版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
19UCI816-ARTIFICIALINTELLIGENCEANDROBOTICS
UNIT1
ArtificialIntelligenceisamethodofmakingacomputer,acomputer-controlledrobot,orasoftwarethinkintelligentlylikethehumanmind.AIisaccomplishedbystudyingthepatternsofthehumanbrainandbyanalyzingthecognitiveprocess.Theoutcomeofthesestudiesdevelopsintelligentsoftwareandsystems.
Artificialintelligenceallowsmachinestounderstandandachievespecificgoals.AIincludesmachinelearningviadeeplearning.Theformerreferstomachinesautomaticallylearningfromexistingdatawithoutbeingassistedbyhumanbeings.Deeplearningallowsthemachinetoabsorbhugeamountsofunstructureddatasuchastext,images,andaudio.
HistoryofArtificialIntelligence
ArtificialIntelligenceisnotanewwordandnotanewtechnologyforresearchers.Thistechnologyismucholderthanyouwouldimagine.EventherearethemythsofMechanicalmeninAncientGreekandEgyptianMyths.FollowingaresomemilestonesinthehistoryofAIwhichdefinesthejourneyfromtheAIgenerationtotilldatedevelopment.
ThebirthofArtificialIntelligence(1952-1956)
Year1955:
AnAllenNewellandHerbertA.Simoncreatedthe"firstartificialintelligenceprogram"Whichwasnamedas
"LogicTheorist".Thisprogramhadproved38of52Mathematicstheorems,andfindnewandmoreelegantproofsforsometheorems.
Year1956:
Theword"ArtificialIntelligence"firstadoptedbyAmericanComputerscientistJohnMcCarthyattheDartmouthConference.Forthefirsttime,AIcoinedasanacademicfield.
Atthattimehigh-levelcomputerlanguagessuchasFORTRAN,LISP,orCOBOLwereinvented.AndtheenthusiasmforAIwasveryhighatthattime.
Thegoldenyears-Earlyenthusiasm(1956-1974)
Year1966:
Theresearchersemphasizeddevelopingalgorithmswhichcansolvemathematicalproblems.JosephWeizenbaumcreatedthefirstchatbotin1966,whichwasnamedasELIZA.
Year1972:
ThefirstintelligenthumanoidrobotwasbuiltinJapanwhichwasnamedasWABOT-1.
ThefirstAIwinter(1974-1980)
Thedurationbetweenyears1974to1980wasthefirstAIwinterduration.AIwinterreferstothetimeperiodwherecomputerscientistdealtwithasevereshortageoffundingfromgovernmentforAIresearches.
DuringAIwinters,aninterestofpublicityonartificialintelligencewasdecreased.
AboomofAI(1980-1987)
Year1980:
AfterAIwinterduration,AIcamebackwith"ExpertSystem".Expertsystemswereprogrammedthatemulatethedecision-makingabilityofahumanexpert.
IntheYear1980,thefirstnationalconferenceoftheAmericanAssociationofArtificialIntelligence
washeldatStanfordUniversity.
ThesecondAIwinter(1987-1993)
Thedurationbetweentheyears1987to1993wasthesecondAIWinterduration.
AgainInvestorsandgovernmentstoppedinfundingforAIresearchasduetohighcostbutnotefficientresult.TheexpertsystemsuchasXCONwasverycosteffective.
Theemergenceofintelligentagents(1993-2011)
Year1997:
Intheyear1997,IBMDeepBluebeatsworldchesschampion,GaryKasparov,andbecamethefirstcomputertobeataworldchesschampion.
Year2002:
forthefirsttime,AIenteredthehomeintheformofRoomba,avacuumcleaner.
Year2006:
AIcameintheBusinessworldtilltheyear2006.CompanieslikeFacebook,Twitter,andNetflixalsostartedusingAI.
Deeplearning,bigdataandartificialgeneralintelligence(2011-present)
Year2011:
Intheyear2011,IBM'sWatsonwonjeopardy,aquizshow,whereithadtosolvethecomplexquestionsaswellasriddles.Watsonhadprovedthatitcouldunderstandnaturallanguageandcansolvetrickyquestionsquickly.
Year2012:
GooglehaslaunchedanAndroidappfeature"Googlenow",whichwasabletoprovideinformationtotheuserasaprediction.
