng)過點A時k最小,經(jīng)過點C時k最大,∴k最小=1×2=2,k最大=4×4=1,∴2≤k≤1.故選C.2、A【解析】

直接把n的值代入求出m的取值范圍.【詳解】解:∵點P(m,n),為是反比例函數(shù)y=-圖象上一點,∴當-1≤n<-1時,∴n=-1時,m=1,n=-1時,m=1,則m的取值范圍是:1≤m<1.故選A.【點睛】此題主要考查了反比例函數(shù)圖象上點的坐標性質,正確把n的值代入是解題關鍵.3、C【解析】

原式去括號合并同類項即可得到結果.【詳解】原式,故選:C.【點睛】本題主要考查了整式的加減運算,熟練掌握去括號及合并同類項是解決本題的關鍵.4、B【解析】

解:∵拋物線與x軸有2個交點,∴b2﹣4ac>0,所以①正確;∵拋物線的對稱軸為直線x=1,而點(﹣1,0)關于直線x=1的對稱點的坐標為(3,0),∴方程ax2+bx+c=0的兩個根是x1=﹣1,x2=3,所以②正確;∵x=﹣=1,即b=﹣2a,而x=﹣1時,y=0,即a﹣b+c=0,∴a+2a+c=0,所以③錯誤;∵拋物線與x軸的兩點坐標為(﹣1,0),(3,0),∴當﹣1<x<3時,y>0,所以④錯誤;∵拋物線的對稱軸為直線x=1,∴當x<1時,y隨x增大而增大,所以⑤正確.故選:B.【點睛】本題考查了二次函數(shù)圖象與系數(shù)的關系:對于二次函數(shù)y=ax2+bx+c(a≠0),二次項系數(shù)a決定拋物線的開口方向和大?。寒攁>0時,拋物線向上開口;當a<0時,拋物線向下開口;一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置:當a與b同號時(即ab>0),對稱軸在y軸左;當a與b異號時(即ab<0),對稱軸在y軸右;常數(shù)項c決定拋物線與y軸交點位置:拋物線與y軸交于(0,c);拋物線與x軸交點個數(shù)由△決定:△=b2﹣4ac>0時,拋物線與x軸有2個交點;△=b2﹣4ac=0時,拋物線與x軸有1個交點;△=b2﹣4ac<0時,拋物線與x軸沒有交點.5、A【解析】

根據(jù)方差的意義可作出判斷.方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.【詳解】∵S甲2=1.4,S乙2=2.5,∴S甲2<S乙2,∴甲、乙兩名同學成績更穩(wěn)定的是甲;故選A.【點睛】本題考查方差的意義.方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動越大,數(shù)據(jù)越不穩(wěn)定;反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.6、A【解析】

根據(jù)三角形中位線定理判斷即可.【詳解】∵AD為△ABC的中線,點E為AC邊的中點,

∴DC=BC,DE=AB,∵BC不一定等于AB,∴DC不一定等于DE,A不一定成立;∴AB=2DE,B一定成立;S△CDE=S△ABC,C一定成立;DE∥AB,D一定成立;故選A.【點睛】本題考查的是三角形中位線定理,掌握三角形的中位線平行于第三邊,并且等于第三邊的一半是解題的關鍵.7、C【解析】

根據(jù)三角形高線的定義即可解題.【詳解】解:當AB為△ABC的底時,過點C向AB所在直線作垂線段即為高,故CQ是△ABC的高,故選C.【點睛】本題考查了三角形高線的定義,屬于簡單題,熟悉高線的作法是解題關鍵.8、D【解析】解:∵△ABC、△DCE、△FEG是三個全等的等腰三角形,∴HI=AB=2,GI=BC=1,BI=2BC=2,∴===,∴=.∵∠ABI=∠ABC,∴△ABI∽△CBA,∴=.∵AB=AC,∴AI=BI=2.∵∠ACB=∠FGE,∴AC∥FG,∴==,∴QI=AI=.故選D.點睛:本題主要考查了平行線分線段定理,以及三角形相似的判定,正確理解AB∥CD∥EF,AC∥DE∥FG是解題的關鍵.9、D【解析】

