四川省眉山市名校2024屆中考數學四模試卷含解析_第1頁
四川省眉山市名校2024屆中考數學四模試卷含解析_第2頁
四川省眉山市名校2024屆中考數學四模試卷含解析_第3頁
四川省眉山市名校2024屆中考數學四模試卷含解析_第4頁
四川省眉山市名校2024屆中考數學四模試卷含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

四川省眉山市名校2024屆中考數學四模試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖是一個幾何體的主視圖和俯視圖,則這個幾何體是()A.三棱柱 B.正方體 C.三棱錐 D.長方體2.共享單車已經成為城市公共交通的重要組成部分,某共享單車公司經過調查獲得關于共享單車租用行駛時間的數據,并由此制定了新的收費標準:每次租用單車行駛a小時及以內,免費騎行;超過a小時后,每半小時收費1元,這樣可保證不少于50%的騎行是免費的.制定這一標準中的a的值時,參考的統(tǒng)計量是此次調查所得數據的()A.平均數 B.中位數 C.眾數 D.方差3.如圖,半徑為的中,弦,所對的圓心角分別是,,若,,則弦的長等于()A. B. C. D.4.體育測試中,小進和小俊進行800米跑測試,小進的速度是小俊的1.25倍,小進比小俊少用了40秒,設小俊的速度是米/秒,則所列方程正確的是()A. B.C. D.5.平面直角坐標系內一點關于原點對稱點的坐標是()A. B. C. D.6.若正多邊形的一個內角是150°,則該正多邊形的邊數是()A.6B.12C.16D.187.在如圖所示的數軸上,點B與點C關于點A對稱,A、B兩點對應的實數分別是和﹣1,則點C所對應的實數是()A.1+ B.2+ C.2﹣1 D.2+18.如圖,A、B、C是⊙O上的三點,∠B=75°,則∠AOC的度數是()A.150° B.140° C.130° D.120°9.《九章算術》是我國古代內容極為豐富的數學名著.書中有下列問題“今有勾八步,股十五步,問勾中容圓徑幾何?”其意思是“今有直角三角形(如圖),勾(短直角邊)長為8步,股(長直角邊)長為15步,問該直角三角形能容納的圓形(內切圓)直徑是多少?”()A.3步 B.5步 C.6步 D.8步10.如圖,一個幾何體由5個大小相同、棱長為1的正方體搭成,則這個幾何體的左視圖的面積為()A.5 B.4 C.3 D.2二、填空題(共7小題,每小題3分,滿分21分)11.一個圓錐的側面展開圖是半徑為6,圓心角為120°的扇形,那么這個圓錐的底面圓的半徑為____.12.如圖,數軸上不同三點對應的數分別為,其中,則點表示的數是__________.13.如圖,直線a、b相交于點O,若∠1=30°,則∠2=___14.如圖,直線y=kx與雙曲線y=(x>0)交于點A(1,a),則k=_____.15.如圖,直徑為1000mm的圓柱形水管有積水(陰影部分),水面的寬度AB為800mm,則水的最大深度CD是______mm.16.若正多邊形的一個內角等于140°,則這個正多邊形的邊數是_______.17.如圖,直線l經過⊙O的圓心O,與⊙O交于A、B兩點,點C在⊙O上,∠AOC=30°,點P是直線l上的一個動點(與圓心O不重合),直線CP與⊙O相交于點Q,且PQ=OQ,則滿足條件的∠OCP的大小為_______.三、解答題(共7小題,滿分69分)18.(10分)先化簡,再求值:﹣÷,其中a=1.19.(5分)先化簡,再求值:,其中x=-520.(8分)如圖,拋物線y=-x2+bx+c與x軸交于A、B兩點,且B點的坐標為(3,0),經過A點的直線交拋物線于點D(2,3).求拋物線的解析式和直線AD的解析式;過x軸上的點E(a,0)作直線EF∥AD,交拋物線于點F,是否存在實數a,使得以A、D、E、F為頂點的四邊形是平行四邊形?如果存在,求出滿足條件的a;如果不存在,請說明理由.21.(10分)4月23日是世界讀書日,總書記說:“讀書可以讓人保持思想活力,讓人得到智慧啟發(fā),讓人滋養(yǎng)浩然之氣。”某校響應號召,鼓勵師生利用課余時間廣泛閱讀,該校文學社為了解學生課外閱讀的情況,抽樣調查了部分學生每周用于課外閱讀的時間,過程如下:收集數據從學校隨機抽取20名學生,進行了每周用于課外閱讀時間的調查,數據如下(單位:min):30608150401101301469010060811201407081102010081整理數據按如下分段整理樣本數據并補全表格:課外閱讀時間(min)等級DCBA人數38分析數據補全下列表格中的統(tǒng)計量:平均數中位數眾數80得出結論(1)用樣本中的統(tǒng)計量估計該校學生每周用于課外閱讀時間的情況等級為;(2)如果該?,F(xiàn)有學生400人,估計等級為“”的學生有多少名?(3)假設平均閱讀一本課外書的時間為160分鐘,請你選擇一種統(tǒng)計量估計該校學生每人一年(按52周計算)平均閱讀多少本課外書?22.(10分)如圖,△ABC三個頂點的坐標分別為A(1,1)、B(4,2)、C(3,4).(1)畫出△ABC關于y軸的對稱圖形△A1B1C1,并寫出B1點的坐標;(2)畫出△ABC繞原點O旋轉180°后得到的圖形△A2B2C2,并寫出B2點的坐標;(3)在x軸上求作一點P,使△PAB的周長最小,并直接寫出點P的坐標.23.(12分)在平面直角坐標系中,已知拋物線經過A(﹣4,0),B(0,﹣4),C(2,0)三點.(1)求拋物線解析式;(2)若點M為第三象限內拋物線上一動點,點M的橫坐標為m,△MOA的面積為S.求S關于m的函數關系式,并求出當m為何值時,S有最大值,這個最大值是多少?(3)若點Q是直線y=﹣x上的動點,過Q做y軸的平行線交拋物線于點P,判斷有幾個Q能使以點P,Q,B,O為頂點的四邊形是平行四邊形的點,直接寫出相應的點Q的坐標.24.(14分)如圖,在平面直角坐標系xOy中,函數y=kx(x<0)的圖象經過點A(-1,6),直線y=mx-2與x軸交于點B(①當n=-1時,判斷線段PD與PC的數量關系,并說明理由;②若PD≥2PC,結合函數的圖象,直接寫出n的取值范圍.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】【分析】根據三視圖的知識使用排除法即可求得答案.【詳解】如圖,由主視圖為三角形,排除了B、D,由俯視圖為長方形,可排除C,故選A.【點睛】本題考查了由三視圖判斷幾何體的知識,做此類題時可利用排除法解答.2、B【解析】

