版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
山東省臨沂蘭陵縣聯(lián)考2024屆中考數(shù)學(xué)模試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.為了大力宣傳節(jié)約用電,某小區(qū)隨機抽查了10戶家庭的月用電量情況,統(tǒng)計如下表,關(guān)于這10戶家庭的月用電量說法正確的是()月用電量(度)2530405060戶數(shù)12421A.極差是3 B.眾數(shù)是4 C.中位數(shù)40 D.平均數(shù)是20.52.如圖,點A是反比例函數(shù)y=的圖象上的一點,過點A作AB⊥x軸,垂足為B.點C為y軸上的一點,連接AC,BC.若△ABC的面積為3,則k的值是()A.3 B.﹣3 C.6 D.﹣63.若a+b=3,,則ab等于()A.2 B.1 C.﹣2 D.﹣14.將二次函數(shù)的圖象先向左平移1個單位,再向下平移2個單位,所得圖象對應(yīng)的函數(shù)表達式是()A. B.C. D.5.義安區(qū)某中學(xué)九年級人數(shù)相等的甲、乙兩班學(xué)生參加同一次數(shù)學(xué)測試,兩班平均分和方差分別為甲=89分,乙=89分,S甲2=195,S乙2=1.那么成績較為整齊的是()A.甲班 B.乙班 C.兩班一樣 D.無法確定6.下列實數(shù)中,最小的數(shù)是()A. B. C.0 D.7.方程x2﹣3x=0的根是()A.x=0 B.x=3 C., D.,8.將一圓形紙片對折后再對折,得到下圖,然后沿著圖中的虛線剪開,得到兩部分,其中一部分展開后的平面圖形是()A. B. C. D.9.如圖,△ABC內(nèi)接于半徑為5的⊙O,圓心O到弦BC的距離等于3,則∠A的正切值等于()A.B.C.D.10.如圖直線y=mx與雙曲線y=交于點A、B,過A作AM⊥x軸于M點,連接BM,若S△AMB=2,則k的值是()A.1 B.2 C.3 D.4二、填空題(共7小題,每小題3分,滿分21分)11.如圖,⊙O的半徑為1cm,正六邊形ABCDEF內(nèi)接于⊙O,則圖中陰影部分面積為_____cm1.(結(jié)果保留π)12.矩形ABCD中,AB=8,AD=6,E為BC邊上一點,將△ABE沿著AE翻折,點B落在點F處,當(dāng)△EFC為直角三角形時BE=_____.13.拋物線y=(x﹣2)2﹣3的頂點坐標(biāo)是____.14.一艘輪船在小島A的北偏東60°方向距小島80海里的B處,沿正西方向航行3小時后到達小島的北偏西45°的C處,則該船行駛的速度為____________海里/時.15.如圖,平面直角坐標(biāo)系中,矩形OABC的頂點A(﹣6,0),C(0,2).將矩形OABC繞點O順時針方向旋轉(zhuǎn),使點A恰好落在OB上的點A1處,則點B的對應(yīng)點B1的坐標(biāo)為_____.16.某?!鞍僮兡Х健鄙鐖F為組織同學(xué)們參加學(xué)??萍脊?jié)的“最強大腦”大賽,準(zhǔn)備購買A,B兩款魔方.社長發(fā)現(xiàn)若購買2個A款魔方和6個B款魔方共需170元,購買3個A款魔方和購買8個B款魔方所需費用相同.求每款魔方的單價.設(shè)A款魔方的單價為x元,B款魔方的單價為y元,依題意可列方程組為_______.17.如圖,折疊矩形ABCD的一邊AD,使點D落在BC邊的點F處,已知折痕AE=5cm,且tan∠EFC=,那么矩形ABCD的周長_____________cm.三、解答題(共7小題,滿分69分)18.(10分)重百江津商場銷售AB兩種商品,售出1件A種商品和4件B種商品所得利潤為600元,售出3件A商品和5件B種商品所得利潤為1100元.求每件A種商品和每件B種商品售出后所得利潤分別為多少元?