新疆新源縣2023-2024學(xué)年中考數(shù)學(xué)押題卷含解析_第1頁
新疆新源縣2023-2024學(xué)年中考數(shù)學(xué)押題卷含解析_第2頁
新疆新源縣2023-2024學(xué)年中考數(shù)學(xué)押題卷含解析_第3頁
新疆新源縣2023-2024學(xué)年中考數(shù)學(xué)押題卷含解析_第4頁
新疆新源縣2023-2024學(xué)年中考數(shù)學(xué)押題卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

新疆新源縣2023-2024學(xué)年中考數(shù)學(xué)押題卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.關(guān)于x的一元二次方程(m﹣2)x2+(2m﹣1)x+m﹣2=0有兩個不相等的正實(shí)數(shù)根,則m的取值范圍是()A.m> B.m>且m≠2 C.﹣<m<2 D.<m<22.如圖的幾何體是由一個正方體切去一個小正方體形成的,它的主視圖是()A. B. C. D.3.小明將某圓錐形的冰淇淋紙?zhí)籽厮囊粭l母線展開若不考慮接縫,它是一個半徑為12cm,圓心角為的扇形,則A.圓錐形冰淇淋紙?zhí)椎牡酌姘霃綖?cmB.圓錐形冰淇淋紙?zhí)椎牡酌姘霃綖?cmC.圓錐形冰淇淋紙?zhí)椎母邽镈.圓錐形冰淇淋紙?zhí)椎母邽?.下列運(yùn)算中,正確的是()A.(a3)2=a5 B.(﹣x)2÷x=﹣xC.a(chǎn)3(﹣a)2=﹣a5 D.(﹣2x2)3=﹣8x65.已知兩點(diǎn)都在反比例函數(shù)圖象上,當(dāng)時,,則的取值范圍是()A. B. C. D.6.如圖,將△ABC繞點(diǎn)C(0,-1)旋轉(zhuǎn)180°得到△A′B′C,設(shè)點(diǎn)A的坐標(biāo)為(a,b),則點(diǎn)A′的坐標(biāo)為()A.(-a,-b) B.(-a,-b-1) C.(-a,-b+1) D.(-a,-b-2)7.下列計(jì)算正確的是()A.2x2+3x2=5x4 B.2x2﹣3x2=﹣1C.2x2÷3x2=x2 D.2x2?3x2=6x48.已知拋物線y=ax2+bx+c(a≠1)的對稱軸為直線x=2,與x軸的一個交點(diǎn)坐標(biāo)為(4,1),其部分圖象如圖所示,下列結(jié)論:①拋物線過原點(diǎn);②a﹣b+c<1;③當(dāng)x<1時,y隨x增大而增大;④拋物線的頂點(diǎn)坐標(biāo)為(2,b);⑤若ax2+bx+c=b,則b2﹣4ac=1.其中正確的是()A.①②③ B.①④⑤ C.①②④ D.③④⑤9.解分式方程時,去分母后變形為A. B.C. D.10.已知圓錐的底面半徑為2cm,母線長為5cm,則圓錐的側(cè)面積是()A.20cm2 B.20πcm2 C.10πcm2 D.5πcm2二、填空題(本大題共6個小題,每小題3分,共18分)11.在3×3方格上做填字游戲,要求每行每列及對角線上三個方格中的數(shù)字和都相等,若填在圖中的數(shù)字如圖所示,則x+y的值是_____.2x32y﹣34y12.如圖,在矩形ABCD中,對角線AC、BD相交于點(diǎn)O,點(diǎn)E、F分別是AO、AD的中點(diǎn),若AB=6cm,BC=8cm,則EF=_____cm.13.分解因式:ab2﹣9a=_____.14.計(jì)算的結(jié)果是_____15.如圖,四邊形ABCD是菱形,☉O經(jīng)過點(diǎn)A,C,D,與BC相交于點(diǎn)E,連接AC,AE,若∠D=78°,則∠EAC=________°.16.“五一勞動節(jié)”,王老師將全班分成六個小組開展社會實(shí)踐活動,活動結(jié)束后,隨機(jī)抽取一個小組進(jìn)行匯報(bào)展示.第五組被抽到的概率是___.三、解答題(共8題,共72分)17.(8分)如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)的圖象交于點(diǎn)A(4,3),與y軸的負(fù)半軸交于點(diǎn)B,連接OA,且OA=OB.(1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;(2)過點(diǎn)P(k,0)作平行于y軸的直線,交一次函數(shù)y=2x+n于點(diǎn)M,交反比例函數(shù)的圖象于點(diǎn)N,若NM=NP,求n的值.18.(8分)我國古代《算法統(tǒng)宗》里有這樣一首詩:我問開店李三公,眾客都來到店中,一房七客多七客,一房九客一房空.詩中后兩句的意思是:如果每間客房住7人,那么有7人無房可住;如果每間客房住9人,那么就空出一間房.求該店有客房多少間?房客多少人?19.(8分)如圖,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,將△DEF與△ABC重合在一起,△ABC不動,△DEF運(yùn)動,并滿足:點(diǎn)E在邊BC上沿B到C的方向運(yùn)動,且DE始終經(jīng)過點(diǎn)A,EF與AC交于M點(diǎn).(1)求證:△ABE∽△ECM;(2)探究:在△DEF運(yùn)動過程中,重疊部分能否構(gòu)成等腰三角形?若能,求出BE的長;若不能,請說明理由;(3)當(dāng)線段AM最短時,求重疊部分的面積.20.(8分)如圖,已知,等腰Rt△OAB中,∠AOB=90°,等腰Rt△EOF中,∠EOF=90°,連結(jié)AE、BF.求證:(1)AE=BF;(2)AE⊥BF.21.(8分)如圖,AB是的直徑,AF是切線,CD是垂直于AB的弦,垂足為點(diǎn)E,過點(diǎn)C作DA的平行線與AF相交于點(diǎn)F,已知,.求AD的長;求證:FC是的切線.22.(10分)已知頂點(diǎn)為A的拋物線y=a(x-)2-2經(jīng)過點(diǎn)B(-,2),點(diǎn)C(,2).(1)求拋物線的表達(dá)式;(2)如圖1,直線AB與x軸相交于點(diǎn)M,與y軸相交于點(diǎn)E,拋物線與y軸相交于點(diǎn)F,在直線AB上有一點(diǎn)P,若∠OPM=∠MAF,求△POE的面積;(3)如圖2,點(diǎn)Q是折線A-B-C上一點(diǎn),過點(diǎn)Q作QN∥y軸,過點(diǎn)E作EN∥x軸,直線QN與直線EN相交于點(diǎn)N,連接QE,將△QEN沿QE翻折得到△QEN′,若點(diǎn)N′落在x軸上,請直接寫出Q點(diǎn)的坐標(biāo).23.(12分)已知Rt△ABC中,∠ACB=90°,CA=CB=4,另有一塊等腰直角三角板的直角頂點(diǎn)放在C處,CP=CQ=2,將三角板CPQ繞點(diǎn)C旋轉(zhuǎn)(保持點(diǎn)P在△ABC內(nèi)部),連接AP、BP、BQ.如圖1求證:AP=BQ;如圖2當(dāng)三角板CPQ繞點(diǎn)C旋轉(zhuǎn)到點(diǎn)A、P、Q在同一直線時,求AP的長;設(shè)射線AP與射線BQ相交于點(diǎn)E,連接EC,寫出旋轉(zhuǎn)過程中EP、EQ、EC之間的數(shù)量關(guān)系.24.如圖,在△ABC中,AB=AC,∠ABC=72°.(1)用直尺和圓規(guī)作∠ABC的平分線BD交AC于點(diǎn)D(保留作圖痕跡,不要求寫作法);(2)在(1)中作出∠ABC的平分線BD后,求∠BDC的度數(shù).