根據(jù)反比例函數(shù)的性質可以求得y的取值范圍,從而可以解答本題.【詳解】解:∵反比例函數(shù)y=﹣,∴在每個象限內,y隨x的增大而增大,∴當1<x<3時,y的取值范圍是﹣6<y<﹣1.故選D.【點睛】本題考查了反比例函數(shù)的性質,解答本題的關鍵是明確題意,求出相應的y的取值范圍,利用反比例函數(shù)的性質解答.10、A【解析】解:∵四邊形AOBC是矩形,∠ABO=10°,點B的坐標為(0,),∴AC=OB=,∠CAB=10°,∴BC=AC?tan10°=×=1.∵將△ABC沿AB所在直線對折后,點C落在點D處,∴∠BAD=10°,AD=.過點D作DM⊥x軸于點M,∵∠CAB=∠BAD=10°,∴∠DAM=10°,∴DM=AD=,∴AM=×cos10°=,∴MO=﹣1=,∴點D的坐標為(,).故選A.11、A【解析】

直接利用二次根式有意義的條件分析得出答案.【詳解】∵式子在實數(shù)范圍內有意義,∴x﹣1>0,解得:x>1.故選:A.【點睛】此題主要考查了二次根式有意義的條件,正確把握定義是解題關鍵.12、A【解析】

分別求出各個不等式的解集,再求出這些解集的公共部分并在數(shù)軸上表示出來即可.【詳解】由①,得x≥2,

由②,得x<1,

所以不等式組的解集是:2≤x<1.

不等式組的解集在數(shù)軸上表示為:

故選A.【點睛】本題考查的是解一元一次不等式組.熟知“同大取大;同小取??;大小小大中間找;大大小小找不到”的原則是解答此題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】【分析】將拋物線的解析式由一般式化為頂點式,即可得到頂點坐標.【詳解】y=mx2+2mx+1=m(x2+2x)+1=m(x2+2x+1-1)+1=m(x+1)2+1-m,所以拋物線的頂點坐標為(-1,1-m),故答案為(-1,1-m).【點睛】本題考查了拋物線的頂點坐標,把拋物線的解析式轉化為頂點式是解題的關鍵.14、7【解析】

根據(jù)完全平方公式可得:原式=(a+115、【解析】摸三次有可能有:紅紅紅、紅紅藍、紅藍紅、紅藍藍、藍紅紅、藍紅藍、藍藍紅、藍藍藍共計8種可能,其中僅有一個紅壞的有:紅藍藍、藍紅藍、藍藍紅共計3種,所以“僅有一次摸到紅球”的概率是.故答案是:.16、3﹣【解析】

首先設點B的橫坐標,由點B在拋物線y1=x2(x≥0)上,得出點B的坐標,再由平行,得出A和C的坐標,然后由CD平行于y軸,得出D的坐標,再由DE∥AC,得出E的坐標,即可得出DE和AB,進而得解.【詳解】設點B的橫坐標為,則∵平行于x軸的直線AC∴又∵CD平行于y軸∴又∵DE∥AC∴∴∴=3﹣【點睛】此題主要考查拋物線中的坐標求解,關鍵是利用平行的性質.17、1【解析】分析:由PD?PC=PD?PG≤DG,當點P在DG的延長線上時,PD?PC的值最大,最大值為DG=1.詳解:在BC上取一點G,使得BG=1,如圖,∵,,∴,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴,∴PG=PC,當點P在DG的延長線上時,PD?PC的值最大,最大值為DG==1.故答案為1點睛:本題考查圓綜合題、正方形的性質、相似三角形的判定和性質等知識,解題的關鍵是學會構建相似三角形解決問題,學會用轉化的思想思考問題,把問題轉化為兩點之間線段最短解決,題目比較難,屬于中考壓軸題.18、10°【解析】

根據(jù)線段的垂直平分線得出AD=BD,AE=CE,推出∠B=∠BAD,∠C=∠CAE,求出∠BAD+∠CAE的度數(shù)即可得到答案.【詳解】∵點D、E分別是AB、AC邊的垂直平分線與BC的交點,∴AD=BD,AE=CE,∴∠B=∠BAD,∠C=∠CAE,∵∠B=40°,∠C=45°,∴∠B+∠C=85°,∴∠BAD+∠CAE=85°,∴∠DAE=∠BAC-(∠BAD+∠CAE)=180°-85°-85°=10°,故答案為10°【點睛】本題主要考查對等腰三角形的性質,三角形的內角和定理,線段的垂直平分線的性質等知識點的理解和掌握,能綜合運用這些性質進行計算是解此題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)購進A種樹苗1棵,B種樹苗2棵(2)購進A種樹苗9棵,B種樹苗8棵,這時所需費用為1200元【解析】

