版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
PAGE
AdvertisingResearch:Instructor’sManual
Copyright?2012PearsonEducation,Inc.publishingasPrenticeHall
AdvertisingResearch:Instructor’sManual
Copyright?2012PearsonEducation,Inc.publishingasPrenticeHall
PAGE
16.QuantitativeDataAnalysis:InferentialStatistics
ChapterGoals
Afterreadingthischapterstudentsshouldhaveabetterunderstandingof:
? whatstatisticalsignificanceisandwhyitisimportant.
? howtoevaluatedifferentlevelsofresponsefromasinglegroupofindividuals.
? howtoevaluatethemeaningfulnessofdifferencesinlevelsofresponseamongtwoormoregroupsofindividuals.
? howtodeterminethesimultaneousandindependentinfluenceoftwoormoreexperimentalfactors.
? howtodeterminetherelationshipbetweentwoormoremeasures.NotestotheInstructor
TheChapterLectureprovidesaguidetokeytopicsandcontent.TwofilesofPowerPointslidesareprovided:davis_adresearch_ch16(part1).pptanddavis_adresearch_ch16(part2).ppt.
Levelsofsignificanceforstatisticaltestsareobtainedthroughonlinecalculators.Linkstoseveralexamplesofthesecalculatorsareprovidedwithintheslides.
ChapterLecture
Part1
Slides
Slide16-
2
Researcherstypicallyuseinferentialstatisticstoanswertwoimportantquestions:
? HowmuchconfidencecanIhavethatthedifferencebetweentwoormoremeasuresisrealandmeaningful,andnotjust
theresultofrandomfluxuationinthedata?
? HowmuchconfidencecanIhavethattherelationshipIam
seeingbetweentwoormoremeasuresisrealandmeaning-ful?
Statisticalsignificancehelpsanswerbothquestions.
I.StatisticalSignificance
Slide16-
3
Slide16-
4
Slide16-
5
Slide16-
6
Slide16-
7
Expressedasanumberbetween0and1.Alpha(a)representsprobabilitythatdifferenceisduetochance.Alowernumberreflectsmoreconfidencethatthedifferenceisarealone.Oncecalculated,foreaseofinterpretation,(a)isturnedintoapercentage.
? Whena=.1,forexample,thelevelofchanceis10%,soresearchercanbe90%confidentthattheresultsarereal.
When(a)is5%orlessresearcherstypicallyclaimthatfindingsarestatisticallysignificantandasaresultthatobserveddifferencesarereal.
ConsidertheexampledescribedinSlide16-5.DatashowninSlide16-6.Interpretedasfollows:
ThoseexposedtotheMustangalwayshavemorepositivescores.AresearcherlookingjustatthesescoresmightconcludethatMustang’spresenceinthegameachievedsuccessinallfouroftheareasmeasured,andasaresult,gameplacementisa
viableoptionifFordwantstochangeabroadrangeofattitudestowardMustang.Butwouldthisconclusionbecorrect?
ThetableshowninSlide16-7addsthealphavaluetoeachmeasure.
LevelsofstatisticalsignificanceshowthattheresearchercanonlyhaveconfidencethatgameplacementhelpedtochangeperceptionsofMustangasapowercar.Onlythismeasurehadan(a)levelat.05orless.Thechangesintheotherareaswerepositivebutdidnotreachthelevelofstatisticalsignificance.
Thus,basedontheresults,amorecorrectconclusionmighthave
beenthat:
PlacementinthegameworkswelltofosterpowercarperceptionsofMustangandshowssomesuccessinchangingattitudestowardMustanginotherareas.IfFordwantstofocusonimprovingpowercarperceptionsthengameplacementisanexcellentoption.IfFordwantstousegameplaytoimprove
attitudesintheremainingthreeareasthenwaysshouldbeexploredtodeterminehowcurrentMustangperceptionscanbestrengthenedwithspecificfocusonthethreeareasthatshowednearstatisticalsignificance.
II.MakingJudgmentsAboutASingleMeasureFromOneSample
A.ComparingaSampleAveragetoAPopulationAverage
Oneoftwotestscanbeusedtocompareasamplemeantoapopulationmean.Thetestselectedisdeterminedbysamplesize.Themathunderlyingbothtestsisquitesimpleandrequiresonlyminimalmanualcomputation.