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

根據(jù)一元二次方程的根的判別式的意義得到m-2≠0且Δ=(2m-1)2-4(m-2)(m-2)>0,解得m>且m≠﹣2,再利用根與系數(shù)的關(guān)系得到,m﹣2≠0,解得<m<2,即可求出答案.【詳解】解:由題意可知:m-2≠0且Δ=(2m﹣1)2﹣4(m﹣2)2=12m﹣15>0,∴m>且m≠﹣2,∵(m﹣2)x2+(2m﹣1)x+m﹣2=0有兩個不相等的正實(shí)數(shù)根,∴﹣>0,m﹣2≠0,∴<m<2,∵m>,∴<m<2,故選:D.【點(diǎn)睛】本題主要考查對根的判別式和根與系數(shù)的關(guān)系的理解能力及計(jì)算能力,掌握根據(jù)方程根的情況確定方程中字母系數(shù)的取值范圍是解題的關(guān)鍵.2、D【解析】試題分析:根據(jù)三視圖的法則可知B為俯視圖,D為主視圖,主視圖為一個正方形.3、C【解析】

根據(jù)圓錐的底面周長等于側(cè)面展開圖的扇形弧長,列出方程求出圓錐的底面半徑,再利用勾股定理求出圓錐的高.【詳解】解:半徑為12cm,圓心角為的扇形弧長是:,

設(shè)圓錐的底面半徑是rcm,

則,

解得:.

