




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
陜西師大附中2024年中考一模數(shù)學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖是一個幾何體的三視圖,則這個幾何體是()A. B. C. D.2.為迎接中考體育加試,小剛和小亮分別統(tǒng)計了自己最近10次跳繩比賽,下列統(tǒng)計量中能用來比較兩人成績穩(wěn)定程度的是()A.平均數(shù)B.中位數(shù)C.眾數(shù)D.方差3.如圖:將一個矩形紙片,沿著折疊,使點分別落在點處.若,則的度數(shù)為()A. B. C. D.4.如圖,在Rt△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足為D、E,F(xiàn)分別是CD,AD上的點,且CE=AF.如果∠AED=62°,那么∠DBF的度數(shù)為()A.62° B.38° C.28° D.26°5.已知關于x的方程x2+3x+a=0有一個根為﹣2,則另一個根為()A.5 B.﹣1 C.2 D.﹣56.實數(shù)a、b在數(shù)軸上的對應點的位置如圖所示,則正確的結論是()A.a(chǎn)<﹣1 B.a(chǎn)b>0 C.a(chǎn)﹣b<0 D.a(chǎn)+b<07.如圖,邊長為2a的等邊△ABC中,M是高CH所在直線上的一個動點,連接MB,將線段BM繞點B逆時針旋轉60°得到BN,連接HN.則在點M運動過程中,線段HN長度的最小值是()A. B.a(chǎn) C. D.8.拋物線經(jīng)過第一、三、四象限,則拋物線的頂點必在()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.如圖,由5個完全相同的小正方體組合成一個立體圖形,它的左視圖是()A. B. C. D.10.如圖,一艘海輪位于燈塔P的南偏東45°方向,距離燈塔60nmile的A處,它沿正北方向航行一段時間后,到達位于燈塔P的北偏東30°方向上的B處,這時,B處與燈塔P的距離為()A.60nmile B.60nmile C.30nmile D.30nmile二、填空題(共7小題,每小題3分,滿分21分)11.點P的坐標是(a,b),從-2,-1,0,1,2這五個數(shù)中任取一個數(shù)作為a的值,再從余下的四個數(shù)中任取一個數(shù)作為b的值,則點P(a,b)在平面直角坐標系中第二象限內的概率是.12.如圖,AB是半徑為2的⊙O的弦,將沿著弦AB折疊,正好經(jīng)過圓心O,點C是折疊后的上一動點,連接并延長BC交⊙O于點D,點E是CD的中點,連接AC,AD,EO.則下列結論:①∠ACB=120°,②△ACD是等邊三角形,③EO的最小值為1,其中正確的是_____.(請將正確答案的序號填在橫線上)13..如圖,圓錐側面展開得到扇形,此扇形半徑CA=6,圓心角∠ACB=120°,則此圓錐高OC的長度是_______.14.關于x的一元二次方程x2+(2k+1)x+k2+1=0有兩個不相等的實根,則實數(shù)k的取值范圍是_____.15.如圖,在菱形ABCD中,對角線AC、BD相交于點O,點E是線段BO上的一個動點,點F為射線DC上一點,若∠ABC=60°,∠AEF=120°,AB=4,則EF可能的整數(shù)值是_____.16.如圖,在Rt△AOB中,∠AOB=90°,OA=2,OB=1,將Rt△AOB繞點O順時針旋轉90°后得到Rt△FOE,將線段EF繞點E逆時針旋轉90°后得到線段ED,分別以O、E為圓心,OA、ED長為半徑畫弧AF和弧DF,連接AD,則圖中陰影部分的面積是__.17.如圖,AB=AC,要使△ABE≌△ACD,應添加的條件是(添加一個條件即可).三、解答題(共7小題,滿分69分)18.(10分)先化簡(-a+1)÷,并從0,-1,2中選一個合適的數(shù)作為a的值代入求值.19.(5分)如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=(x>0)的圖象交于A(m,6),B(3,n)兩點.求一次函數(shù)關系式;根據(jù)圖象直接寫出kx+b﹣>0的x的取值范圍;求△AOB的面積.20.