由于需求量大A、B兩種商品很快售完,重百商場決定再次購進A、B兩種商品共34件,如果將這34件商品全部售完后所得利潤不低于4000元,那么重百商場至少購進多少件A種商品?19.(5分)藝術(shù)節(jié)期間,學(xué)校向?qū)W生征集書畫作品,楊老師從全校36個班中隨機抽取了4個班(用A,B,C,D表示),對征集到的作品的數(shù)量進行了統(tǒng)計,制作了兩幅不完整的統(tǒng)計圖.請根據(jù)相關(guān)信息,回答下列問題:(1)請你將條形統(tǒng)計圖補充完整;并估計全校共征集了_____件作品;(2)如果全校征集的作品中有4件獲得一等獎,其中有3名作者是男生,1名作者是女生,現(xiàn)要在獲得一等獎的作者中選取兩人參加表彰座談會,請你用列表或樹狀圖的方法,求選取的兩名學(xué)生恰好是一男一女的概率.20.(8分)甲、乙兩名隊員的10次射擊訓(xùn)練,成績分別被制成下列兩個統(tǒng)計圖.并整理分析數(shù)據(jù)如下表:平均成績/環(huán)中位數(shù)/環(huán)眾數(shù)/環(huán)方差甲771.2乙78(1)求,,的值;分別運用表中的四個統(tǒng)計量,簡要分析這兩名隊員的射擊訓(xùn)練成績.若選派其中一名參賽,你認為應(yīng)選哪名隊員?21.(10分)(1)(問題發(fā)現(xiàn))小明遇到這樣一個問題:如圖1,△ABC是等邊三角形,點D為BC的中點,且滿足∠ADE=60°,DE交等邊三角形外角平分線CE所在直線于點E,試探究AD與DE的數(shù)量關(guān)系.(1)小明發(fā)現(xiàn),過點D作DF//AC,交AC于點F,通過構(gòu)造全等三角形,經(jīng)過推理論證,能夠使問題得到解決,請直接寫出AD與DE的數(shù)量關(guān)系:;(2)(類比探究)如圖2,當(dāng)點D是線段BC上(除B,C外)任意一點時(其它條件不變),試猜想AD與DE之間的數(shù)量關(guān)系,并證明你的結(jié)論.(3)(拓展應(yīng)用)當(dāng)點D在線段BC的延長線上,且滿足CD=BC(其它條件不變)時,請直接寫出△ABC與△ADE的面積之比.22.(10分).23.(12分)(問題情境)張老師給愛好學(xué)習(xí)的小軍和小俊提出這樣的一個問題:如圖1,在△ABC中,AB=AC,點P為邊BC上任一點,過點P作PD⊥AB,PE⊥AC,垂足分別為D,E,過點C作CF⊥AB,垂足為F,求證:PD+PE=CF.小軍的證明思路是:如圖2,連接AP,由△ABP與△ACP面積之和等于△ABC的面積可以證得:PD+PE=CF.小俊的證明思路是:如圖2,過點P作PG⊥CF,垂足為G,可以證得:PD=GF,PE=CG,則PD+PE=CF.[變式探究]如圖3,當(dāng)點P在BC延長線上時,其余條件不變,求證:PD﹣PE=CF;請運用上述解答中所積累的經(jīng)驗和方法完成下列兩題:[結(jié)論運用]如圖4,將矩形ABCD沿EF折疊,使點D落在點B上,點C落在點C′處,點P為折痕EF上的任一點,過點P作PG⊥BE、PH⊥BC,垂足分別為G、H,若AD=8,CF=3,求PG+PH的值;[遷移拓展]圖5是一個航模的截面示意圖.在四邊形ABCD中,E為AB邊上的一點,ED⊥AD,EC⊥CB,垂足分別為D、C,且AD?CE=DE?BC,AB=2dm,AD=3dm,BD=dm.M、N分別為AE、BE的中點,連接DM、CN,求△DEM與△CEN的周長之和.24.(14分)已知:如圖,∠ABC,射線BC上一點D,求作:等腰△PBD,使線段BD為等腰△PBD的底邊,點P在∠ABC內(nèi)部,且點P到∠ABC兩邊的距離相等.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】