即這個圓錐形冰淇淋紙?zhí)椎牡酌姘霃绞?cm.

圓錐形冰淇淋紙?zhí)椎母邽椋?/p>

故選:C.【點(diǎn)睛】本題綜合考查有關(guān)扇形和圓錐的相關(guān)計(jì)算解題思路:解決此類問題時要緊緊抓住兩者之間的兩個對應(yīng)關(guān)系:圓錐的母線長等于側(cè)面展開圖的扇形半徑;圓錐的底面周長等于側(cè)面展開圖的扇形弧長正確對這兩個關(guān)系的記憶是解題的關(guān)鍵.4、D【解析】

根據(jù)同底數(shù)冪的除法、乘法的運(yùn)算方法,冪的乘方與積的乘方的運(yùn)算方法,以及單項(xiàng)式乘單項(xiàng)式的方法,逐項(xiàng)判定即可.【詳解】∵(a3)2=a6,∴選項(xiàng)A不符合題意;∵(-x)2÷x=x,∴選項(xiàng)B不符合題意;∵a3(-a)2=a5,∴選項(xiàng)C不符合題意;∵(-2x2)3=-8x6,∴選項(xiàng)D符合題意.故選D.【點(diǎn)睛】此題主要考查了同底數(shù)冪的除法、乘法的運(yùn)算方法,冪的乘方與積的乘方的運(yùn)算方法,以及單項(xiàng)式乘單項(xiàng)式的方法,要熟練掌握.5、B【解析】

根據(jù)反比例函數(shù)的性質(zhì)判斷即可.【詳解】解:∵當(dāng)x1<x2<0時,y1<y2,

∴在每個象限y隨x的增大而增大,

∴k<0,

故選:B.【點(diǎn)睛】本題考查了反比例函數(shù)的性質(zhì),解題的關(guān)鍵是熟練掌握反比例函數(shù)的性質(zhì).6、D【解析】

設(shè)點(diǎn)A的坐標(biāo)是(x,y),根據(jù)旋轉(zhuǎn)變換的對應(yīng)點(diǎn)關(guān)于旋轉(zhuǎn)中心對稱,再根據(jù)中點(diǎn)公式列式求解即可.【詳解】根據(jù)題意,點(diǎn)A、A′關(guān)于點(diǎn)C對稱,

設(shè)點(diǎn)A的坐標(biāo)是(x,y),

=0,

=-1,

解得x=-a,y=-b-2,

∴點(diǎn)A的坐標(biāo)是(-a,-b-2).

故選D.【點(diǎn)睛】本題考查了利用旋轉(zhuǎn)進(jìn)行坐標(biāo)與圖形的變化,根據(jù)旋轉(zhuǎn)的性質(zhì)得出點(diǎn)A、A′關(guān)于點(diǎn)C成中心對稱是解題的關(guān)鍵7、D【解析】

先利用合并同類項(xiàng)法則,單項(xiàng)式除以單項(xiàng)式,以及單項(xiàng)式乘以單項(xiàng)式法則計(jì)算即可得到結(jié)果.【詳解】A、2x2+3x2=5x2,不符合題意;B、2x2﹣3x2=﹣x2,不符合題意;C、2x2÷3x2=,不符合題意;D、2x23x2=6x4,符合題意,故選:D.【點(diǎn)睛】本題主要考查了合并同類項(xiàng)法則,單項(xiàng)式除以單項(xiàng)式,單項(xiàng)式乘以單項(xiàng)式法則,正確掌握運(yùn)算法則是解題關(guān)鍵.8、B【解析】