Slide16-
8
Slide16-
9
Slide16-
10
Slide16-
11
1.LargeSampleSize
Alargesamplesizeisgenerallyconsideredtobe30ormoreindividuals.ImagineMcDonald'stestseveryproposedcommercialbeforeitisproduced.
Overtime,severalhundredtestsareconducted.McDonald'scanusepopulationofpriorteststoevaluateperformanceofproposedcommercials.Onlycommercialsthataresignificantlybetterthanaverageofpriorcommercialsonthekeymeasureof“purchaseintent”areproduced.
McDonald'stestsnewcommercial.ThedataneededtocalculatewhetherornotcommercialissignificantlybetterthantheaverageofpastcommercialsisshowninSlide16-9.
Acomparisonoftestcommercialtopopulationofcommercialsiscarriedoutinthreesteps:
1.Subtractpopulationaveragefromthesampleaverage(inthiscasethetestcommercial).Resultis.8(3.9-3.1=.8).
2.Dividepopulationstandarddeviationbysquarerootofsamplesize.Resultis.16.(Thesquarerootof100is10,sothecomputationis1.6/10=.16.)
3.DividenumberobtainedinStep1bythenumberobtainedin
Step2.Resultis5.00(calculatedas.8/.16).
ThevalueobtainedisaZ-score,whichcanbeinterpretedinoneofthreeways,allofwhichreachthesameconclusion.First,astatisticaltablecanbeused.Second,youcancompareZ-scoreobtainedtotheZ-scorerequiredfor(a)at1%and5%levelsofconfidence.Third,youcanuseanonlinecalculator.AllthreeshowthataZ-scoreof5resultsinaconfidencelevelofmuchlessthan.001,
indicatingthatthereisactuallylessthan1chancein1,000thatresultsareduetochance.ThenewMcDonald’scommercialshouldbeproduced.
2.SmallSampleSize
Slide16-
12
Slide16-
13
Slide16-
14
Slide16-
15
Slide16-
16
Whensamplesizeislessthan30,t-test,isusedtocomparetestmeantopopulationmean.T-testisverysimilartoZtestinapproach.However,whiletheZtestusesthepopulationstandarddeviationt-testutilizesthesamplestandarddeviation.SampledatashowninSlide16-12.
Thisisthesamesituationasbefore,onlythesamplesizeislessthan30.Comparisonoftestcommercialtopopulationofcommercialsiscarriedoutinthreesteps:
1.Subtractthepopulationaveragefromthesampleaverage(inthiscasethetestcommercial).Inthisexampletheresultis-.4(3.2-
3.6=-.4).
2. Dividethetestsamplestandarddeviationbythesquarerootofthesamplesize.Inthisexampletheresultis.3(Thesquarerootof25is5,sothecomputationis1.5/5=.3.)
3.DividethenumberisobtainedinStep1bythenumberobtainedinStep2.Inthisexampletheresultis-1.33(calculatedas-.4/
.3).
Interpretationoft-valueusesdegreesoffreedomwhichisthenumberinyoursampleminusone(inthisexample24).Onceknown,thestatisticaltableoronlinecalculatorcanbeused.At-scoreof-1.33and24degreesoffreedomgivessignificancevalueof.196.Thislevelofsignificancefailstoreachthetraditionalcut-offvalues(.01or.05)andindicatesthatresearchercannotbeconfidentthatdifferencebetweentestcommercialandtheaverageofallpriorcommercialsis“real”andnotduetochance.McDonald'scannotconfidentlyconcludethattestcommercialisdifferent(eitherbetterorworse)thanaverageofpriorcommercials.
B.ComparingaSampleProportiontoaPopulationProportion
ThinkaboutMcDonald'stryingtoassessimpactofproposedcommercialsonconsumers’intentiontoeatatMcDonald's.Afterseeingthetestcommercial,respondentsasked:"Thenexttimeyougotoafastfoodrestaurantwherewillyougo?"Thepercentageofrespondentsanswering"McDonald's"istallied.
McDonald'scancomparetheproportionofrespondentssaying"McDonald's"afterseeingatestcommercialtotheaveragepercentagesaying"McDonald's"
withintheirpopulationofpriortests.DatashowninSlide16-16.
Slide16-
17
Slide16-
18
Slide16-
19
Slide16-
20
Slide16-
21
Slide16-
22
Comparisonoftestcommercialtopopulationofcommercialstakesfivesteps:
1.Turnthepopulationandsampleproportionsintodecimals.Then,subtractthepopulationproportionfromthesampleproportion
(inthiscasethetestcommercial).Inthisexample,theresultis
.18(.75-.57=.18).