(8分)已知,求代數(shù)式的值.21.(10分)某超市開展早市促銷活動,為早到的顧客準備一份簡易早餐,餐品為四樣A:菜包、B:面包、C:雞蛋、D:油條.超市約定:隨機發(fā)放,早餐一人一份,一份兩樣,一樣一個.(1)按約定,“某顧客在該天早餐得到兩個雞蛋”是事件(填“隨機”、“必然”或“不可能”);(2)請用列表或畫樹狀圖的方法,求出某顧客該天早餐剛好得到菜包和油條的概率.22.(10分)如圖,二次函數(shù)y=x2+bx+c的圖象交x軸于A、D兩點,并經(jīng)過B點,已知A點坐標是(2,0),B點坐標是(8,6).求二次函數(shù)的解析式;求函數(shù)圖象的頂點坐標及D點的坐標;二次函數(shù)的對稱軸上是否存在一點C,使得△CBD的周長最?。咳鬋點存在,求出C點的坐標;若C點不存在,請說明理由.23.(12分)黃巖某校搬遷后,需要增加教師和學生的寢室數(shù)量,寢室有三類,分別為單人間(供一個人住宿),雙人間(供兩個人住宿),四人間(供四個人住宿).因實際需要,單人間的數(shù)量在20至30之間(包括20和30),且四人間的數(shù)量是雙人間的5倍.(1)若2018年學校寢室數(shù)為64個,以后逐年增加,預計2020年寢室數(shù)達到121個,求2018至2020年寢室數(shù)量的年平均增長率;(2)若三類不同的寢室的總數(shù)為121個,則最多可供多少師生住宿?24.(14分)某市旅游部門統(tǒng)計了今年“五?一”放假期間該市A、B、C、D四個旅游景區(qū)的旅游人數(shù),并繪制出如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖,根據(jù)圖中的信息解答下列問題:(1)求今年“五?一”放假期間該市這四個景點共接待游客的總人數(shù);(2)扇形統(tǒng)計圖中景點A所對應的圓心角的度數(shù)是多少,請直接補全條形統(tǒng)計圖;(3)根據(jù)預測,明年“五?一”放假期間將有90萬游客選擇到該市的這四個景點旅游,請你估計有多少人會選擇去景點D旅游?
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】試題分析:結合三個視圖發(fā)現(xiàn),應該是由一個正方體在一個角上挖去一個小正方體,且小正方體的位置應該在右上角,故選B.考點:由三視圖判斷幾何體.2、D【解析】
根據(jù)方差反映數(shù)據(jù)的波動情況即可解答.【詳解】由于方差反映數(shù)據(jù)的波動情況,所以比較兩人成績穩(wěn)定程度的數(shù)據(jù)是方差.故選D.【點睛】本題主要考查了統(tǒng)計的有關知識,主要包括平均數(shù)、中位數(shù)、眾數(shù)、方差.反映數(shù)據(jù)集中程度的統(tǒng)計量有平均數(shù)、中位數(shù)、眾數(shù)、方差等,各有局限性,因此要對統(tǒng)計量進行合理的選擇和恰當?shù)倪\用.3、B【解析】根據(jù)折疊前后對應角相等可知.
解:設∠ABE=x,
根據(jù)折疊前后角相等可知,∠C1BE=∠CBE=50°+x,
所以50°+x+x=90°,
解得x=20°.
故選B.“點睛”本題考查圖形的翻折變換,解題過程中應注意折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質,折疊前后圖形的形狀和大小不變,如本題中折疊前后角相等.4、C【解析】分析:主要考查:等腰三角形的三線合一,直角三角形的性質.注意:根據(jù)斜邊和直角邊對應相等可以證明△BDF≌△ADE.詳解:∵AB=AC,AD⊥BC,∴BD=CD.又∵∠BAC=90°,∴BD=AD=CD.又∵CE=AF,∴DF=DE,∴Rt△BDF≌Rt△ADE(SAS),∴∠DBF=∠DAE=90°﹣62°=28°.故選C.點睛:熟練運用等腰直角三角形三線合一性質、直角三角形斜邊上的中線等于斜邊的一半是解答本題的關鍵.5、B【解析】
根據(jù)關于x的方程x2+3x+a=0有一個根為-2,可以設出另一個根,然后根據(jù)根與系數(shù)的關系可以求得另一個根的值,本題得以解決.【詳解】∵關于x的方程x2+3x+a=0有一個根為-2,設另一個根為m,