Year2014:
Intheyear2014,Chatbot"EugeneGoostman"wonacompetitionintheinfamous"Turingtest."
Year2018:
The"ProjectDebater"fromIBMdebatedoncomplextopicswithtwomasterdebatersandalsoperformedextremelywell.
GooglehasdemonstratedanAIprogram"Duplex"whichwasavirtualassistantandwhichhadtakenhairdresserappointmentoncall,andladyonothersidedidn'tnoticethatshewastalkingwiththemachine.
NowAIhasdevelopedtoaremarkablelevel.TheconceptofDeeplearning,bigdata,anddatasciencearenowtrendinglikeaboom.NowadayscompanieslikeGoogle,Facebook,IBM,andAmazonareworkingwithAIandcreatingamazingdevices.ThefutureofArtificialIntelligenceisinspiringandwillcomewithhighintelligence.
Actinghumanly
ThefirstproposalforsuccessinbuildingaprogramandactshumanlywastheTuringTest.Tobeconsideredintelligentaprogrammustbeabletoactsufficientlylikeahumantofoolaninterrogator.Ahumaninterrogatestheprogramandanotherhumanviaaterminalsimultaneously.Ifafterareasonableperiod,theinterrogatorcannottellwhichiswhich,theprogrampasses.
Topassthistestrequires:
naturallanguageprocessing
knowledgerepresentation
automatedreasoning
machinelearning
Thistestavoidsphysicalcontactandconcentrateson"higherlevel"mentalfaculties.A
total
Turingtestwouldrequiretheprogramtoalsodo:
computervision
robotics
ThinkingHumanly
Thisrequires"gettinginside"ofthehumanmindtoseehowitworksandthencomparingourcomputerprogramstothis.Thisiswhat
cognitive
science
attemptstodo.Anotherwaytodothisistoobserveahumanproblemsolvingandarguethatone'sprogramsgoaboutproblemsolvinginasimilarway.
Example:
GPS(GeneralProblemSolver)wasanearlycomputerprogramthatattemptedtomodelhumanthinking.ThedeveloperswerenotsomuchinterestedinwhetherornotGPSsolvedproblemscorrectly.Theyweremoreinterestedinshowingthatitsolvedproblemslikepeople,goingthroughthesamestepsandtakingaroundthesameamountoftimetoperformthosesteps.
ThinkingRationally
Aristotlewasoneofthefirsttoattempttocodify"thinking".His
syllogisms
providedpatternsofargumentstructurethatalwaysgavecorrectconclusions,givingcorrectpremises.
Example:Allcomputersuseenergy.Usingenergyalwaysgeneratesheat.Therefore,allcomputersgenerateheat.
Thisinitiatethefieldof
logic.Formallogicwasdevelopedinthelatenineteenthcentury.Thiswasthefirststeptowardenablingcomputerprogramstoreasonlogically.
By1965,programsexistedthatcould,givenenoughtimeandmemory,takeadescriptionoftheprobleminlogicalnotationandfindthesolution,ifoneexisted.The
logicist
traditioninAIhopestobuildonsuchprogramstocreateintelligence.
Therearetwomainobstaclestothisapproach:First,itisdifficulttomakeinformalknowledgepreciseenoughtousethelogicistapproachparticularlywhenthereisuncertaintyintheknowledge.Second,thereisabigdifferencebetweenbeingabletosolveaprobleminprincipleanddoingsoinpractice.
ActingRationally:Therationalagentapproach
Actingrationallymeansactingsoastoachieveone'sgoals,givenone'sbeliefs.An
agent
isjustsomethingthatperceivesandacts.
InthelogicalapproachtoAI,theemphasisisoncorrectinferences.Thisisoftenpartofbeingarationalagentbecauseonewaytoactrationallyistoreasonlogicallyandthenactononesconclusions.Butthisisnotallofrationalitybecauseagentsoftenfindthemselvesinsituationswherethereisnoprovablycorrectthingtodo,yettheymustdosomething.
Therearealsowaystoactrationallythatdonotseemtoinvolveinference,e.g.,reflexactions.
ThestudyofAIasrationalagentdesignhastwoadvantages:
Itismoregeneralthanthelogicalapproachbecausecorrectinferenceisonlyausefulmechanismforachievingrationality,notanecessaryone.