極差、中位數(shù)、眾數(shù)、平均數(shù)的定義和計算公式分別對每一項進行分析,即可得出答案.【詳解】解:A、這組數(shù)據(jù)的極差是:60-25=35,故本選項錯誤;
B、40出現(xiàn)的次數(shù)最多,出現(xiàn)了4次,則眾數(shù)是40,故本選項錯誤;
C、把這些數(shù)從小到大排列,最中間兩個數(shù)的平均數(shù)是(40+40)÷2=40,則中位數(shù)是40,故本選項正確;
D、這組數(shù)據(jù)的平均數(shù)(25+30×2+40×4+50×2+60)÷10=40.5,故本選項錯誤;
故選:C.【點睛】本題考查了極差、平均數(shù)、中位數(shù)、眾數(shù)的知識,解答本題的關(guān)鍵是掌握各知識點的概念.2、D【解析】試題分析:連結(jié)OA,如圖,∵AB⊥x軸,∴OC∥AB,∴S△OAB=S△CAB=3,而S△OAB=|k|,∴|k|=3,∵k<0,∴k=﹣1.故選D.考點:反比例函數(shù)系數(shù)k的幾何意義.3、B【解析】
∵a+b=3,∴(a+b)2=9∴a2+2ab+b2=9∵a2+b2=7∴7+2ab=9,7+2ab=9∴ab=1.故選B.考點:完全平方公式;整體代入.4、B【解析】
拋物線平移不改變a的值,由拋物線的頂點坐標(biāo)即可得出結(jié)果.【詳解】解:原拋物線的頂點為(0,0),向左平移1個單位,再向下平移1個單位,那么新拋物線的頂點為(-1,-1),
可設(shè)新拋物線的解析式為:y=(x-h)1+k,
代入得:y=(x+1)1-1.
∴所得圖象的解析式為:y=(x+1)1-1;
故選:B.【點睛】本題考查二次函數(shù)圖象的平移規(guī)律;解決本題的關(guān)鍵是得到新拋物線的頂點坐標(biāo).5、B【解析】
根據(jù)方差的意義,方差反映了一組數(shù)據(jù)的波動大小,故可由兩人的方差得到結(jié)論.【詳解】∵S甲2>S乙2,∴成績較為穩(wěn)定的是乙班。故選:B.【點睛】本題考查了方差,解題的關(guān)鍵是掌握方差的概念進行解答.6、B【解析】
根據(jù)正實數(shù)都大于0,負實數(shù)都小于0,正實數(shù)大于一切負實數(shù),兩個負實數(shù)絕對值大的反而小,進行比較.【詳解】∵<-2<0<,∴最小的數(shù)是-π,故選B.【點睛】此題主要考查了比較實數(shù)的大小,要熟練掌握任意兩個實數(shù)比較大小的方法.(1)正實數(shù)都大于0,負實數(shù)都小于0,正實數(shù)大于一切負實數(shù),兩個負實數(shù)絕對值大的反而?。?)利用數(shù)軸也可以比較任意兩個實數(shù)的大小,即在數(shù)軸上表示的兩個實數(shù),右邊的總比左邊的大,在原點左側(cè),絕對值大的反而小.7、D【解析】
先將方程左邊提公因式x,解方程即可得答案.【詳解】x2﹣3x=0,x(x﹣3)=0,x1=0,x2=3,故選:D.【點睛】本題考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接開平方法、公式法、因式分解法等,熟練掌握并靈活運用適當(dāng)?shù)姆椒ㄊ墙忸}關(guān)鍵.8、C【解析】
嚴格按照圖中的方法親自動手操作一下,即可很直觀地呈現(xiàn)出來.【詳解】根據(jù)題意知,剪去的紙片一定是一個四邊形,且對角線互相垂直.故選C.【點睛】本題主要考查學(xué)生的動手能力及空間想象能力.對于此類問題,學(xué)生只要親自動手操作,答案就會很直觀地呈現(xiàn).9、C.【解析】試題分析:如答圖,過點O作OD⊥BC,垂足為D,連接OB,OC,∵OB=5,OD=3,∴根據(jù)勾股定理得BD=4.∵∠A=∠BOC,∴∠A=∠BOD.∴tanA=tan∠BOD=.故選D.考點:1.垂徑定理;2.圓周角定理;3.勾股定理;4.銳角三角函數(shù)定義.10、B【解析】