2.Multiplythetwopopulationproportions.Inthisexampletheresultis.25(.57*.43=.25).
3.DividethenumberfromStep2bythesamplesize.Inthisexample,theresultis.005(.25/50).
4.TakethesquarerootofthenumberobtainedinStep3.Inthisexample,thesquarerootisof.005is.071.
5.DividethenumberfromStep1bythenumberisStep4.Inthisexampletheresultis2.53(.18/.071=2.53).
ThevalueobtainedisaZ-score,whichisinterpretedsimilarlytotheZ-scorediscussedearlier.Z-scoreof2.53translatestoan(a)of.011.ThisindicatesthatMcDonald’scanbenearly99%confidentthatthedifferencesarerealandnotduetochance.Giventhataislessthanthe.05levelofsignificance,McDonald’sconcludesthattheproportionofrespondentswhosaytheyintendtotryMcDonald'safterseeingtestcommercialishigherthanaverageproportionofindividualssaying"McDonald's"inpopulationoftestcommercials.Thiscommercialissignificantlybetterthanpriorcommercials.
III.ExaminingtheInternalCharacteristicsofaSingleSample
Themostcommonapproachtoexaminingapatternofresponsestoasinglemeasureischi-square.Inthiscase,itexaminesfrequencydistributionwithinsinglesampleanddeterminesifpatternissignificantlydifferentthanchance.
Example:Anadvertiserhasfourcommercialsandwishestodeterminewhichcommercialbestcommunicatesatargetmessage.Allfourcommercialsareshowntoasampleofconsumersand,afterallareseen,eachrespondentselectsthecommercialheorshethinkswasbestthecommunicator.
PreferencedataforthisexampleisshowninSlide16-21.
Tomaketheunderlyingdatatrendmorevisible,thetableinSlide16-22expandsthepriortable:
? Countofindividualsselectingeachcommercialisturnedintopercentagedistribution(column2).
? Theexpectednumberofindividualsselectingeachcommercialhasbeenadded(column3).Thispercentageandactualnumberassumesthatifchanceselectionwasoccurringanequalpercentageofindividualswouldselecteachcommercial.Thedatainthesecondandfifthcolumnsarewhatisusedintheactualchi-squareanalysis.
Slide16-
23
Slide16-
24
Slide16-
25
Slide16-
26
Resultsofthechi-squarecalculationanditslevelofsignificancehavealsobeenaddedtothebottomoftable,whichwereobtainedfromtypingdataintoonlinecalculator.(Notethatactualvaluesare:152,114,91,79.Expectedvalueforallcellsis109.)
Levelofsignificanceindicatesthatresultsarenotrandomorduetochance.Theprobabilityofthispatternnotbeing“real”islessthan1in1,000.Thus,McDonald’scanconcludethatconsumers’reactionstothecommercialsareindeeddifferent.
IV.MakingJudgmentsAboutASingleMeasureFromTwoorMore
IndependentSamples
Agreatdealofadvertisingresearchentailscomparingmeasuresfromtwodifferentsamples,forexample,conductinganexperimentwheretheresearcherwantstocompareresultsofcontroltoatestgrouporwherearesearcherwantstofindoutifdifferencesbetweentwosubgroups(suchasmenversuswomen)onsamesurveyarestatisticallydifferent.InthesecasesanF-testisused.
A.ComparingTwoMeans
1.TwoConditions
Example:AnadvertiserhasdevelopedtwoadsthataretobeplacedintorotationinGoogleAdwords.Whilebothadswillbeshowninresponsetothesamesearchterms,adsdifferinbenefit:thefirstadstressescustomerservicewhilethesecondadstresseslowprices.Adwordsletsyoumonitorthepurchaseamountresultingfromtheclick-throughforeachoftheads.Dataiscollected
foramonth,andisshowninSlide16-25.
F-testistheappropriatestatisticaltesttouseincircumstancessuchasthis.TableshowninSlide16-26addsresultsofF-test.
F-value(whichtakesintoaccountsamplesize,thedifferencesbetweentheaveragesandstandarddeviation)isusedtodeterminelevelofsignificance,
whichisreportedinthelastcolumn.Dataindicatesthatthedifferencebetweenthetwoadsaresignificantinfavorofthecustomerservicead.Thechancesofthesedifferencesbeingseenduetochanceislessthan1in1,000.