Itismoreamenabletoscientificdevelopmentthanapproachesbasedonhumanbehaviourorhumanthoughtbecauseastandardofrationalitycanbedefinedindependentofhumans.
Achievingperfectrationalityincomplexenvironmentsisnotpossiblebecausethecomputationaldemandsaretoohigh.However,wewillstudyperfectrationalityasastartingplace.
cognitivemodeling
Cognitivemodellingisanareaofcomputersciencethatdealswithsimulatinghumanproblem-solvingandmentalprocessinginacomputerizedmodel.Suchamodelcanbeusedtosimulateorpredicthumanbehaviourorperformanceontaskssimilartotheonesmodelledandimprovehuman-computerinteraction
Cognitivemodellingisusedinnumerousartificialintelligence(
AI
)applications,suchas
expertsystems
,
naturallanguageprocessing
,
neuralnetworks
,andinroboticsandvirtualrealityapplications.Cognitivemodelsarealsousedtoimproveproductsinmanufacturingsegments,suchas
humanfactors
,engineering,andcomputergameanduserinterfacedesign.
Anadvancedapplicationofcognitivemodellingisthecreationofcognitivemachines,whichareAIprogramsthatapproximatesomeareasofhumancognition.OneofthegoalsofSandia'sprojectistomakehuman-computerinteractionmorelikeaninteractionbetweentwohumans.
Typesofcognitivemodels
Somehighlysophisticatedprogramsmodelspecificintellectualprocesses.Techniquessuchasdiscrepancydetectionareusedtoimprovethesecomplexmodels.
Discrepancydetectionsystemssignalwhenthereisadifferencebetweenanindividual'sactualstateorbehaviorandtheexpectedstateorbehaviorasperthecognitivemodel.Thatinformationisthenusedtoincreasethecomplexityofthemodel.
Anothertypeofcognitivemodelistheneuralnetwork.Thismodelwasfirsthypothesizedinthe1940s,butithasonlyrecentlybecomepracticalthankstoadvancementsindataprocessingandtheaccumulationoflargeamountsofdatatotrain
algorithms
.
Neuralnetworksworksimilarlytothehumanbrainbyrunningtrainingdatathroughalargenumberofcomputationalnodes,calledartificialneurons,whichpassinformationbackandforthbetweeneachother.Byaccumulatinginformationinthisdistributedway,applicationscanmakepredictionsaboutfutureinputs.
R
einforcementlearning
isanincreasinglyprominentareaofcognitivemodeling.Thisapproachhasalgorithmsrunthroughmanyiterationsofataskthattakesmultiplesteps,incentivizingactionsthateventuallyproducepositiveoutcomes,whilepenalizingactionsthatleadtonegativeones.ThisisaprimarypartoftheAIalgorithmthatGoogle's
DeepMind
usedforitsAlphaGoapplication,whichbestedthetophumanGoplayersin2016
Thesemodels,whichcanalsobeusedinnaturallanguageprocessingandsmartassistantapplications,haveimprovedhuman-computerinteraction,makingitpossibleformachinestohaverudimentaryconversationswithhumans.
AgentsinArtificialIntelligence
AnAIsystemcanbedefinedasthestudyoftherationalagentanditsenvironment.Theagentssensetheenvironmentthroughsensorsandactontheirenvironmentthroughactuators.AnAIagentcanhavementalpropertiessuchasknowledge,belief,intention,etc.
WhatisanAgent?
Anagentcanbeanythingthatperceiveitsenvironmentthroughsensorsandactuponthatenvironmentthroughactuators.AnAgentrunsinthecycleof
perceiving,
thinking,and
acting.Anagentcanbe:
Human-Agent:
Ahumanagenthaseyes,ears,andotherorganswhichworkforsensorsandhand,legs,vocaltractworkforactuators.
RoboticAgent:
Aroboticagentcanhavecameras,infraredrangefinder,NLPforsensorsandvariousmotorsforactuators.
SoftwareAgent:
Softwareagentcanhavekeystrokes,filecontentsassensoryinputandactonthoseinputsanddisplayoutputonthescreen.
Sensor:
Sensorisadevicewhichdetectsthechangeintheenvironmentandsendstheinformationtootherelectronicdevices.Anagentobservesitsenvironmentthroughsensors.