此題可根據(jù)反比例函數(shù)圖象的對稱性得到A、B兩點關(guān)于原點對稱,再由S△ABM=1S△AOM并結(jié)合反比例函數(shù)系數(shù)k的幾何意義得到k的值.【詳解】根據(jù)雙曲線的對稱性可得:OA=OB,則S△ABM=1S△AOM=1,S△AOM=|k|=1,則k=±1.又由于反比例函數(shù)圖象位于一三象限,k>0,所以k=1.故選B.【點睛】本題主要考查了反比例函數(shù)y=中k的幾何意義,即過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|,是經(jīng)??疾榈囊粋€知識點.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】試題分析:根據(jù)圖形分析可得求圖中陰影部分面積實為求扇形部分面積,將原圖陰影部分面積轉(zhuǎn)化為扇形面積求解即可.試題解析:如圖所示:連接BO,CO,∵正六邊形ABCDEF內(nèi)接于⊙O,∴AB=BC=CO=1,∠ABC=110°,△OBC是等邊三角形,∴CO∥AB,在△COW和△ABW中,∴△COW≌△ABW(AAS),∴圖中陰影部分面積為:S扇形OBC=.考點:正多邊形和圓.12、3或1【解析】
分當(dāng)點F落在矩形內(nèi)部時和當(dāng)點F落在AD邊上時兩種情況求BE得長即可.【詳解】當(dāng)△CEF為直角三角形時,有兩種情況:當(dāng)點F落在矩形內(nèi)部時,如圖1所示.連結(jié)AC,在Rt△ABC中,AB=1,BC=8,∴AC==10,∵∠B沿AE折疊,使點B落在點F處,∴∠AFE=∠B=90°,當(dāng)△CEF為直角三角形時,只能得到∠EFC=90°,∴點A、F、C共線,即∠B沿AE折疊,使點B落在對角線AC上的點F處,如圖,∴EB=EF,AB=AF=1,∴CF=10﹣1=4,設(shè)BE=x,則EF=x,CE=8﹣x,在Rt△CEF中,∵EF2+CF2=CE2,∴x2+42=(8﹣x)2,解得x=3,∴BE=3;②當(dāng)點F落在AD邊上時,如圖2所示.此時ABEF為正方形,∴BE=AB=1.綜上所述,BE的長為3或1.故答案為3或1.【點睛】本題考查了矩形的性質(zhì)、圖形的折疊變換、勾股定理的應(yīng)用等知識點,解題時要注意分情況討論.13、(2,﹣3)【解析】
根據(jù):對于拋物線y=a(x﹣h)2+k的頂點坐標(biāo)是(h,k).【詳解】拋物線y=(x﹣2)2﹣3的頂點坐標(biāo)是(2,﹣3).故答案為(2,﹣3)【點睛】本題考核知識點:拋物線的頂點.解題關(guān)鍵點:熟記求拋物線頂點坐標(biāo)的公式.14、【解析】
設(shè)該船行駛的速度為x海里/時,由已知可得BC=3x,AQ⊥BC,∠BAQ=60°,∠CAQ=45°,AB=80海里,在直角三角形ABQ中求出AQ、BQ,再在直角三角形AQC中求出CQ,得出BC=40+40=3x,解方程即可.【詳解】如圖所示:該船行駛的速度為x海里/時,3小時后到達小島的北偏西45°的C處,由題意得:AB=80海里,BC=3x海里,在直角三角形ABQ中,∠BAQ=60°,∴∠B=90°?60°=30°,∴AQ=AB=40,BQ=AQ=40,在直角三角形AQC中,∠CAQ=45°,∴CQ=AQ=40,∴BC=40+40=3x,解得:x=.即該船行駛的速度為海里/時;故答案為:.【點睛】本題考查的是解直角三角形,熟練掌握方向角是解題的關(guān)鍵.15、(-2,6)【解析】分析:連接OB1,作B1H⊥OA于H,證明△AOB≌△HB1O,得到B1H=OA=6,OH=AB=2,得到答案.