2.OneSurvey,TwoSubgroups
F-testcanbeusedtodetermineiftheresponsesofdifferentsubgroupsarestatisticallysignificant.
Slide16-
27
Slide16-
28
Slide16-
29
Slide16-
30
Slide16-
31
Slide16-
32
Slide16-
33
Imaginethatanadvertiserasksthefive-pointratingquestion:“HowlikelyorunlikelyareyoupurchaseaniPhoneinthenextmonth?”Highernumbersindicateagreaterlikelihoodtopurchase.WhentheratingsofmenversuswomensurveyedarecomparedthedataappearsasthatshownonSlide16-27.
ThetableshownonSlide16-28addsresultsofF-test:
Asinthepriorexample,theF-valuedeterminesthelevelofsignificance.Itindicatesthatthereisasignificantdifferenceinpurchaseintent.Chanceofthesedifferencesbeingseenduetochanceislessthan1in1,000.
V.ComparingThreeorMoreMeans
A.ThreeorMoreConditions
Anadvertiserwantstotestthreeads:anexistingcustomerserviceadandtwoadditionalads.Firstnewadstressesquickdeliverywhilethesecondisa
revisedlowpricead.DataiscollectedforamonthandisshowninSlide16-30.
TableinSlide16-31addsresultsoftheF-test.
Whentestingthreeormoremeans,F-testindicateswhetherallofthemeansshouldbeconsideredthesameorifoneofmoremeansaresignificantlydifferentthantheothers.Inreadingthelevelofsignificancecolumn,itcanbeseenthatthereisasignificantdifferenceinaveragepurchaseamountgeneratedbyeachad.But,itisnotknownwhichoneisthe“best”untilabsolutelevelsareexaminedandtestsofpairsofmeansareconducted.
DataforthisanalysisisshowninSlide16-32.Whenthisisdone,therevisedlowpriceadisthemostsuccessfulasitissignificantlyhigherthantheothertwoads,whichinturnarenotdifferentfromeachother.
B.OneSurvey,ThreeorMoreSubgroups
Priorprocedurecanbeusedtocomparethreeormoresubgroupsrespondingtothesamesurvey.Imagine,forexample,thatnowyouwantedtoexaminethe
purchaseintentoftheiPhoneamongdifferentagegroups.Therelevantdatafromthefive-pointsurveyquestionisshowninSlide16-33.
Slide16-
34
Slide16-
35
Slide16-
36
Slide16-
37
TableinSlide16-34addsresultsoftheF-test.
Asinthepriorexample,F-testindicateswhetherallmeansshouldbeconsideredthesameorifoneofmoremeansaresignificantlydifferentthantheothers.Here,thereissignificantdifferenceintheaveragepurchaseintent.But,itisnotknownwhicharesignificantlydifferentfromeachother.
Thisisdeterminedbycomparingeachpairofmeans,asshowninSlide16-35.Thispatternindicatesthatpurchaseintentof18-24yearoldsissignificantlyhigherthantheothertwoagegroupsandthatthepurchaseintentofthose25-49isgreaterthanthatofthoseaged50+.
VI.FactorialDesigns:MakingJudgmentsAbouttheSimultaneous
InfluenceofTwoorMoreVariables
Therearetimeswhenaresearcherwantstofindtheinfluenceoftwoormorevariablesatthesametime.Theadvantageofsimultaneouslymanipulatingtwoormorevariablesisthataresearcherisabletoseeifthereisaninteractionbetweenthevariables.Factorialdesignallowsyoutomanipulatetwoormorevariablesatthesametime.
Factorialdesignisdescribedintermsofitsmainfactorsandthelevelswithineachfactor.
ImagineanadvertiserwantstodevelopfourViraladsforanewcampaign.Theads,whilealldesignedtocommunicatethesamemessage,varyalongtwofactors:useofhumorandgenderofthespokesperson.AsshowninSlide16-36“Humor”and“Gender”arethefactors.Eachfactorhastwolevels:twolevels
ofhumorare“Absent”and“Present”whiletwolevelsof“Gender”are“Male”
and“Female.”
Thefollowingdiscussionlooksatthemostcommonoutcomesoffactorialdesigns.