Actuators:
Actuatorsarethecomponentofmachinesthatconvertsenergyintomotion.Theactuatorsareonlyresponsibleformovingandcontrollingasystem.Anactuatorcanbeanelectricmotor,gears,rails,etc.
Effectors:
Effectorsarethedeviceswhichaffecttheenvironment.Effectorscanbelegs,wheels,arms,fingers,wings,fins,anddisplayscreen.
IntelligentAgents:
Anintelligentagentisanautonomousentitywhichactsuponanenvironmentusingsensorsandactuatorsforachievinggoals.Anintelligentagentmaylearnfromtheenvironmenttoachievetheirgoals.Athermostatisanexampleofanintelligentagent.
FollowingarethemainfourrulesforanAIagent:
Rule1:
AnAIagentmusthavetheabilitytoperceivetheenvironment.
Rule2:
Theobservationmustbeusedtomakedecisions.
Rule3:
Decisionshouldresultinanaction.
Rule4:
TheactiontakenbyanAIagentmustbearationalaction.
RationalAgent:
Arationalagentisanagentwhichhasclearpreference,modelsuncertainty,andactsinawaytomaximizeitsperformancemeasurewithallpossibleactions.
Arationalagentissaidtoperformtherightthings.AIisaboutcreatingrationalagentstouseforgametheoryanddecisiontheoryforvariousreal-worldscenarios.
ForanAIagent,therationalactionismostimportantbecauseinAIreinforcementlearningalgorithm,foreachbestpossibleaction,agentgetsthepositiverewardandforeachwrongaction,anagentgetsanegativereward.
StructureofanAIAgent
ThetaskofAIistodesignanagentprogramwhichimplementstheagentfunction.Thestructureofanintelligentagentisacombinationofarchitectureandagentprogram.Itcanbeviewedas:
Agent
=
Architecture
+
Agent
program
FollowingarethemainthreetermsinvolvedinthestructureofanAIagent:
Architecture:
ArchitectureismachinerythatanAIagentexecuteson.
AgentFunction:
Agentfunctionisusedtomapapercepttoanaction.
ExampleofAgentswiththeirPEASrepresentation
Agent
Performancemeasure
Environment
Actuators
Sensors
1.MedicalDiagnose
Healthypatient
Minimizedcost
Patient
Hospital
Staff
Tests
Treatments
Keyboard
(Entryofsymptoms)
2.VacuumCleaner
Cleanness
Efficiency
Batterylife
Security
Room
Table
Woodfloor
Carpet
Variousobstacles
Wheels
Brushes
VacuumExtractor
Camera
Dirtdetectionsensor
Cliffsensor
BumpSensor
InfraredWallSensor
3.Part-pickingRobot
Percentageofpartsincorrectbins.
Conveyorbeltwithparts,
Bins
JointedArms
Hand
Camera
Jointanglesensors.
ProblemSolvinginArtificialIntelligence
ThereflexagentofAIdirectlymapsstatesintoaction.Whenevertheseagentsfailtooperateinanenvironmentwherethestateofmappingistoolargeandnoteasilyperformedbytheagent,thenthestatedproblemdissolvesandsenttoaproblem-solvingdomainwhichbreaksthelargestoredproblemintothesmallerstorageareaandresolvesonebyone.Thefinalintegratedactionwillbethedesiredoutcomes.
Onthebasisoftheproblemandtheirworkingdomain,differenttypesofproblem-solvingagentdefinedanduseatanatomiclevelwithoutanyinternalstatevisiblewithaproblem-solvingalgorithm.Theproblem-solvingagentperformspreciselybydefiningproblemsandseveralsolutions.Sowecansaythatproblemsolvingisapartofartificialintelligencethatencompassesanumberoftechniquessuchasatree,B-tree,heuristicalgorithmstosolveaproblem.
Wecanalsosaythataproblem-solvingagentisaresult-drivenagentandalwaysfocusesonsatisfyingthegoals.
Stepsproblem-solvinginAI:
TheproblemofAIisdirectlyassociatedwiththenatureofhumansandtheiractivities.Soweneedanumberoffinitestepstosolveaproblemwhichmakeshumaneasyworks.
Thesearethefollowingstepswhichrequiresolvingaproblem:
GoalFormulation:
Thisoneisthefirstandsimplestepinproblem-solving.Itorganizesfinitestepstoformulatetarget/goalswhichrequiresomeactiontoachievethegoal.TodaytheformulationofthegoalisbasedonAIagents.