根據需要保證不少于50%的騎行是免費的,可得此次調查的參考統(tǒng)計量是此次調查所得數據的中位數.【詳解】因為需要保證不少于50%的騎行是免費的,所以制定這一標準中的a的值時,參考的統(tǒng)計量是此次調查所得數據的中位數,故選B.【點睛】本題考查了中位數的知識,中位數是以它在所有標志值中所處的位置確定的全體單位標志值的代表值,不受分布數列的極大或極小值影響,從而在一定程度上提高了中位數對分布數列的代表性。3、A【解析】作AH⊥BC于H,作直徑CF,連結BF,先利用等角的補角相等得到∠DAE=∠BAF,然后再根據同圓中,相等的圓心角所對的弦相等得到DE=BF=6,由AH⊥BC,根據垂徑定理得CH=BH,易得AH為△CBF的中位線,然后根據三角形中位線性質得到AH=BF=1,從而求解.解:作AH⊥BC于H,作直徑CF,連結BF,如圖,∵∠BAC+∠EAD=120°,而∠BAC+∠BAF=120°,∴∠DAE=∠BAF,∴弧DE=弧BF,∴DE=BF=6,∵AH⊥BC,∴CH=BH,∵CA=AF,∴AH為△CBF的中位線,∴AH=BF=1.∴,∴BC=2BH=2.故選A.“點睛”本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.也考查了垂徑定理和三角形中位線性質.4、C【解析】

先分別表示出小進和小俊跑800米的時間,再根據小進比小俊少用了40秒列出方程即可.【詳解】小進跑800米用的時間為秒,小俊跑800米用的時間為秒,∵小進比小俊少用了40秒,方程是,故選C.【點睛】本題考查了列分式方程解應用題,能找出題目中的相等關系式是解此題的關鍵.5、D【解析】

根據“平面直角坐標系中任意一點P(x,y),關于原點的對稱點是(-x,-y),即關于原點的對稱點,橫縱坐標都變成相反數”解答.【詳解】解:根據關于原點對稱的點的坐標的特點,∴點A(-2,3)關于原點對稱的點的坐標是(2,-3),故選D.【點睛】本題主要考查點關于原點對稱的特征,解決本題的關鍵是要熟練掌握點關于原點對稱的特征.6、B【解析】設多邊形的邊數為n,則有(n-2)×180°=n×150°,解得:n=12,故選B.7、D【解析】

設點C所對應的實數是x.根據中心對稱的性質,對稱點到對稱中心的距離相等,則有,解得.故選D.8、A【解析】

直接根據圓周角定理即可得出結論.【詳解】∵A、B、C是⊙O上的三點,∠B=75°,∴∠AOC=2∠B=150°.故選A.9、C【解析】試題解析:根據勾股定理得:斜邊為則該直角三角形能容納的圓形(內切圓)半徑(步),即直徑為6步,故選C10、C【解析】