A.NeitherFactorisSignificant,NoInteractionBetweenfactors
Thefirststepinanalysiscalculatesaveragesforeachfactorindependentlyandforeachcombinationoffactors.TheoutcomeshowninSlide16-37.
Thedataindicatesthat:
? Theoverallaverageforthetwoadswithamalespokesperson
was3.7whiletheoverallaverageforthetwoadswithafemalespokespersonwas3.9.
? Theoverallaverageforthetwoadswithhumorwas3.7whiletheoverallaverageforthetwoadswithouthumorwas3.9.
? Theaveragefor“Logo”was3.6whiletheaveragefor“Text”
was4.0.
Slide16-
38
Slide16-
39
Slide16-
40
Slide16-
41
F-valueisthencomputedforeachfactortheinteractionbetweenthetwofactors.TheF-valueisthentranslatedintoan(a)asshowninSlide16-38.
Datainterpretedasfollows:
? Genderasmaineffecthadlittleinfluenceonratingsofcommercialrelevance.
? Humorasmaineffecthadlittleinfluenceonratingsofcommercialrelevance.
? Nosignificantinteractionbetweenthetwomaineffectsasthe(a)
fortheinteractionisgreaterthan.05.
FindingsareillustratedinthegraphshowninSlide16-39.Notehowlinesforbothmaineffectsareparalleltoeachother(indicatingnointeraction)andveryclosetogether(indicatingthatneithermaineffectissignificant).
B.OneFactorisSignificant,NoInteractionBetweenFactors
Asinthepriorexample,thefirststepcalculatesaveragesforeachfactorindependentlyandforeachcombinationoffactors,asshowninSlide16-40.
F-valuesandlevelsofsignificancearethencomputedforeachfactorandfortheinteractionbetweenthetwofactorsasshowninSlide16-41.
Datainterpretedasfollows:
?Genderasamaineffecthadaprofoundinfluenceonratingsofcommercialrelevance.
?Humorasamaineffecthadlittleinfluenceonratingsofcommercialrelevance.
?Therewasnosignificantinteractionbetweenthetwofactorsasthe(a)fortheinteractionisgreaterthan.05.
Slide16-
42
Part2
Slides
Slide16-
2
Slide16-
3
Slide16-
4
Slide16-
5
FindingsareillustratedinSlide16-42.Notehowthelinesforbothfactorsareparalleltoeachother(indicatingnointeraction)withthespacebetweenthemquitelarge(indicatingasignificantmaineffect).Thisindicatesthatthemalespokespersonwasalwaysrespondedtoinamorepositivewayversusthefemalespokesperson.Regardlessofwhetherornothumorwaspresent,themalespokespersonreceivedhigherratingsversusfemalespokesperson.
C.OneFactorisSignificant,thereisanInteractionBetweenFactors
Thefirststepintheanalysiscalculatestheaveragesforeachfactorindependentlyandforeachcombinationoffactors,asshowninSlide16-2.
TheF-valuesandlevelsofsignificancearethencomputedforeachfactorandfortheinteractionbetweenfactorsasshowninSlide16-3.
Datainterpretedasfollows:
? Therewasasignificantinteractionbetweenthetwofactorsas(a)fortheinteractionislessthan.05.Indicatesthatweneedtobecautiousininterpretingthedatarelevanttothemaineffects.
? Genderasamaineffecthadasignificant,independentinfluenceonratingsofcommercialrelevance.However,thesignificantinteractiontermindicatesthatitisnecessarytoexaminethescoresofindividualadspriortodrawingafinalconclusion.Whendone,canbeseenthatsignificanceofthismaineffectisalmostentirelyduetothedifferencebetween“Guitars”and“Text”ads.
? Humorasamaineffecthadnoindependentinfluenceonratingsofcommercialrelevance.
FindingsareillustratedinthegraphshowninSlide16-4.Notehowlinesnowrunatanangletoeachother,ratherthenrunningparallel.Thispatternisavisualindicationofaninteraction.Thelines’closenesswhenhumorispresentanddistancewhenhumorisabsentindicatesthathumoronlyexertsaninfluenceonrelevanceratingswhenitisabsentandonlyresultsinhigherratingswhenamalespokespersonisused.
D.TwoFactorsareSignificant,NoInteractionBetweenFactors
Thefirststepcalculatestheaveragesforeachfactorindependentlyandforeachcombinationoffactors,asshowninSlide16-5.