由拋物線的對稱軸結(jié)合拋物線與x軸的一個交點(diǎn)坐標(biāo),可求出另一交點(diǎn)坐標(biāo),結(jié)論①正確;當(dāng)x=﹣1時,y>1,得到a﹣b+c>1,結(jié)論②錯誤;根據(jù)拋物線的對稱性得到結(jié)論③錯誤;將x=2代入二次函數(shù)解析式中結(jié)合4a+b+c=1,即可求出拋物線的頂點(diǎn)坐標(biāo),結(jié)論④正確;根據(jù)拋物線的頂點(diǎn)坐標(biāo)為(2,b),判斷⑤.【詳解】解:①∵拋物線y=ax2+bx+c(a≠1)的對稱軸為直線x=2,與x軸的一個交點(diǎn)坐標(biāo)為(4,1),∴拋物線與x軸的另一交點(diǎn)坐標(biāo)為(1,1),∴拋物線過原點(diǎn),結(jié)論①正確;②∵當(dāng)x=﹣1時,y>1,∴a﹣b+c>1,結(jié)論②錯誤;③當(dāng)x<1時,y隨x增大而減小,③錯誤;④拋物線y=ax2+bx+c(a≠1)的對稱軸為直線x=2,且拋物線過原點(diǎn),∴c=1,∴b=﹣4a,c=1,∴4a+b+c=1,當(dāng)x=2時,y=ax2+bx+c=4a+2b+c=(4a+b+c)+b=b,∴拋物線的頂點(diǎn)坐標(biāo)為(2,b),結(jié)論④正確;⑤∵拋物線的頂點(diǎn)坐標(biāo)為(2,b),∴ax2+bx+c=b時,b2﹣4ac=1,⑤正確;綜上所述,正確的結(jié)論有:①④⑤.故選B.【點(diǎn)睛】本題考查的是二次函數(shù)圖象與系數(shù)的關(guān)系,二次函數(shù)y=ax2+bx+c系數(shù)符號由拋物線開口方向、對稱軸、拋物線與y軸的交點(diǎn)拋物線與x軸交點(diǎn)的個數(shù)確定.9、D【解析】試題分析:方程,兩邊都乘以x-1去分母后得:2-(x+2)=3(x-1),故選D.考點(diǎn):解分式方程的步驟.10、C【解析】圓錐的側(cè)面積=底面周長×母線長÷2,把相應(yīng)數(shù)值代入,圓錐的側(cè)面積=2π×2×5÷2=10π.故答案為C二、填空題(本大題共6個小題,每小題3分,共18分)11、0【解析】

根據(jù)題意列出方程組,求出方程組的解即可得到結(jié)果.【詳解】解:根據(jù)題意得:,即,解得:,則x+y=﹣1+1=0,故答案為0【點(diǎn)睛】此題考查了解二元一次方程組,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.12、2.1【解析】

根據(jù)勾股定理求出AC,根據(jù)矩形性質(zhì)得出∠ABC=90°,BD=AC,BO=OD,求出BD、OD,根據(jù)三角形中位線求出即可.【詳解】∵四邊形ABCD是矩形,∴∠ABC=90°,BD=AC,BO=OD,∵AB=6cm,BC=8cm,∴由勾股定理得:BD=AC==10(cm),∴DO=1cm,∵點(diǎn)E、F分別是AO、AD的中點(diǎn),∴EF=OD=2.1cm,故答案為2.1.【點(diǎn)評】本題考查了勾股定理,矩形性質(zhì),三角形中位線的應(yīng)用,熟練掌握相關(guān)性質(zhì)及定理是解題的關(guān)鍵.13、a(b+3)(b﹣3).【解析】

根據(jù)提公因式,平方差公式,可得答案.【詳解】解:原式=a(b2﹣9)=a(b+3)(b﹣3),故答案為:a(b+3)(b﹣3).【點(diǎn)睛】本題考查了因式分解,一提,二套,三檢查,分解要徹底.14、【解析】【分析】根據(jù)二次根式的運(yùn)算法則進(jìn)行計(jì)算即可求出答案.【詳解】==,故答案為.【點(diǎn)睛】本題考查二次根式的運(yùn)算,解題的關(guān)鍵是熟練運(yùn)用二次根式的運(yùn)算法則.15、1.【解析】

解:∵四邊形ABCD是菱形,∠D=78°,∴∠ACB=(180°-∠D)=51°,又∵四邊形AECD是圓內(nèi)接四邊形,∴∠AEB=∠D=78°,∴∠EAC=∠AEB-∠ACB=1°.故答案為:1°16、【解析】

根據(jù)概率是所求情況數(shù)與總情況數(shù)之比,可得答案.【詳解】因?yàn)楣灿辛鶄€小組,所以第五組被抽到的概率是,故答案為:.【點(diǎn)睛】本題考查了概率的知識.用到的知識點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.三、解答題(共8題,共72分)17、20(1)y=2x-5,y=;(2)n=-4或n=1【解析】

