外文翻譯基于注塑模具鋼研磨和拋光工序的自動化表面處理_第1頁
外文翻譯基于注塑模具鋼研磨和拋光工序的自動化表面處理_第2頁
外文翻譯基于注塑模具鋼研磨和拋光工序的自動化表面處理_第3頁
外文翻譯基于注塑模具鋼研磨和拋光工序的自動化表面處理_第4頁
外文翻譯基于注塑模具鋼研磨和拋光工序的自動化表面處理_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

ShiouFJ,ChenCH(2003)Determinationofoptimalball-burnishingparametersforplasticinjectionmoldingsteel.IntJAdvManufTechnolAutomatedsurfacefinishingofplasticinjectionmoldsteelwithsphericalgrindingandballburnishingprocessesChao-ChangA.Chen·Wen-TuLiAbstractThisstudyinvestigatesthepossibilitiesofautomatedsphericalgrindingandballburnishingsurfacefinishingprocessesinafreeformsurfaceplasticinjectionmoldsteelPDS5onaCNCmachiningcenter.Thedesignandmanufactureofagrindingtoolholderhasbeenaccomplishedinthisstudy.TheoptimalsurfacegrindingparametersweredeterminedusingTaguchi’sorthogonalarraymethodforplasticinjectionmoldingsteelPDS5onamachiningcenter.TheoptimalsurfacegrindingparametersfortheplasticinjectionmoldsteelPDS5werethecombinationofanabrasivematerialofPAAl2O3,agrindingspeedof18000rpm,agrindingdepthof20μm,andafeedof50mm/min.ThesurfaceroughnessRaofthespecimencanbeimprovedfromabout1.60μmto0.35μmbyusingtheoptimalparametersforsurfacegrinding.SurfaceroughnessRacanbefurtherimprovedfromabout0.343μmto0.06μmbyusingtheballburnishingprocesswiththeoptimalburnishingparameters.Applyingtheoptimalsurfacegrindingandburnishingparameterssequentiallytoafine-milledfreeformsurfacemoldinsert,thesurfaceroughnessRaoffreeformsurfaceregiononthetestedpartcanbeimprovedfromabout2.15μmto0.07μm.KeywordsAutomatedsurfacefinishing·Ballburnishingprocess·Grindingprocess·Surfaceroughness·Taguchi’smethod1IntroductionPlasticsareimportantengineeringmaterialsduetotheirspecificcharacteristics,suchascorrosionresistance,resistancetochemicals,lowdensity,andeaseofmanufacture,andhaveincreasinglyreplacedmetalliccomponentsinindustrialapplications.Injectionmoldingisoneoftheimportantformingprocessesforplasticproducts.Thesurfacefinishqualityoftheplasticinjectionmoldisanessentialrequirementduetoitsdirecteffectsontheappearanceoftheplasticproduct.Finishingprocessessuchasgrinding,polishingandlappingarecommonlyusedtoimprovethesurfacefinish.Themountedgrindingtools(wheels)havebeenwidelyusedinconventionalmoldanddiefinishingindustries.Thegeometricmodelofmountedgrindingtoolsforautomatedsurfacefinishingprocesseswasintroducedin.Afinishingprocessmodeofsphericalgrindingtoolsforautomatedsurfacefinishingsystemswasdevelopedin.Grindingspeed,depthofcut,feedrate,andwheelpropertiessuchasabrasivematerialandabrasivegrainsize,arethedominantparametersforthesphericalgrindingprocess,asshowninFig.1.TheoptimalsphericalgrindingparametersfortheinjectionmoldsteelhavenotyetbeeninvestigatedbasedintheliteratureInrecentyears,someresearchhasbeencarriedoutindeterminingtheoptimalparametersoftheballburnishingprocess(Fig.2).Forinstance,ithasbeenfoundthatplasticdeformationontheworkpiecesurfacecanbereducedbyusingatungstencarbideballoraroller,thusimprovingthesurfaceroughness,surfacehardness,andfatigueresistance.Theburnishingprocessisaccomplishedbymachiningcentersandlathes.Themainburnishingparametershavingsignificanteffectsonthesurfaceroughnessareballorrollermaterial,burnishingforce,feedrate,burnishingspeed,lubrication,andnumberofburnishingpasses,amongothers.TheoptimalsurfaceburnishingparametersfortheplasticinjectionmoldsteelPDS5wereacombinationofgreaselubricant,thetungstencarbideball,aburnishingspeedof200mm/min,aburnishingforceof300N,andafeedof40μm.Thedepthofpenetrationoftheburnishedsurfaceusingtheoptimalballburnishingparameterswasabout2.5microns.Theimprovementofthesurfaceroughnessthroughburnishingprocessgenerallyrangedbetween40%and90%.Fig.2.Schematicdiagramoftheball-burnishingprocessTheaimofthisstudywastodevelopsphericalgrindingandballburnishingsurfacefinishprocessesofafreeformsurfaceplasticinjectionmoldonamachiningcenter.TheflowchartofautomatedsurfacefinishusingsphericalgrindingandballburnishingprocessesisshowninFig.3.Webeganbydesigningandmanufacturingthesphericalgrindingtoolanditsalignmentdeviceforuseonamachiningcenter.TheoptimalsurfacesphericalgrindingparametersweredeterminedbyutilizingaTaguchi’sorthogonalarraymethod.FourfactorsandthreecorrespondinglevelswerethenchosenfortheTaguchi’sL18matrixexperiment.Theoptimalmountedsphericalgrindingparametersforsurfacegrindingwerethenappliedtothesurfacefinishofafreeformsurfacecarrier.Toimprovethesurfaceroughness,thegroundsurfacewasfurtherburnished,usingtheoptimalballburnishingparameters.Fig.3.Flowchartofautomatedsurfacefinishusingsphericalgrindingandballburnishingprocesses2DesignofthesphericalgrindingtoolanditsalignmentdeviceTocarryoutthepossiblesphericalgrindingprocessofafreeformsurface,thecenteroftheballgrindershouldcoincidewiththez-axisofthemachiningcenter.Themountedsphericalgrindingtoolanditsadjustmentdevicewasdesigned,asshowninFig.4.Theelectricgrinderwasmountedinatoolholderwithtwoadjustablepivotscrews.Thecenterofthegrinderballwaswellalignedwiththehelpoftheconicgrooveofthealignmentcomponents.Havingalignedthegrinderball,twoadjustablepivotscrewsweretightened;afterwhich,thealignmentcomponentscouldberemoved.Thedeviationbetweenthecentercoordinatesoftheballgrinderandthatoftheshankwasabout5μm,whichwasmeasuredbyaCNCcoordinatemeasuringmachine.Theforceinducedbythevibrationofthemachinebedisabsorbedbyahelicalspring.Themanufacturedsphericalgrindingtoolandball-burnishingtoolweremounted,asshowninFig.5.Thespindlewaslockedforboththesphericalgrindingprocessandtheballburnishingprocessbyaspindle-lockingmechanism.Fig.4.SchematicillustrationofthesphericalgrindingtoolanditsadjustmentdeviceFig.5.