(1)設購進A種樹苗x棵,則購進B種樹苗(12﹣x)棵,利用購進A、B兩種樹苗剛好用去1220元,結合單價,得出等式方程求出即可;(2)結合(1)的解和購買B種樹苗的數(shù)量少于A種樹苗的數(shù)量,可找出方案.【詳解】解:(1)設購進A種樹苗x棵,則購進B種樹苗(12﹣x)棵,根據(jù)題意得:80x+60(12﹣x)=1220,解得:x=1.∴12﹣x=2.答:購進A種樹苗1棵,B種樹苗2棵.(2)設購進A種樹苗x棵,則購進B種樹苗(12﹣x)棵,根據(jù)題意得:12﹣x<x,解得:x>8.3.∵購進A、B兩種樹苗所需費用為80x+60(12﹣x)=20x+120,是x的增函數(shù),∴費用最省需x取最小整數(shù)9,此時12﹣x=8,所需費用為20×9+120=1200(元).答:費用最省方案為:購進A種樹苗9棵,B種樹苗8棵,這時所需費用為1200元.20、(1)a的值為200,b的值為30;(2)甲追上乙時,與學校的距離4100米;(3)1.1或17.1.【解析】

(1)根據(jù)速度=路程÷時間,即可解決問題.(2)首先求出甲返回用的時間,再列出方程即可解決問題.(3)分兩種情形列出方程即可解決問題.【詳解】解:(1)由題意a==200,b==30,∴a=200,b=30.(2)+4.1=7.1,設t分鐘甲追上乙,由題意,300(t?7.1)=200t,解得t=22.1,22.1×200=4100,∴甲追上乙時,距學校的路程4100米.(3)兩人相距100米是的時間為t分鐘.由題意:1.1×200(t?4.1)+200(t?4.1)=100,解得t=1.1分鐘,或300(t?7.1)+100=200t,解得t=17.1分鐘,故答案為1.1分鐘或17.1分鐘.點睛:本題主要考查了函數(shù)圖象的讀圖能力和函數(shù)與實際問題結合的應用.要能根據(jù)函數(shù)圖象的性質和圖象上的數(shù)據(jù)分析即圖象的變化趨勢得出函數(shù)的類型和所需要的條件,結合實際意義得到正確的結論.21、(1)

平均數(shù)(分)

中位數(shù)(分)

眾數(shù)(分)

初中部

85

85

85

高中部

85

80

100

(2)初中部成績好些(3)初中代表隊選手成績較為穩(wěn)定【解析】解:(1)填表如下:

平均數(shù)(分)

中位數(shù)(分)

眾數(shù)(分)

初中部

85

85

85

高中部

85

80

100

(2)初中部成績好些.∵兩個隊的平均數(shù)都相同,初中部的中位數(shù)高,∴在平均數(shù)相同的情況下中位數(shù)高的初中部成績好些.(3)∵,,∴<,因此,初中代表隊選手成績較為穩(wěn)定.(1)根據(jù)成績表加以計算可補全統(tǒng)計表.根據(jù)平均數(shù)、眾數(shù)、中位數(shù)的統(tǒng)計意義回答.(2)根據(jù)平均數(shù)和中位數(shù)的統(tǒng)計意義分析得出即可.(3)分別求出初中、高中部的方差比較即可.22、(1)(2)△ABC∽△DEF.【解析】

(1)根據(jù)已知條件,結合網(wǎng)格可以求出∠ABC的度數(shù),根據(jù),△ABC和△DEF的頂點都在邊長為1的小正方形的頂點上,利用勾股定理即可求出線段BC的長;

(2)根據(jù)相似三角形的判定定理,夾角相等,對應邊成比例即可證明△ABC與△DEF相似.【詳解】(1)故答案為(2)△ABC∽△DEF.證明:∵在4×4的正方形方格中,∴∠ABC=∠DEF.∵∴∴△ABC∽△DEF.【點睛】考查勾股定理以及相似三角形的判定,熟練掌握相似三角形的判定方法是解題的關鍵.23、(1)見解析;(2)23π;(3)【解析】