詳解:連接OB1,作B1H⊥OA于H,由題意得,OA=6,AB=OC-2,則tan∠BOA=,∴∠BOA=30°,∴∠OBA=60°,由旋轉(zhuǎn)的性質(zhì)可知,∠B1OB=∠BOA=30°,∴∠B1OH=60°,在△AOB和△HB1O,,∴△AOB≌△HB1O,∴B1H=OA=6,OH=AB=2,∴點B1的坐標(biāo)為(-2,6),故答案為(-2,6).點睛:本題考查的是矩形的性質(zhì)、旋轉(zhuǎn)變換的性質(zhì),掌握矩形的性質(zhì)、全等三角形的判定和性質(zhì)定理是解題的關(guān)鍵.16、【解析】分析:設(shè)A款魔方的單價為x元,B魔方單價為y元,根據(jù)“購買兩個A款魔方和6個B款魔方共需170元,購買3個A款魔方和購買8個B款魔方所需費用相同”,即可得出關(guān)于x,y的二元一次方程組,此題得解.解:設(shè)A魔方的單價為x元,B款魔方的單價為y元,根據(jù)題意得:故答案為點睛:本題考查了二元一次方程組的應(yīng)用,找準(zhǔn)等量關(guān)系,正確列出二元一次方程組是解題的關(guān)鍵.17、36.【解析】試題分析:∵△AFE和△ADE關(guān)于AE對稱,∴∠AFE=∠D=90°,AF=AD,EF=DE.∵tan∠EFC==,∴可設(shè)EC=3x,CF=4x,那么EF=5x,∴DE=EF=5x.∴DC=DE+CE=3x+5x=8x.∴AB=DC=8x.∵∠EFC+∠AFB=90°,∠BAF+∠AFB=90°,∴∠EFC=∠BAF.∴tan∠BAF=tan∠EFC=,∴=.∴AB=8x,∴BF=6x.∴BC=BF+CF=10x.∴AD=10x.在Rt△ADE中,由勾股定理,得AD2+DE2=AE2.∴(10x)2+(5x)2=(5)2.解得x=1.∴AB=8x=8,AD=10x=10.∴矩形ABCD的周長=8×2+10×2=36.考點:折疊的性質(zhì);矩形的性質(zhì);銳角三角函數(shù);勾股定理.三、解答題(共7小題,滿分69分)18、(1)200元和100元(2)至少6件【解析】
(1)設(shè)A種商品售出后所得利潤為x元,B種商品售出后所得利潤為y元.由售出1件A種商品和4件B種商品所得利潤為600元,售出3件A種商品和5件B種商品所得利潤為1100元建立兩個方程,構(gòu)成方程組求出其解就可以;(2)設(shè)購進A種商品a件,則購進B種商品(34﹣a)件.根據(jù)獲得的利潤不低于4000元,建立不等式求出其解即可.【詳解】解:(1)設(shè)A種商品售出后所得利潤為x元,B種商品售出后所得利潤為y元.由題意,得,解得:,答:A種商品售出后所得利潤為200元,B種商品售出后所得利潤為100元.(2)設(shè)購進A種商品a件,則購進B種商品(34﹣a)件.由題意,得200a+100(34﹣a)≥4000,解得:a≥6答:威麗商場至少需購進6件A種商品.19、(1)圖形見解析,216件;(2)【解析】
(1)由B班級的作品數(shù)量及其占總數(shù)量的比例可得4個班作品總數(shù),再求得D班級的數(shù)量,可補全條形圖,再用36乘四個班的平均數(shù)即估計全校的作品數(shù);
(2)列表得出所有等可能結(jié)果,從中找到一男、一女的結(jié)果數(shù),根據(jù)概率公式求解可得.【詳解】(1)4個班作品總數(shù)為:件,所以D班級作品數(shù)量為:36-6-12-10=8;∴估計全校共征集作品×36=324件.
條形圖如圖所示,
(2)男生有3名,分別記為A1,A2,A3,女生記為B,
列表如下:A1A2A3BA1(A1,A2)(A1,A3)(A1,B)A2(A2,A1)(A2,A3)(A2,B)A3(A3,A1)(A3,A2)(A3,B)B(B,A1)(B,A2)(B,A3)由列表可知,共有12種等可能情況,其中選取的兩名學(xué)生恰好是一男一女的有6種.