根據左視圖是從左面看到的圖形求解即可.【詳解】從左面看,可以看到3個正方形,面積為3,故選:C.【點睛】本題考查三視圖的知識,解決此類圖的關鍵是由三視圖得到相應的平面圖形.從正面看到的圖是正視圖,從上面看到的圖形是俯視圖,從左面看到的圖形是左視圖.二、填空題(共7小題,每小題3分,滿分21分)11、2【解析】

試題分析:設此圓錐的底面半徑為r,根據圓錐的側面展開圖扇形的弧長等于圓錐底面周長可得,2πr=,解得r=2cm.考點:圓錐側面展開扇形與底面圓之間的關系.12、1【解析】

根據兩點間的距離公式可求B點坐標,再根據絕對值的性質即可求解.【詳解】∵數軸上不同三點A、B、C對應的數分別為a、b、c,a=-4,AB=3,∴b=3+(-4)=-1,∵|b|=|c|,∴c=1.故答案為1.【點睛】考查了實數與數軸,絕對值,關鍵是根據兩點間的距離公式求得B點坐標.13、30°【解析】因∠1和∠2是鄰補角,且∠1=30°,由鄰補角的定義可得∠2=180°﹣∠1=180°﹣30°=150°.解:∵∠1+∠2=180°,又∠1=30°,∴∠2=150°.14、1【解析】解:∵直線y=kx與雙曲線y=(x>0)交于點A(1,a),∴a=1,k=1.故答案為1.15、200【解析】

先求出OA的長,再由垂徑定理求出AC的長,根據勾股定理求出OC的長,進而可得出結論.【詳解】解:∵⊙O的直徑為1000mm,

∴OA=OA=500mm.

∵OD⊥AB,AB=800mm,

∴AC=400mm,

∴OC===300mm,∴CD=OD-OC=500-300=200(mm).

答:水的最大深度為200mm.故答案為:200【點睛】本題考查的是垂徑定理的應用,根據勾股定理求出OC的長是解答此題的關鍵.16、1【解析】試題分析:此題主要考查了多邊形的外角與內角,做此類題目,首先求出正多邊形的外角度數,再利用外角和定理求出求邊數.首先根據求出外角度數,再利用外角和定理求出邊數.∵正多邊形的一個內角是140°,∴它的外角是:180°-140°=40°,360°÷40°=1.故答案為1.考點:多邊形內角與外角.17、40°【解析】:在△QOC中,OC=OQ,∴∠OQC=∠OCQ,在△OPQ中,QP=QO,∴∠QOP=∠QPO,又∵∠QPO=∠OCQ+∠AOC,∠AOC=30°,∠QOP+∠QPO+∠OQC=180°,∴3∠OCP=120°,∴∠OCP=40°三、解答題(共7小題,滿分69分)18、-1【解析】

原式第二項利用除法法則變形,約分后通分,并利用同分母分式的減法法則計算,約分得到最簡結果,把a的值代入計算即可求出值.【詳解】解:原式=﹣?2(a﹣3)=﹣==,當a=1時,原式==﹣1.【點睛】此題考查了分式的化簡求值,熟練掌握運算法則是解本題的關鍵.19、,-【解析】分析:首先把括號里的式子進行通分,然后把除法運算轉化成乘法運算,進行約分化簡,最后代值計算.詳解:.當時,原式.點睛:本題主要考查分式的混合運算,注意運算順序,并熟練掌握同分、因式分解、約分等知識點.20、(1)y=-x2+2x+3;y=x+1;(2)a的值為-3或.【解析】