Slide16-
6
Slide16-
7
Slide16-
8
Slide16-
9
F-valuesandlevelsofsignificancearecomputedforeachfactorandforinteractionbetweenthetwofactorsasshowninSlide16-6.
Datainterpretedasfollows:
? Genderexertedanindependentinfluenceonratingsofcommercialrelevance.Relevancewasratedhigherwhenthespokespersonwasfemaleversusmale.
? Humorexertedindependentinfluenceonratingsofcommercialrelevance.Therewasasignificantdifferencewhenhumorwaspresentversusabsent.Relevancewasratedhigherwhenhumorwaspresent.
? Therewasnosignificantinteractionbetweenthetwofactors.FindingsareillustratedinthegraphshowninSlide16-7.Notehowlinesfor
bothfactorsareparalleltoeachother(indicatingnointeraction)withthespace
betweenthemquitelarge.
E.NeitherFactorisSignificant,thereisanInteractionBetweenFactors
Thefirststepintheanalysiscalculatesaveragesforeachfactorindependentlyandforeachcombinationoffactors,asshowninSlide16-8.
F-valuesandlevelsofsignificancearecomputedforeachfactorandfortheinteractionbetweenthetwofactorsasshowninSlide16-9.
Dataindicates:
? Therewasasignificantinteractionbetweenthetwofactorsasthe
(a)fortheinteractionisgreaterthan.05.Indicatesthatweneed
tobecautiousininterpretingthedatarelevanttothemaineffects.
? Genderasamaineffecthadnosignificantinfluenceonratingsofcommercialrelevance.Therewasnosignificantdifferencewhenthegenderofthespokespersonwasvaried.Examinationoftheindividualad’smeansindicatesthattherewasalargedifferencebetweenadswithafemalespokespersonandtheadswithamalespokesperson.
? Humorasamaineffecthadnosignificantinfluenceonratingsofcommercialrelevance.Therewasnosignificantdifferencewhenhumorwaspresentorabsent.Examinationofindividualad’s
meansshowsalargedifferencebetweenadswithhumorandtheadswithouthumor.
Slide16-
10
Slide16-
11
Slide16-
12
Slide16-
13
Slide16-
14
FindingsareillustratedinthegraphshowninSlide16-10.Notehowlinesrunatanangletoeachother,ratherthenrunningparallel.Graphindicatesthatfemalespokespeoplearebes
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版智能門窗安全性能檢測(cè)與認(rèn)證合同3篇
- 二零二五版健身俱樂(lè)部健身用品定制與銷售合同2篇
- 2025版美術(shù)教師教育公益活動(dòng)聘用合同協(xié)議4篇
- 二零二五年度醫(yī)療健康領(lǐng)域投資借款合同大全4篇
- 二零二五版摩托車售后服務(wù)網(wǎng)點(diǎn)建設(shè)與運(yùn)營(yíng)合同4篇
- 2025年度智能化中央空調(diào)系統(tǒng)安裝及維護(hù)服務(wù)合同協(xié)議4篇
- 2025年度可再生能源暖氣供應(yīng)合同范本4篇
- 2025版膩?zhàn)尤槟z漆施工與色彩設(shè)計(jì)合同范本3篇
- 2025版高端住宅內(nèi)墻藝術(shù)涂料施工合同范本4篇
- 2025年高校教授學(xué)術(shù)團(tuán)隊(duì)建設(shè)與管理合同4篇
- 高考滿分作文常見(jiàn)結(jié)構(gòu)完全解讀
- 理光投影機(jī)pj k360功能介紹
- 六年級(jí)數(shù)學(xué)上冊(cè)100道口算題(全冊(cè)完整版)
- 八年級(jí)數(shù)學(xué)下冊(cè)《第十九章 一次函數(shù)》單元檢測(cè)卷帶答案-人教版
- 帕薩特B5維修手冊(cè)及帕薩特B5全車電路圖
- 系統(tǒng)解剖學(xué)考試重點(diǎn)筆記
- 小學(xué)五年級(jí)解方程應(yīng)用題6
- 云南省地圖含市縣地圖矢量分層地圖行政區(qū)劃市縣概況ppt模板
- 年月江西省南昌市某綜合樓工程造價(jià)指標(biāo)及
- 作物栽培學(xué)課件棉花
評(píng)論
0/150
提交評(píng)論