(1)由點(diǎn)A坐標(biāo)知OA=OB=5,可得點(diǎn)B的坐標(biāo),由A點(diǎn)坐標(biāo)可得反比例函數(shù)解析式,由A、B兩點(diǎn)坐標(biāo)可得直線AB的解析式;

(2)由k=2知N(2,6),根據(jù)NP=NM得點(diǎn)M坐標(biāo)為(2,0)或(2,12),分別代入y=2x-n可得答案.【詳解】解:(1)∵點(diǎn)A的坐標(biāo)為(4,3),

∴OA=5,

∵OA=OB,

∴OB=5,

∵點(diǎn)B在y軸的負(fù)半軸上,

∴點(diǎn)B的坐標(biāo)為(0,-5),

將點(diǎn)A(4,3)代入反比例函數(shù)解析式y(tǒng)=中,

∴反比例函數(shù)解析式為y=,

將點(diǎn)A(4,3)、B(0,-5)代入y=kx+b中,得:k=2、b=-5,

∴一次函數(shù)解析式為y=2x-5;

(2)由(1)知k=2,

則點(diǎn)N的坐標(biāo)為(2,6),

∵NP=NM,

∴點(diǎn)M坐標(biāo)為(2,0)或(2,12),

分別代入y=2x-n可得:n=-4或n=1.【點(diǎn)睛】本題主要考查直線和雙曲線的交點(diǎn)問題,解題的關(guān)鍵是熟練掌握待定系數(shù)法求函數(shù)解析式及分類討論思想的運(yùn)用.18、客房8間,房客63人【解析】

設(shè)該店有間客房,以人數(shù)相等為等量關(guān)系列出方程即可.【詳解】設(shè)該店有間客房,則解得答:該店有客房8間,房客63人.【點(diǎn)睛】本題考查的是利用一元一次方程解決應(yīng)用題,根據(jù)題意找到等量關(guān)系式是解題的關(guān)鍵.19、(1)證明見解析;(2)能;BE=1或;(3)【解析】

(1)證明:∵AB=AC,∴∠B=∠C,∵△ABC≌△DEF,∴∠AEF=∠B,又∵∠AEF+∠CEM=∠AEC=∠B+∠BAE,∴∠CEM=∠BAE,∴△ABE∽△ECM;(2)能.∵∠AEF=∠B=∠C,且∠AME>∠C,∴∠AME>∠AEF,∴AE≠AM;當(dāng)AE=EM時,則△ABE≌△ECM,∴CE=AB=5,∴BE=BC?EC=6?5=1,當(dāng)AM=EM時,則∠MAE=∠MEA,∴∠MAE+∠BAE=∠MEA+∠CEM,即∠CAB=∠CEA,又∵∠C=∠C,∴△CAE∽△CBA,∴,∴CE=,∴BE=6?=;∴BE=1或;(3)解:設(shè)BE=x,又∵△ABE∽△ECM,∴,即:,∴CM=,∴AM=5?CM,∴當(dāng)x=3時,AM最短為,又∵當(dāng)BE=x=3=BC時,∴點(diǎn)E為BC的中點(diǎn),∴AE⊥BC,∴AE=,此時,EF⊥AC,∴EM=,S△AEM=.20、見解析【解析】

(1)可以把要證明相等的線段AE,CF放到△AEO,△BFO中考慮全等的條件,由兩個等腰直角三角形得AO=BO,OE=OF,再找夾角相等,這兩個夾角都是直角減去∠BOE的結(jié)果,所以相等,由此可以證明△AEO≌△BFO;(2)由(1)知:∠OAC=∠OBF,∴∠BDA=∠AOB=90°,由此可以證明AE⊥BF【詳解】解:(1)證明:在△AEO與△BFO中,∵Rt△OAB與Rt△EOF等腰直角三角形,∴AO=OB,OE=OF,∠AOE=90°-∠BOE=∠BOF,∴△AEO≌△BFO,∴AE=BF;(2)延長AE交BF于D,交OB于C,則∠BCD=∠ACO由(1)知:∠OAC=∠OBF,∴∠BDA=∠AOB=90°,∴AE⊥BF.21、(1);(2)證明見解析.【解析】