(1)把點B和D的坐標代入拋物線y=-x2+bx+c得出方程組,解方程組即可;由拋物線解析式求出點A的坐標,設直線AD的解析式為y=kx+a,把A和D的坐標代入得出方程組,解方程組即可;(2)分兩種情況:①當a<-1時,DF∥AE且DF=AE,得出F(0,3),由AE=-1-a=2,求出a的值;②當a>-1時,顯然F應在x軸下方,EF∥AD且EF=AD,設F(a-3,-3),代入拋物線解析式,即可得出結果.【詳解】解:(1)把點B和D的坐標代入拋物線y=-x2+bx+c得:解得:b=2,c=3,∴拋物線的解析式為y=-x2+2x+3;當y=0時,-x2+2x+3=0,解得:x=3,或x=-1,∵B(3,0),∴A(-1,0);設直線AD的解析式為y=kx+a,把A和D的坐標代入得:解得:k=1,a=1,∴直線AD的解析式為y=x+1;(2)分兩種情況:①當a<-1時,DF∥AE且DF=AE,則F點即為(0,3),∵AE=-1-a=2,∴a=-3;②當a>-1時,顯然F應在x軸下方,EF∥AD且EF=AD,設F(a-3,-3),由-(a-3)2+2(a-3)+3=-3,解得:a=;綜上所述,滿足條件的a的值為-3或.【點睛】本題考查拋物線與x軸的交點;二次函數的性質;待定系數法求二次函數解析式及平行四邊形的判定,綜合性較強.21、(1)填表見解析;(2)160名;(3)平均數;26本.【解析】【分析】先確定統(tǒng)計表中的C、A等級的人數,再根據中位數和眾數的定義得到樣本數據的中位數和眾數;(1)根據統(tǒng)計量,結合統(tǒng)計表進行估計即可;(2)用“B”等級人數所占的比例乘以全校的學生數即可得;(3)選擇平均數,計算出全年閱讀時間,然后再除以閱讀一本課外書的時間即可得.【詳解】整理數據按如下分段整理樣本數據并補全表格:課外閱讀時間(min)等級DCBA人數3584分析數據補全下列表格中的統(tǒng)計量:平均數中位數眾數808181得出結論(1)觀察統(tǒng)計量表格可以估計該校學生每周用于課外閱讀時間的情況等級B,故答案為:B;(2)8÷20×400=160∴該校等級為“”的學生有160名;(3)選統(tǒng)計量:平均數80×52÷160=26,∴該校學生每人一年平均閱讀26本課外書.【點睛】本題考查了中位數、眾數、平均數、統(tǒng)計表、用樣本估計總體等知識,熟練掌握各統(tǒng)計量的求解方法是關鍵.22、(1)畫圖見解析;(2)畫圖見解析;(3)畫圖見解析.【解析】

試題分析:(1)、根據網格結構找出點A、B、C平移后的對應點A1、B1、C1的位置,然后順次連接即可;(2)、根據網格結構找出點A、B、C關于原點的對稱點A2、B2、C2的位置,然后順次連接即可;(3)、找出點A關于x軸的對稱點A′,連接A′B與x軸相交于一點,根據軸對稱確定最短路線問題,交點即為所求的點P的位置,然后連接AP、BP并根據圖象寫出點P的坐標即可.試題解析:(1)、△A1B1C1如圖所示;B1點的坐標(-4,2)(2)、△A2B2C2如圖所示;B2點的坐標:(-4,-2)(3)、△PAB如圖所示,P(2,0).考點:(1)、作圖-旋轉變換;(2)、軸對稱-最短路線問題;(3)、作圖-平移變換.23、(1)y=x2+x﹣4;(2)S關于m的函數關系式為S=﹣m2﹣2m+8,當m=﹣1時,S有最大值9;(3)Q坐標為(﹣4,4)或(﹣2+2,2﹣2)或(﹣2﹣2,2+2)時,使點P,Q,B,O為頂點的四邊形是平行四邊形.【解析】

(1)設拋物線解析式為y=ax2+bx+c,然后把點A、B、C的坐標代入函數解析式,利用待定系數法求解即可;(2)利用拋物線的解析式表示出點M的縱坐標,從而得到點M到x軸的距離,然后根據三角形面積公式表示并整理即可得解,根據拋物線的性質求出第三象限內二次函數的最值,然后即可得解;(3)利用直線與拋物線的解析式表示出點P、Q的坐標,然后求出PQ的長度,再根據平行四邊形的對邊相等列出算式,然后解關于x的一元二次方程即可得解.【詳解】解:(1)設拋物線解析式為y=ax2+bx+c,∵拋物線經過A(﹣4,0),B(0,﹣4),C(2,0),∴,解得,∴拋物線解析式為y=x2+x﹣4;(2)∵點M的橫坐標為m,∴點M的縱坐標為m2+m﹣4,又∵A(﹣4,0),∴AO=0﹣(﹣4)=4,∴S=×4×|m2+m﹣4|=﹣(m2+2m﹣8)=﹣m2﹣2m+8,∵S=﹣(m2+2m﹣8)=﹣(m+1)2+9,點M為第三象限內拋物線上一動點,∴當m=﹣1時,S有最大值,最大值為S=9;故答案為S關于m的函數關系式為S=﹣m2﹣2m+8,當m=﹣1時,S有最大值9;(3)∵點Q是直線y=﹣x上的動點,∴設點Q的坐標為(a,﹣a),∵點P在拋物線上,且PQ∥y軸,∴點P的坐標為(a,a2+a﹣4),∴PQ=﹣a﹣(a2+a﹣4)=﹣a2﹣2a+4,又∵OB=0﹣(﹣4)=4,以點P,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論