∴-2+m=?,
解得,m=-1,
故選B.6、C【解析】
直接利用a,b在數(shù)軸上的位置,進而分別對各個選項進行分析得出答案.【詳解】選項A,從數(shù)軸上看出,a在﹣1與0之間,∴﹣1<a<0,故選項A不合題意;選項B,從數(shù)軸上看出,a在原點左側,b在原點右側,∴a<0,b>0,∴ab<0,故選項B不合題意;選項C,從數(shù)軸上看出,a在b的左側,∴a<b,即a﹣b<0,故選項C符合題意;選項D,從數(shù)軸上看出,a在﹣1與0之間,∴1<b<2,∴|a|<|b|,∵a<0,b>0,所以a+b=|b|﹣|a|>0,故選項D不合題意.故選:C.【點睛】本題考查數(shù)軸和有理數(shù)的四則運算,解題的關鍵是掌握利用數(shù)軸表示有理數(shù)的大小.7、A【解析】
取CB的中點G,連接MG,根據(jù)等邊三角形的性質可得BH=BG,再求出∠HBN=∠MBG,根據(jù)旋轉的性質可得MB=NB,然后利用“邊角邊”證明∴△MBG≌△NBH,再根據(jù)全等三角形對應邊相等可得HN=MG,然后根據(jù)垂線段最短可得MG⊥CH時最短,再根據(jù)∠BCH=30°求解即可.【詳解】如圖,取BC的中點G,連接MG,∵旋轉角為60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM,∵CH是等邊△ABC的對稱軸,∴HB=AB,∴HB=BG,又∵MB旋轉到BN,∴BM=BN,在△MBG和△NBH中,,∴△MBG≌△NBH(SAS),∴MG=NH,根據(jù)垂線段最短,MG⊥CH時,MG最短,即HN最短,此時∵∠BCH=×60°=30°,CG=AB=×2a=a,∴MG=CG=×a=,∴HN=,故選A.【點睛】本題考查了旋轉的性質,等邊三角形的性質,全等三角形的判定與性質,垂線段最短的性質,作輔助線構造出全等三角形是解題的關鍵,也是本題的難點.8、A【解析】
根據(jù)二次函數(shù)圖象所在的象限大致畫出圖形,由此即可得出結論.【詳解】∵二次函數(shù)圖象只經(jīng)過第一、三、四象限,∴拋物線的頂點在第一象限.故選A.【點睛】本題考查了二次函數(shù)的性質以及二次函數(shù)的圖象,大致畫出函數(shù)圖象,利用數(shù)形結合解決問題是解題的關鍵.9、B【解析】試題分析:從左面看易得第一層有2個正方形,第二層最左邊有一個正方形.故選B.考點:簡單組合體的三視圖.10、B【解析】
如圖,作PE⊥AB于E.在Rt△PAE中,∵∠PAE=45°,PA=60nmile,∴PE=AE=×60=nmile,在Rt△PBE中,∵∠B=30°,∴PB=2PE=nmile.故選B.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】畫樹狀圖為:共有20種等可能的結果數(shù),其中點P(a,b)在平面直角坐標系中第二象限內的結果數(shù)為4,所以點P(a,b)在平面直角坐標系中第二象限內的概率==.故答案為.12、①②【解析】
根據(jù)折疊的性質可知,結合垂徑定理、三角形的性質、同圓或等圓中圓周角與圓心的性質等可以判斷①②是否正確,EO的最小值問題是個難點,這是一個動點問題,只要把握住E在什么軌跡上運動,便可解決問題.【詳解】如圖1,連接OA和OB,作OF⊥AB.
由題知:沿著弦AB折疊,正好經(jīng)過圓心O
∴OF=OA=OB
∴∠AOF=∠BOF=60°
∴∠AOB=120°
∴∠ACB=120°(同弧所對圓周角相等)
∠D=∠AOB=60°(同弧所對的圓周角是圓心角的一半)
∴∠ACD=180°-∠ACB=60°
∴△ACD是等邊三角形(有兩個角是60°的三角形是等邊三角形)
故,①②正確
下面研究問題EO的最小值是否是1
如圖2,連接AE和EF
∵△ACD是等邊三角形,E是CD中點
∴AE⊥BD(三線合一)
又∵OF⊥AB
∴F是AB中點
即,EF是△ABE斜邊中線
∴AF=EF=BF
即,E點在以AB為直徑的圓上運動.
所以,如圖3,當E、O、F在同一直線時,OE長度最小
此時,AE=EF,AE⊥EF
∵⊙O的半徑是2,即OA=2,OF=1
∴AF=(勾股定理)
∴OE=EF-OF=AF-OF=-1
所以,③不正確
綜上所述:①②正確,③不正確.