所以選取的兩名學(xué)生恰好是一男一女的概率為.【點睛】考查了列表法或樹狀圖法求概率以及扇形與條形統(tǒng)計圖的知識.注意掌握扇形統(tǒng)計圖與條形統(tǒng)計圖的對應(yīng)關(guān)系.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.20、(1)a=7,b=7.5,c=4.2;(2)見解析.【解析】
(1)利用平均數(shù)的計算公式直接計算平均分即可;將乙的成績從小到大重新排列,用中位數(shù)的定義直接寫出中位數(shù)即可;根據(jù)乙的平均數(shù)利用方差的公式計算即可;(2)結(jié)合平均數(shù)和中位數(shù)、眾數(shù)、方差三方面的特點進行分析.【詳解】(1)甲的平均成績a==7(環(huán)),∵乙射擊的成績從小到大重新排列為:3、4、6、7、7、8、8、8、9、10,∴乙射擊成績的中位數(shù)b==7.5(環(huán)),其方差c=×[(3-7)2+(4-7)2+(6-7)2+2×(7-7)2+3×(8-7)2+(9-7)2+(10-7)2]=×(16+9+1+3+4+9)=4.2;(2)從平均成績看甲、乙二人的成績相等均為7環(huán),從中位數(shù)看甲射中7環(huán)以上的次數(shù)小于乙,從眾數(shù)看甲射中7環(huán)的次數(shù)最多而乙射中8環(huán)的次數(shù)最多,從方差看甲的成績比乙的成績穩(wěn)定;綜合以上各因素,若選派一名隊員參加比賽的話,可選擇乙參賽,因為乙獲得高分的可能更大.【點睛】本題考查的是條形統(tǒng)計圖和方差、平均數(shù)、中位數(shù)、眾數(shù)的綜合運用.熟練掌握平均數(shù)的計算,理解方差的概念,能夠根據(jù)計算的數(shù)據(jù)進行綜合分析.21、(1)AD=DE;(2)AD=DE,證明見解析;(3).【解析】試題分析:本題難度中等.主要考查學(xué)生對探究例子中的信息進行歸納總結(jié).并能夠結(jié)合三角形的性質(zhì)是解題關(guān)鍵.試題解析:(10分)(1)AD=DE.(2)AD=DE.證明:如圖2,過點D作DF//AC,交AC于點F,∵△ABC是等邊三角形,∴AB=BC,∠B=∠ACB=∠ABC=60°.又∵DF//AC,∴∠BDF=∠BFD=60°∴△BDF是等邊三角形,BF=BD,∠BFD=60°,∴AF=CD,∠AFD=120°.∵EC是外角的平分線,∠DCE=120°=∠AFD.∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠FAD=60°+∠FAD.∵∠ADC=∠ADE+∠EDC=60°+∠EDC,∴∠FAD=∠EDC.∴△AFD≌△DCE(ASA),∴AD=DE;(3).考點:1.等邊三角形探究題;2.全等三角形的判定與性質(zhì);3.等邊三角形的判定與性質(zhì).22、5﹣.【解析】
根據(jù)特殊角的三角函數(shù)值進行計算即可.【詳解】原式==3﹣+4﹣2=5﹣.【點睛】本題考查了特殊角的三角函數(shù)值,是基礎(chǔ)題目比較簡單.23、小軍的證明:見解析;小俊的證明:見解析;[變式探究]見解析;[結(jié)論運用]PG+PH的值為1;[遷移拓展](6+2)dm【解析】