(1)首先連接OD,由垂徑定理,可求得DE的長,又由勾股定理,可求得半徑OD的長,然后由勾股定理求得AD的長;(2)連接OF、OC,先證明四邊形AFCD是菱形,易證得△AFO≌△CFO,繼而可證得FC是⊙O的切線.【詳解】證明:連接OD,是的直徑,,,設(shè),,,在中,,,解得:,,,,在中,;連接OF、OC,是切線,,,,,四邊形FADC是平行四邊形,,平行四邊形FADC是菱形,,,,,即,即,點(diǎn)C在上,是的切線.【點(diǎn)睛】此題考查了切線的判定與性質(zhì)、菱形的判定與性質(zhì)、垂徑定理、勾股定理.此題難度適中,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想的應(yīng)用.22、(1)y=(x-)2-2;(2)△POE的面積為或;(3)點(diǎn)Q的坐標(biāo)為(-,)或(-,2)或(,2).【解析】

(1)將點(diǎn)B坐標(biāo)代入解析式求得a的值即可得;(2)由∠OPM=∠MAF知OP∥AF,據(jù)此證△OPE∽△FAE得===,即OP=FA,設(shè)點(diǎn)P(t,-2t-1),列出關(guān)于t的方程解之可得;(3)分點(diǎn)Q在AB上運(yùn)動、點(diǎn)Q在BC上運(yùn)動且Q在y軸左側(cè)、點(diǎn)Q在BC上運(yùn)動且點(diǎn)Q在y軸右側(cè)這三種情況分類討論即可得.【詳解】解:(1)把點(diǎn)B(-,2)代入y=a(x-)2-2,解得a=1,∴拋物線的表達(dá)式為y=(x-)2-2,(2)由y=(x-)2-2知A(,-2),設(shè)直線AB表達(dá)式為y=kx+b,代入點(diǎn)A,B的坐標(biāo)得,解得,∴直線AB的表達(dá)式為y=-2x-1,易求E(0,-1),F(xiàn)(0,-),M(-,0),若∠OPM=∠MAF,∴OP∥AF,∴△OPE∽△FAE,∴,∴OP=FA=,設(shè)點(diǎn)P(t,-2t-1),則,解得t1=-,t2=-,由對稱性知,當(dāng)t1=-時,也滿足∠OPM=∠MAF,∴t1=-,t2=-都滿足條件,∵△POE的面積=OE·|t|,∴△POE的面積為或;(3)如圖,若點(diǎn)Q在AB上運(yùn)動,過N′作直線RS∥y軸,交QR于點(diǎn)R,交NE的延長線于點(diǎn)S,設(shè)Q(a,-2a-1),則NE=-a,QN=-2a.由翻折知QN′=QN=-2a,N′E=NE=-a,由∠QN′E=∠N=90°易知△QRN′∽△N′SE,∴==,即===2,∴QR=2,ES=,由NE+ES=NS=QR可得-a+=2,解得a=-,∴Q(-,),如圖,若點(diǎn)Q在BC上運(yùn)動,且Q在y軸左側(cè),過N′作直線RS∥y軸,交BC于點(diǎn)R,交NE的延長線于點(diǎn)S.設(shè)NE=a,則N′E=a.易知RN′=2,SN′=1,QN′=QN=3,∴QR=,SE=-a.在Rt△SEN′中,(-a)2+12=a2,解得a=,∴Q(-,2),如圖,若點(diǎn)Q在BC上運(yùn)動,且點(diǎn)Q在y軸右側(cè),過N′作直線RS∥y軸,交BC于點(diǎn)R,交NE的延長線于點(diǎn)S.設(shè)NE=a,則N′E=a.易知RN′=2,SN′=1,QN′=QN=3,∴QR=,SE=-a.在Rt△SEN′中,(-a)2+12=a2,解得a=,∴Q(,2).綜上,點(diǎn)Q的坐標(biāo)為(-,)或(-,2)或(,2).【點(diǎn)睛】本題主要考查二次函數(shù)的綜合問題,解題的關(guān)鍵是掌握待定系數(shù)法求函數(shù)解析式、相似三角形的判定與性質(zhì)、翻折變換的性質(zhì)及勾股定理等知識點(diǎn).23、(1)證明見解析(2)(3)EP+EQ=EC【解析】

(1)由題意可得:∠ACP=∠BCQ,即可證△ACP≌△BCQ,可得AP=CQ;作CH⊥PQ于H,由題意可求PQ=2,可得CH=,根據(jù)勾股定理可求AH=,即可求AP的長;作CM⊥BQ于M,CN⊥EP于N,設(shè)BC交AE于O,由題意可證△CNP≌△CMQ,可得CN=CM,QM=PN,即

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論