故答案是:①②.【點睛】考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.推論:半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑.也考查了垂徑定理.13、4【解析】
先根據(jù)圓錐的側面展開圖,扇形的弧長等于該圓錐的底面圓的周長,求出OA,最后用勾股定理即可得出結論.【詳解】設圓錐底面圓的半徑為r,∵AC=6,∠ACB=120°,∴=2πr,∴r=2,即:OA=2,在Rt△AOC中,OA=2,AC=6,根據(jù)勾股定理得,OC==4,故答案為4.【點睛】本題考查了扇形的弧長公式,圓錐的側面展開圖,勾股定理,求出OA的長是解本題的關鍵.14、k>【解析】
由方程根的情況,根據(jù)根的判別式可得到關于k的不等式,則可求得k的取值范圍.【詳解】∵關于x的一元二次方程x2+(2k+1)x+k2+1=0有兩個不相等的實根,∴△>0,即(2k+1)2-4(k2+1)>0,解得k>,故答案為k>.【點睛】本題主要考查根的判別式,熟練掌握一元二次方程根的個數(shù)與根的判別式的關系是解題的關鍵.15、2,3,1.【解析】分析:根據(jù)題意得出EF的取值范圍,從而得出EF的值.詳解:∵AB=1,∠ABC=60°,∴BD=1,當點E和點B重合時,∠FBD=90°,∠BDC=30°,則EF=1;當點E和點O重合時,∠DEF=30°,則△EFD為等腰三角形,則EF=FD=2,∴EF可能的整數(shù)值為2、3、1.點睛:本題主要考查的就是菱形的性質以及直角三角形的勾股定理,屬于中等難度的題型.解決這個問題的關鍵就是找出當點E在何處時取到最大值和最小值,從而得出答案.16、.【解析】
作DH⊥AE于H,根據(jù)勾股定理求出AB,根據(jù)陰影部分面積=△ADE的面積+△EOF的面積+扇形AOF的面積-扇形DEF的面積,利用扇形面積公式計算即可.【詳解】解:如圖作DH⊥AE于H,AOB=,OA=2,OB=1,AB=,由旋轉的性質可知OE=OB=1,DE=EF=AB=,可得△DHE≌△BOA,DH=OB=1,陰影部分面積=△ADE的面積+△EOF的面積+扇形AOF的面積-扇形DEF的面積==,故答案:.【點睛】本題主要考查扇形的計算公式,正確表示出陰影部分的面積是計算的關鍵.17、AE=AD(答案不唯一).【解析】要使△ABE≌△ACD,已知AB=AC,∠A=∠A,則可以添加AE=AD,利用SAS來判定其全等;或添加∠B=∠C,利用ASA來判定其全等;或添加∠AEB=∠ADC,利用AAS來判定其全等.等(答案不唯一).三、解答題(共7小題,滿分69分)18、1.【解析】試題分析:首先把括號的分式通分化簡,后面的分式的分子分解因式,然后約分化簡,接著計算分式的乘法,最后代入數(shù)值計算即可求解.試題解析:原式===;當a=0時,原式=1.考點:分式的化簡求值.19、(1)y=-2x+1;(2)1<x<2;(2)△AOB的面積為1.【解析】試題分析:(1)首先根據(jù)A(m,6),B(2,n)兩點在反比例函數(shù)y=(x>0)的圖象上,求出m,n的值各是多少;然后求出一次函數(shù)的解析式,再根據(jù)一元二次不等式的求法,求出x的取值范圍即可.(2)由-2x+1-<0,求出x的取值范圍即可.(2)首先分別求出C點、D點的坐標的坐標各是多少;然后根據(jù)三角形的面積的求法,求出△AOB的面積是多少即可.試題解析:(1)∵A(m,6),B(2,n)兩點在反比例函數(shù)y=(x>0)的圖象上,∴6=,,解得m=1,n=2,∴A(1,6),B(2,2),∵A(1,6),B(2,2)在一次函數(shù)y=kx+b的圖象上,∴,解得,∴y=-2x+1.(2)由-2x+1-<0,解得0<x<1或x>2.(2)當x=0時,y=-2×0+1=1,∴C點的坐標是(0,1);當y=0時,0=-2x+1,解得x=4,∴D點的坐標是(4,0);∴S△AOB=×4×1-×1×1-×4×2=16-4-4=1.20、12【解析】解:∵,∴.∴.將代數(shù)式應用完全平方公式和平方差公式展開后合并同類項,將整體代入求值.21、(1)不可能;(2).【解析】