(a)Photoofthesphericalgrindingtool(b)Photooftheballburnishingtool3Planningofthematrixexperiment3.1ConfigurationofTaguchi’sorthogonalarrayTheeffectsofseveralparameterscanbedeterminedefficientlybyconductingmatrixexperimentsusingTaguchi’sorthogonalarray.Tomatchtheaforementionedsphericalgrindingparameters,theabrasivematerialofthegrinderball(withthediameterof10mm),thefeedrate,thedepthofgrinding,andtherevolutionoftheelectricgrinderwereselectedasthefourexperimentalfactors(parameters)anddesignatedasfactorAtoD(seeTable1)inthisresearch.Threelevels(settings)foreachfactorwereconfiguredtocovertherangeofinterest,andwereidentifiedbythedigits1,2,and3.Threetypesofabrasivematerials,namelysiliconcarbide(SiC),whitealuminumoxide(Al2O3,WA),andpinkaluminumoxide(Al2O3,PA),wereselectedandstudied.Threenumericalvaluesofeachfactorweredeterminedbasedonthepre-studyresults.TheL18orthogonalarraywasselectedtoconductthematrixexperimentforfour3-levelfactorsofthesphericalgrindingprocess.Table1.Theexperimentalfactorsandtheirlevels3.2DefinitionofthedataanalysisEngineeringdesignproblemscanbedividedintosmaller-thebettertypes,nominal-the-besttypes,larger-the-bettertypes,signed-targettypes,amongothers[8].Thesignal-to-noise(S/N)ratioisusedastheobjectivefunctionforoptimizingaproductorprocessdesign.Thesurfaceroughnessvalueofthegroundsurfaceviaanadequatecombinationofgrindingparametersshouldbesmallerthanthatoftheoriginalsurface.Consequently,thesphericalgrindingprocessisanexampleofasmaller-the-bettertypeproblem.TheS/Nratio,η,isdefinedbythefollowingequation:η=?10log10(meansquarequalitycharacteristic)=?10log10where:yi:observationsofthequalitycharacteristicunderdifferentnoiseconditionsn:numberofexperimentAftertheS/NratiofromtheexperimentaldataofeachL18orthogonalarrayiscalculated,themaineffectofeachfactorwasdeterminedbyusingananalysisofvariance(ANOVA)techniqueandanF-ratiotest.Theoptimizationstrategyofthesmaller-thebetterproblemistomaximizeη,asdefinedbyEq.1.Levelsthatmaximizeηwillbeselectedforthefactorsthathaveasignificanteffectonη.Theoptimalconditionsforsphericalgrindingcanthenbedetermined.4ExperimentalworkandresultsThematerialusedinthisstudywasPDS5toolsteel(equivalenttoAISIP20),whichiscommonlyusedforthemoldsoflargeplasticinjectionproductsinthefieldofautomobilecomponentsanddomesticappliances.ThehardnessofthismaterialisaboutHRC33(HS46).Onespecificadvantageofthismaterialisthataftermachining,themoldcanbedirectlyusedforfurtherfinishingprocesseswithoutheattreatmentduetoitsspecialpre-treatment.Thespecimensweredesignedandmanufacturedsothattheycouldbemountedonadynamometertomeasurethereactionforce.ThePDS5specimenwasroughlymachinedandthenmountedonthedynamometertocarryoutthefinemillingonathree-axismachiningcentermadebyYang-IronCompany(typeMV-3A),equippedwithaFUNUCCompanyNC-controller(type0M).Thepre-machinedsurfaceroughnesswasmeasured,usingHommelwerkeT4000equipment,tobeabout1.6μm.Figure6showstheexperimentalset-upofthesphericalgrindingprocess.AMP10touch-triggerprobemadebytheRenishawCompanywasalsointegratedwiththemachiningcentertoolmagazinetomeasureanddeterminethecoordinatedoriginofthespecimentobeground.TheNCcodesneededfortheball-burnishingpathweregeneratedbyPowerMILLCAMsoftware.ThesecodescanbetransmittedtotheCNCcontrollerofthemachiningcenterviaRS232serialinterface.Fig.6.Experimentalset-uptodeterminetheoptimalsphericalgrindingparametersTable2summarizesthemeasuredgroundsurfaceroughnessalueRaandthecalculatedS/NratioofeachL18orthogonalarraysingEq.1,afterhavingexecutedthe18matrixexperiments.TheaverageS/NratioforeachlevelofthefouractorsisshowngraphicallyinFig.7.Table2.GroundsurfaceroughnessofPDS5specimenExp.Innerarray(controlfactors)Measuredsurfaceroughnessvalue(Ra)ResponsenoABCDS/N(η(dB))Mean111110.350.350.359.1190.350212220.370.360.388.6340.370313330.410.440.407.5970.417421230.630.650.643.8760.640522310.730.770.782.3800.760623120.450.420.397.5300.420731320.340.310.329.8010.323832130.270.250.2811.4710.267933210.320.320.329.8970.3201011220.350.390.408.3900.3801112330.410.500.436.9680.4471213110.400.390.427.8830.4031321130.330.340.319.7120.3271422210.480.500.476.3120.4831523320.570.610.534.8680.5701631310.590.550.545.0300.5601732120.360.360.358.9540.3571833230.570.530.535.2930.543Fig.7.PlotsofcontrolfactoreffectsThegoalinthesphericalgrindingprocessistominimizethesurfaceroughnessvalueofthegroundspecimenbydeterminingtheoptimallevelofeachfactor.Since?logisamonotonedecreasingfunction,weshouldmaximizetheS/Nratio.Consequently,wecandeterminetheoptimallevelforeachfactorasbeingthelevelthathasthehighestvalueofη.Therefore,basedonthematrixexperiment,theoptimalabrasivematerialwaspinkaluminumoxide;theoptimalfeedwas50mm/min;theoptimaldepthofgrindingwas20μm;andtheoptimalrevolutionwas18000rpm,asshowninTable3.TheoptimalparametersforsurfacesphericalgrindingobtainedfromtheTaguchi’smatrixexperimentswereappliedtothesurfacefinishofthefreeformsurfacemoldinserttoevaluatethesurfaceroughnessimprovement.Aperfumebottlewasselectedasthetestedcarrier.TheCNCmachiningofthemoldinsertforthetestedobjectwassimulatedwithPowerMILLCAMsoftware.Afterfinemilling,themoldinsertwasfurthergroundwiththeoptimalsphericalgrindingparametersobtainedfromtheTaguchi’smatrixexperiment.Shortlyafterwards,thegroundsurfacewasburnishedwiththeoptimalballburnishingparameterstofurtherimprovethesurfaceroughnessofthetestedobject(seeFig.8).ThesurfaceroughnessofthemoldinsertwasmeasuredwithHommelwerkeT4000equipment.TheaveragesurfaceroughnessvalueRaonafine-milledsurfaceofthemoldinsertwas2.15μmonaverage;thatonthegroundsurfacewas0.45μmonaverage;andthatonburnishedsurfacewas0.07μmonaverage.Thesurfaceroughnessimprovementofthetestedobjectongroundsurfacewasabout(2.15?0.45)/2.15=79.1%,andthatontheburnishedsurfacewasabout(2.15?0.07)/2.15=96.7%.Fig.8.Fine-milled,groundandburnishedmoldinsertofaperfumebottle5ConclusionInthiswork,theoptimalparametersofautomatedsphericalgrindingandball-burnishingsurfacefinishingprocessesinafreeformsurfaceplasticinjectionmoldweredevelopedsuccessfullyonamachiningcenter.Themountedsphericalgrindingtool(anditsalignmentcomponents)wasdesignedandmanufactured.TheoptimalsphericalgrindingparametersforsurfacegrindingweredeterminedbyconductingaTaguchiL18matrixexperiments.TheoptimalsphericalgrindingparametersfortheplasticinjectionmoldsteelPDS5werethecombinationoftheabrasivematerialofpinkaluminumoxide(Al2O3,PA),afeedof50mm/min,adepthofgrinding20μm,andarevolutionof18000rpm.ThesurfaceroughnessRaofthespecimencanbeimprovedfromabout1.6μmto0.35μmbyusingtheoptimalsphericalgrindingconditionsforsurfacegrinding.Byapplyingtheoptimalsurfacegrindingandburnishingparameterstothesurfacefinishofthefreeformsurfacemoldinsert,thesurfaceroughnessimprovementsweremeasuredtobegroundsurfacewasabout79.1%intermsofgroundsurfaces,andabout96.7%intermsofburnishedsurfaces.AcknowledgementTheauthorsaregratefultotheNationalScienceCounciloftheRepublicofChinaforsupportingthisresearchwithgrantNSC89-2212-E-011-059.References1.WangKK(1980)Systemapproachtoinjectionmoldingprocess.Polym-PlastTechnolEng14(1):75–93.2.Shelesh-NezhadK,SioresE(1997)Intelligentsystemforplasticinjectionmoldingprocessdesign.JMaterProcessTechnol63(1–3):458–462.3.AluruR,KeefeM,AdvaniS(2001)Simulationofinjectionmoldingintorapid-prototypedmolds.RapidPrototypingJ7(1):42–51.4.ShenSF(1984)Simulationofpolymericflowsintheinjectionmoldingprocess.IntJNumerMethodsFluids4(2):171–184.5.AgassantJF,AllesH,PhiliponS,VincentM(1988)Experimentalandtheoreticalstudyoftheinjectionmoldingofthermoplasticmaterials.PolymEngSci28(7):460–468.6.ChiangHH,HieberCA,WangKK(1991)Aunifiedsimulationofthefillingandpost-fillingstagesininjectionmolding.PartI:formulation.PolymEngSci31(2):116–124.7.ZhouH,LiD(2001)Anumericalsimulationofthefillingstageininjectionmoldingbasedonasurfacemodel.AdvPolymTechnol20(2):125–131.8.HimasekharK,LotteyJ,WangKK(1992)CAEofmoldcoolingininjectionmoldingusingathree-dimensionalnumericalsimulation.JEngIndTransASME114(2):213–221.9.TangLQ,PochirajuK,ChassapisC,ManoochehriS(1998)Computeraidedoptimizationapproachforthedesignofinjectionmoldcoolingsystems.JMechDes,TransASME120(2):165–174.10.RizzoFJ,ShippyDJ(1977)Anadvancedboundaryintegralequationmethodforthree-dimensionalthermoelasticity.IntJNumerMethodsEng11:1753–1768.11.HartmannF(1980)ComputingtheC-matrixinnon-smoothboundarypoints.In:Newdevelopmentsinboundaryelementmethods,CMLPublications,Southampton,pp367–379.12.ChenX,LamaYC,LiDQ(2000)Analysisofthermalresidualstressinplasticinjectionmolding.JMaterProcessTechnol101(1):275–280.13.LeeEH,RogersTG(1960)Solutionofviscoelasticstressanalysisproblemsusingmeasuredcreeporrelaxationfunction.JApplMech30(1):127–134.14.LiY(1997)Studiesindirecttoolingusingstereolithography.Dissertation,UniversityofDelaware,Newark,DE.基于注塑模具鋼研磨和拋光工序的自動化表面處理晁常溫途利摘要本文研究了注塑模具鋼自動研磨與球面拋光加工工序的可能性,這種注塑模具鋼PDS5的塑性曲面是在數(shù)控加工中心完成的。這項研究已經(jīng)完成了磨削刀架的設計與制造。最佳表面研磨參數(shù)是在鋼鐵PDS5的加工中心測定的。對于PDS5注塑模具鋼的最佳球面研磨參數(shù)是以下一系列的組合:研磨材料的磨料為粉紅氧化鋁,進給量500毫米/分鐘,磨削深度20微米,磨削轉速為18000RPM。用優(yōu)化的參數(shù)進行表面研磨,表面粗糙度Ra值可由大約1.60微米改善至0.35微米。用球拋光工藝和參數(shù)優(yōu)化拋光,可以進一步改善表面粗糙度Ra值從0.343微米至0.06微米左右。在模具內部曲面的測試部分,用最佳參數(shù)的表面研磨、拋光,曲面表面粗糙度就可以提高約2.15微米到00.07微米。關鍵詞:自動化表面處理拋光磨削加工表面粗糙度田口方法一、引言塑膠工程材料由于其重要特點,如耐化學腐蝕性、低密度、易于制造,并已日漸取代金屬部件在工業(yè)中廣泛應用。注塑成型對于塑料制品是一個重要工藝。注塑模具的表面質量是設計的本質要求,因為它直接影響了塑膠產(chǎn)品的外觀和性能。加工工藝如球面研磨、拋光常用于改善表面光潔度。研磨工具(輪子)的安裝已廣泛用于傳統(tǒng)模具的制造產(chǎn)業(yè)。自動化表面研磨加工工具的幾何模型將介紹。自動化表面處理的球磨研磨工具將得到示范和開發(fā)。磨削速度,磨削深度,進給速率和砂輪尺寸、研磨材料特性(如磨料粒度大?。┦乔蛐窝心スに囍兄饕膮?shù),如圖1(球面研磨過程示意圖)所示。注塑模具鋼的球面研磨最優(yōu)化參數(shù)目前尚未在文獻得到確切的依據(jù)。步距步距研磨高度球磨研磨進給速度工作臺圖1球面研磨過程示意圖進給研磨球工作臺研磨深度研磨表面近年來,已經(jīng)進行了一些研究,確定了球面拋光工藝的最優(yōu)參數(shù)(圖2)(球面拋光過程示意圖)。比如,人們發(fā)現(xiàn),用碳化鎢球滾壓的方法可以使工件表面的塑性變形減少,從而改善表面粗糙度、表面硬度、抗疲勞強度。拋光的工藝的過程是由加工中心和車床共同完成的。對表面粗糙度有重大影響的拋光工藝主要參數(shù),主要是球或滾子材料,拋光力,進給速率,拋光速度,潤滑、拋光率及其他因素等。注塑模具鋼PDS5的表面拋光的參數(shù)優(yōu)化,分別結合了油脂潤滑劑,碳化鎢球,拋光速度200毫米/分鐘,拋光力300牛,40微米的進給量。采用最佳參數(shù)進行表面研磨和球面拋光的深度為2.5微米。通過拋光工藝,表面粗糙度可以進給研磨球工作臺研磨深度研磨表面圖2球面拋光過程示意圖此項目研究的目的是,發(fā)展注塑模具鋼的球形研磨和球面拋光工序,這種注塑模具鋼的曲面實在加工中心完成的。表面光潔度的球研磨與球拋光的自動化流程工序,如圖3所示。我們開始自行設計和制造的球面研磨工具及加工中心的對刀裝置。利用田口正交法,確定了表面球研磨最佳參數(shù)。選擇為田口L18型矩陣實驗相應的四個因素和三個層次。用最佳參數(shù)進行表面球研磨則適用于一個曲面表面光潔度要求較高的注塑模具。為了改善表面粗糙,利用最佳球面拋光工藝參數(shù),再進行對表層打磨。PDS試樣的設計與制造PDS試樣的設計與制造選擇最佳矩陣實驗因子確定最佳參數(shù)實施實驗分析并確定最佳因子進行表面拋光應用最佳參數(shù)加工曲面測量試樣的表面粗糙度球研磨和拋光裝置的設計與制造圖3自動球面研磨與拋光工序的流程圖二、球研磨的設計和對準裝置實施過程中可能出現(xiàn)的曲面的球研磨,研磨球的中心應和加工中心的Z軸相一致。球面研磨工具的安裝及調整裝置的設計,如圖4(球面研磨工具及其調整裝置)所示。電動磨床展開了兩個具有可調支撐螺絲的刀架。磨床中心正好與具有輔助作用的圓錐槽線配合。擁有磨床的球接軌,當兩個可調支撐螺絲被收緊時,其后的對準部件就可以拆除。研磨球中心坐標偏差約為5微米,這是衡量一個數(shù)控坐標測量機性能的重要標準。機床的機械振動力是被螺旋彈簧所吸收。球形研磨球和拋光工具的安裝,如圖5(a.球面研磨工具的圖片.b.球拋光工具的圖片)所示。為使球面磨削加工和拋光加工的進行,主軸通過球鎖機制而被鎖定。模柄模柄彈簧工具可調支撐緊固螺釘磨球自動研磨磨球組件圖4球面研磨工具及其調整裝置圖5a.球面研磨工具的圖片.b.球拋光工具的圖片三、矩陣實驗的規(guī)劃3.1田口正交表利用矩陣實驗田口正交法,可以確定參數(shù)的有影響程度。