小軍的證明:連接AP,利用面積法即可證得;小俊的證明:過點P作PG⊥CF,先證明四邊形PDFG為矩形,再證明△PGC≌△CEP,即可得到答案;[變式探究]小軍的證明思路:連接AP,根據(jù)S△ABC=S△ABP﹣S△ACP,即可得到答案;小俊的證明思路:過點C,作CG⊥DP,先證明四邊形CFDG是矩形,再證明△CGP≌△CEP即可得到答案;[結(jié)論運用]過點E作EQ⊥BC,先根據(jù)矩形的性質(zhì)求出BF,根據(jù)翻折及勾股定理求出DC,證得四邊形EQCD是矩形,得出BE=BF即可得到答案;[遷移拓展]延長AD,BC交于點F,作BH⊥AF,證明△ADE∽△BCE得到FA=FB,設(shè)DH=x,利用勾股定理求出x得到BH=6,再根據(jù)∠ADE=∠BCE=90°,且M,N分別為AE,BE的中點即可得到答案.【詳解】小軍的證明:連接AP,如圖②∵PD⊥AB,PE⊥AC,CF⊥AB,∴S△ABC=S△ABP+S△ACP,∴AB×CF=AB×PD+AC×PE,∵AB=AC,∴CF=PD+PE.小俊的證明:過點P作PG⊥CF,如圖2,∵PD⊥AB,CF⊥AB,PG⊥FC,∴∠CFD=∠FDG=∠FGP=90°,∴四邊形PDFG為矩形,∴DP=FG,∠DPG=90°,∴∠CGP=90°,∵PE⊥AC,∴∠CEP=90°,∴∠PGC=∠CEP,∵∠BDP=∠DPG=90°,∴PG∥AB,∴∠GPC=∠B,∵AB=AC,∴∠B=∠ACB,∴∠GPC=∠ECP,在△PGC和△CEP中,∴△PGC≌△CEP,∴CG=PE,∴CF=CG+FG=PE+PD;[變式探究]小軍的證明思路:連接AP,如圖③,∵PD⊥AB,PE⊥AC,CF⊥AB,∴S△ABC=S△ABP﹣S△ACP,∴AB×CF=AB×PD﹣AC×PE,∵AB=AC,∴CF=PD﹣PE;小俊的證明思路:過點C,作CG⊥DP,如圖③,∵PD⊥AB,CF⊥AB,CG⊥DP,∴∠CFD=∠FDG=∠DGC=90°,∴CF=GD,∠DGC=90°,四邊形CFDG是矩形,∵PE⊥AC,∴∠CEP=90°,∴∠CGP=∠CEP,∵CG⊥DP,AB⊥DP,∴∠CGP=∠BDP=90°,∴CG∥AB,∴∠GCP=∠B,∵AB=AC,∴∠B=∠A
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 新學(xué)年教學(xué)工作總體規(guī)劃計劃
- 風(fēng)濕免疫科護士工作總結(jié)
- 2024年版權(quán)質(zhì)押合同:某文學(xué)作品
- 2024年度學(xué)校夜間守護崗位服務(wù)合同3篇
- 有關(guān)《小河與青草》教學(xué)設(shè)計的教案
- 2024年度專業(yè)推土機租賃及運輸服務(wù)合同3篇
- 有關(guān)光電檢測課程設(shè)計
- 燃燒和爆炸教學(xué)課程設(shè)計
- 2024年智能溫室育苗技術(shù)研發(fā)與應(yīng)用合同3篇
- 感恩節(jié)教育學(xué)生精彩講話稿范文(8篇)
- 2024年新人教版七年級上冊數(shù)學(xué)教學(xué)課件 第六章 幾何圖形初步 綜合與實踐 設(shè)計學(xué)校田徑運動會比賽場地
- 創(chuàng)新實踐(理論)學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- TCHAS 10-2-1-2023 中國醫(yī)院質(zhì)量安全管理 第2-1部分:患者服務(wù)患者安全目標(biāo)
- GB/T 18385-2024純電動汽車動力性能試驗方法
- 2024國家開放大學(xué)電大本科《西方行政學(xué)說》期末試題及答案
- 《鋰電池石墨負極材料石墨化技術(shù)規(guī)范》
- 四柱萬能液壓機液壓系統(tǒng) (1)講解
- JTT 1501-2024 潛水作業(yè)現(xiàn)場安全監(jiān)管要求(正式版)
- GB/T 19633.1-2024最終滅菌醫(yī)療器械包裝第1部分:材料、無菌屏障系統(tǒng)和包裝系統(tǒng)的要求
- 家鄉(xiāng)土特產(chǎn)電商營銷策劃方案(2篇)
- DZ∕T 0342-2020 礦坑涌水量預(yù)測計算規(guī)程(正式版)
評論
0/150
提交評論