(1)利用確定事件和隨機事件的定義進行判斷;(2)畫樹狀圖展示所有12種等可能的結果數(shù),再找出其中某顧客該天早餐剛好得到菜包和油條的結果數(shù),然后根據(jù)概率公式計算.【詳解】(1)某顧客在該天早餐得到兩個雞蛋”是不可能事件;故答案為不可能;(2)畫樹狀圖:共有12種等可能的結果數(shù),其中某顧客該天早餐剛好得到菜包和油條的結果數(shù)為2,所以某顧客該天早餐剛好得到菜包和油條的概率=.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數(shù)目m,然后利用概率公式計算事件A或事件B的概率.22、(1)y=x1﹣4x+6;(1)D點的坐標為(6,0);(3)存在.當點C的坐標為(4,1)時,△CBD的周長最小【解析】
(1)只需運用待定系數(shù)法就可求出二次函數(shù)的解析式;(1)只需運用配方法就可求出拋物線的頂點坐標,只需令y=0就可求出點D的坐標;(3)連接CA,由于BD是定值,使得△CBD的周長最小,只需CD+CB最小,根據(jù)拋物線是軸對稱圖形可得CA=CD,只需CA+CB最小,根據(jù)“兩點之間,線段最短”可得:當點A、C、B三點共線時,CA+CB最小,只需用待定系數(shù)法求出直線AB的解析式,就可得到點C的坐標.【詳解】(1)把A(1,0),B(8,6)代入,得解得:∴二次函數(shù)的解析式為;(1)由,得二次函數(shù)圖象的頂點坐標為(4,﹣1).令y=0,得,解得:x1=1,x1=6,∴D點的坐標為(6,0);(3)二次函數(shù)的對稱軸上存在一點C,使得的周長最?。B接CA,如圖,∵點C在二次函數(shù)的對稱軸x=4上,∴xC=4,CA=CD,∴的周長=CD+CB+BD=CA+CB+BD,根據(jù)“兩點之間,線段最短”,可得當點A、C、B三點共線時,CA+CB最小,此時,由于BD是定值,因此的周長最?。O直線AB的解析式為y=mx+n,把A(1,0)、B(8,6)代入y=mx+n,得解得:∴直線AB的解析式為y=x﹣1.當x=4時,y=4﹣1=1,∴當二次函數(shù)的對稱軸上點C的坐標為(4,1)時,的周長最小.【點睛】本題考查了(1)二次函數(shù)綜合題;(1)待定系數(shù)法求一次函數(shù)解析式;(3)二次函數(shù)的性質;(4)待定系數(shù)法求二次函數(shù)解析式;(5)線段的性質:(6)兩點之間線段最短.23、(1)2018至2020年寢室數(shù)量的年平均增長率為37.5%;(2)該校的寢室建成后最多可供1名師生住宿.【解析】
(1)設2018至2020年寢室數(shù)量的年平均增長率為x,根據(jù)2018及2020年寢室數(shù)量,即可得出關于x的一元二次方程,解之取其正值即可得出結論;(2)設雙人間有y間,則四人間有5y間,單人間有(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度北京寵物用品零售店員寵物護理聘用協(xié)議
- 乘除法練習題1000道可直接打印
- 2025年健身俱樂部會員健身角逐合同
- 2025年書包供應商合同范本
- 2025年保姆雇傭合同范本
- 2025年標準運動員賽事參賽合同
- 2025年公共建筑工程施工合同標準樣本
- 2025年提前撤離策劃協(xié)議書樣本模板
- 2025年企業(yè)文化與品牌協(xié)同發(fā)展協(xié)議
- 2025年企業(yè)級土地使用權租賃合同規(guī)范文本
- 住房公積金投訴申請書
- 輔警報名登記表
- 外研版英語五年級下冊第一單元全部試題
- 檢驗科生物安全風險評估報告
- 京頤得移動門診產(chǎn)品輸液
- 培養(yǎng)小學生課外閱讀興趣課題研究方案
- 部編版四年級語文下冊課程綱要
- 華文出版社三年級下冊書法教案
- GB_T 30789.3-2014 色漆和清漆 涂層老化的評價 缺陷的數(shù)量和大小以及外觀均勻變化程度的標識 第3部分:生銹等級的評定
- 藥物非臨床研究質量管理規(guī)范(共113頁).ppt
- 19、白居易在杭州(四年級人自然社會)
評論
0/150
提交評論