為了配合上述球面研磨參數(shù),該材料磨料的研磨球(直徑10毫米),進給速率,研磨深度,在次研究中電氣磨床被假定為四個因素,指定為從A到D(見表1實驗因素和水平)。三個層次的因素涵蓋了不同的范圍特征,并用了數(shù)字1、2、3標明。挑選三類磨料,即碳化硅,白色氧化鋁,粉紅氧化鋁來研究.這三個數(shù)值的大小取決于每個因素實驗結果。選定L18型正交矩陣進行實驗,進而研究四——三級因素的球形研磨過程。表1實驗因素和水平因素水平123A.碳化硅白色氧化鋁粉紅氧化鋁B.50100200C.研磨深度(μm)205080D.1200018000240003.2數(shù)據(jù)分析的界定工程設計問題,可以分為較小而好的類型,象征性最好類型,大而好類型,目標取向類型等。信噪比(S/N)的比值,常作為目標函數(shù)來優(yōu)化產(chǎn)品或者工藝設計。被加工面的表面粗糙度值經(jīng)過適當?shù)亟M合磨削參數(shù),應小于原來的未加工表面。因此,球面研磨過程屬于工程問題中的小而好類型。這里的信噪比(S/N),η,按下列公式定義:η=?10log平方等于質量特性=?10log(1)這里,y——不同噪聲條件下所觀察的質量特性n——實驗次數(shù)從每個L18型正交實驗得到的信噪比(S/N)數(shù)據(jù),經(jīng)計算后,運用差異分析技術(變異)和殲比檢驗來測定每一個主要的因素。優(yōu)化小而好類型的工程問題問題更是盡量使η最大而定。各級η選擇的最大化將對最終的η因素有重大影響。最優(yōu)條件可視研磨球而待定。四、實驗工作和結果這項研究使用的材料是PDS5工具鋼(相當于艾西塑膠模具),它常用于大型注塑模具產(chǎn)品在國內汽車零件領域和國內設備。該材料的硬度約HRC33(HS46)。具體好處之一是,由于其特殊的熱處理前處理,模具可直接用于未經(jīng)進一步加工工序而對這一材料進行加工。式樣的設計和制造,應使它們可以安裝在底盤,來測量相應的反力。PDS5試樣的加工完畢后,裝在大底盤上在三坐標加工中心進行了銑削,這種加工中心是由鋼鐵公司所生產(chǎn)(中壓型三號),配備了FANUC-18M公司的數(shù)控控制器(0.99型)。用hommelwerket4000設備來測量前機加工前表面的粗糙度,使其可達到1.6微米。圖6試驗顯示了球面磨削加工工藝的設置。一個由Renishaw公司生產(chǎn)的視頻觸摸觸發(fā)探頭,安裝在加工中心上,來測量和確定和原始式樣的協(xié)調。數(shù)控代碼所需要的磨球路徑由PowerMILL軟件產(chǎn)。這些代碼經(jīng)過RS232串口界面,可以傳送到裝有控制器的數(shù)控加工中心上。加工中心加工中心數(shù)控機床電腦圖6完成了L18型矩陣實驗后,表2(PDS5試樣光滑表層的粗糙度)總結了光滑表面的粗糙度RA值,計算了每一個L18型矩陣實驗的信噪比(S/N),從而用于方程(1)。通過表2提供的各個數(shù)值,可以得到四種不同程度因素的平均信噪比(S/N),在圖7中已用圖表顯示。表2PDS5試樣光滑表層的粗糙度實驗序號ABCDS/N(η(dB))Mean111110.350.350.359.1190.350212220.370.360.388.6340.370313330.410.440.407.5970.417421230.630.650.643.8760.640522310.730.770.782.3800.760623120.450.420.397.5300.420731320.340.310.329.8010.323832130.270.250.2811.4710.267933210.320.320.329.8970.3201011220.350.390.408.3900.3801112330.410.500.436.9680.4471213110.400.390.427.8830.4031321130.330.340.319.7120.3271422210.480.500.476.3120.4831523320.570.610.534.8680.5701631310.590.550.545.0300.5601732120.360.360.358.9540.3571833230.570.530.535.2930.543控制因素信噪比圖7控制影響因素控制因素信噪比球面研磨工藝的目標,就是通過確定每一種因子的最佳優(yōu)化程度值,來使試樣光滑表層的表面粗糙度值達到最小。因為?log是一個減函數(shù),我們應當使信噪比(S/N)達到最大。因此,我們能夠確定每一種因子的最優(yōu)程度使得η的值達到最大。因此基于這個點陣式實驗的最優(yōu)轉速應該是18000RPM,如表3(優(yōu)化組合球面研磨參數(shù))所示。表3優(yōu)化組合球面研磨參數(shù)因素水平白色氧化鋁50mm/min20μm18000rpm從田口矩陣實驗獲得的球面研磨優(yōu)化參數(shù),適用于曲面光滑的模具,從而改善表面的粗糙度。選擇香水瓶為一個測試載體。對于被測物體的模具數(shù)控加工中心,由PowerMILL軟件來模擬測試。經(jīng)過精銑,通過使用從田口矩陣實驗獲得的球面研磨優(yōu)化參數(shù),模具表面進一步光滑。緊接著,使用打磨拋光的最佳參數(shù),來對光滑曲面進行拋光工藝,進一步改善了被測物體的表面粗糙度。(見圖9)。模具內部的表面粗糙度用hommelwerket4000設備來測量。模具內部的表面粗糙度RA的平均值為2.15微米,光滑表面粗糙度RA的平均值為0.45微米,拋光表面粗糙度RA的平均值為0.07微米。被測物體的光滑表面的粗糙度改善了:(2.15-0.45)/2.15=79.1%,拋光表面的粗糙度改善了:(2.15-0.07)/2.15=96.7%。拋光表面拋光表面Ra=0.07μm內部表面Ra=2.15μm光滑表面Ra=0.45μm圖8被測物體表面粗糙五、結論在這項工作中,對注塑模具的曲面進行了自動球面研磨與球面拋光加工,并將其工藝最佳參數(shù)成功地運用到加工中心

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論