(1)連結OD;由AB是⊙O的直徑,得到∠ADB=90°,根據(jù)等腰三角形的性質得到∠ADO=∠A,∠BDO=∠ABD;得到∠PDO=90°,且D在圓上,于是得到結論;(2)設∠A=x,則∠A=∠P=x,∠DBA=2x,在△ABD中,根據(jù)∠A+∠ABD=90o列方程求出x的值,進而可得到∠DOB=60o,然后根據(jù)弧長公式計算即可;(3)連結OM,過D作DF⊥AB于點F,然后證明△OMN∽△FDN,根據(jù)相似三角形的性質求解即可.【詳解】(1)連結OD,∵AB是⊙O的直徑,∴∠ADB=90o,∠A+∠ABD=90o,又∵OA=OB=OD,∴∠BDO=∠ABD,又∵∠A=∠PDB,∴∠PDB+∠BDO=90o,即∠PDO=90o,且D在圓上,∴PD是⊙O的切線.(2)設∠A=x,∵DA=DP,∴∠A=∠P=x,∴∠DBA=∠P+∠BDP=x+x=2x,在△ABD中,∠A+∠ABD=90o,x=2x=90o,即x=30o,∴∠DOB=60o,∴弧BD長l=60·π·2(3)連結OM,過D作DF⊥AB于點F,∵點M是的中點,∴OM⊥AB,設BD=x,則AD=2x,AB=5x=2OM,即OM=5在Rt△BDF中,DF=25由△OMN∽△FDN得DNMN【點睛】本題是圓的綜合題,考查了切線的判定,圓周角定理及其推論,三角形外角的性質,含30°角的直角三角形的性質,弧長的計算,弧弦圓心角的關系,相似三角形的判定與性質.熟練掌握切線的判定方法是解(1)的關鍵,求出∠A=30o是解(2)的關鍵,證明△OMN∽△FDN是解(3)的關鍵.24、(1)0,1,4,5,0,0;(2)14,84.5,1;(3)甲,理由見解析【解析】

(1)根據(jù)折線統(tǒng)計圖數(shù)字進行填表即可;(2)根據(jù)稽查,中位數(shù),眾數(shù)的計算方法,求得甲成績的極差,中位數(shù),乙成績的極差,眾數(shù)即可;(3)可分別從平均數(shù)、方差、極差三方面進行比較.【詳解】(1)由圖可知:甲的成績?yōu)椋?5,84,89,82,86,1,86,83,85,86,∴70?x?74無,共0個;75?x?79之間有75,共1個;80?x?84之間有84,82,1,83,共4個;85?x?89之間有89,86,86,85,86,共5個;90?x?94之間和95?x?100無,共0個.故答案為0;1;4;5;0;0;(2)由圖可知:甲的最高分為89分,最低分為75分,極差為89?75=14分;∵甲的成績?yōu)閺牡偷礁吲帕袨椋?5,1,82,83,84,85,86,86,86,89,∴中位數(shù)為(84+85)=84.5;∵乙的成績?yōu)閺牡偷礁吲帕袨椋?2,76,1,1,1,83,87,89,91,96,1出現(xiàn)3次,乙成績的眾數(shù)為1.故答案為14;84.5;1;(3)甲,理由:兩人的平均數(shù)相同且甲的方差小于乙,說明甲成績穩(wěn)定;兩人的平均數(shù)相同且甲的極差小于乙,說明甲成績變化范圍?。颍阂?,理由:在90≤x≤100的分數(shù)段中,乙的次數(shù)大于甲.(答案不唯一,理由須支撐推斷結論)故答案為:甲,兩人的平均數(shù)相同且甲的方差小于乙,說明甲成績穩(wěn)定.【點睛】此題考查折線統(tǒng)計圖,統(tǒng)計表,平均數(shù),中位數(shù),眾數(shù),方差,極差,解題關鍵在于掌握運算法則以及會用這些知識來評價這組數(shù)據(jù).25、(1),;(2)4;(3).【解析】

(1)連接CB,CD,依據(jù)四邊形BODC是正方形,即可得到B(1,2),點C(2,2),利用待定系數(shù)法即可得到反比例函數(shù)和一次函數(shù)的解析式;

(2)依據(jù)OB=2,點A的橫坐標為-4,即可得到△AOB的面積為:2×4×=4;

(3)依據(jù)數(shù)形結合思想,可得當x<1時,k1x+b?>1的解集為:-4<x<1.【詳解】解:(1)如圖,連接,,∵⊙C與軸,軸相切于點D,,且半徑為,,,∴四邊形是正方形,,,點,把點代入反比例函數(shù)中,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論