Problemformulation:
Itisoneofthecorestepsofproblem-solvingwhichdecideswhatactionshouldbetakentoachievetheformulatedgoal.InAIthiscorepartisdependentuponsoftwareagentwhichconsistedofthefollowingcomponentstoformulatetheassociatedproblem.
Componentstoformulatetheassociatedproblem:
InitialState:
ThisstaterequiresaninitialstatefortheproblemwhichstartstheAIagenttowardsaspecifiedgoal.Inthisstatenewmethodsalsoinitializeproblemdomainsolvingbyaspecificclass.
Action:
Thisstageofproblemformulationworkswithfunctionwithaspecificclasstakenfromtheinitialstateandallpossibleactionsdoneinthisstage.
Transition:
Thisstageofproblemformulationintegratestheactualactiondonebythepreviousactionstageandcollectsthefinalstagetoforwardittotheirnextstage.
Goaltest:
Thisstagedeterminesthatthespecifiedgoalachievedbytheintegratedtransitionmodelornot,wheneverthegoalachievesstoptheactionandforwardintothenextstagetodeterminesthecosttoachievethegoal.
Pathcosting:
Thiscomponentofproblem-solvingnumericalassignedwhatwillbethecosttoachievethegoal.Itrequiresallhardwaresoftwareandhumanworkingcost.
Typesofsearchalgorithms:
Therearefortoomanypowerfulsearchalgorithmsouttheretofitinasinglearticle.Instead,thisarticlewilldiscuss
six
ofthefundamentalsearchalgorithms,dividedinto
two
categories,asshownbelow.
UninformedSearchAlgorithms:
Thesearchalgorithmsinthissectionhavenoadditionalinformationonthegoalnodeotherthantheoneprovidedintheproblemdefinition.Theplanstoreachthegoalstatefromthestartstatedifferonlybytheorderand/orlengthofactions.Uninformedsearchisalsocalled
Blindsearch.
Thesealgorithmscanonlygeneratethesuccessorsanddifferentiatebetweenthegoalstateandnongoalstate.
Thefollowinguninformedsearchalgorithmsarediscussedinthissection.
DepthFirstSearch
BreadthFirstSearch
UniformCostSearch
Eachofthesealgorithmswillhave:
Aproblem
graph,
containingthestartnodeSandthegoalnodeG.
A
strategy,
describingthemannerinwhichthegraphwillbetraversedtogettoG.
A
fringe,
whichisadatastructureusedtostoreallthepossiblestates(nodes)thatyoucangofromthecurrentstates.
A
tree,
thatresultswhiletraversingtothegoalnode.
Asolution
plan,
whichthesequenceofnodesfromStoG.
DepthFirstSearch
:
Depth-firstsearch(DFS)isanalgorithmfortraversingorsearchingtreeorgraphdatastructures.Thealgorithmstartsattherootnode(selectingsomearbitrarynodeastherootnodeinthecaseofagraph)andexploresasfaraspossiblealongeachbranchbeforebacktracking.
Ituseslastin-first-outstrategyandhenceitisimplementedusingastack.
Example:
Question.
WhichsolutionwouldDFSfindtomovefromnodeStonodeGifrunonthegraphbelow?
Solution.
Theequivalentsearchtreefortheabovegraphisasfollows.AsDFStraversesthetree“deepestnodefirst”,itwouldalwayspickthedeeperbranchuntilitreachesthesolution(oritrunsoutofnodes,andgoestothenextbranch).Thetraversalisshowninbluearrows.
Path:
?S->A->B->C->G
Breadth-firstsearch(BFS)isanalgorithmfortraversingorsearchingtreeorgraphdatastructures.Itstartsatthetreeroot(orsomearbitrarynodeofagraph,sometimesreferredtoasa‘searchkey’),andexploresalloftheneighbornodesatthepresentdepthpriortomovingontothenodesatthenextdepthlevel.
Itisimplementedusingaqueue.
Example:
Question.
WhichsolutionwouldBFSfindtomovefromnodeStonodeGifrunonthegraphbelow?
Solution.
Theequivalentsearchtreefortheabovegraphisasfollows.AsBFStraversesthetree“shallowestnodefirst”,itwouldalwayspicktheshallowerbranchuntilitreachesthesolution(oritrunsoutofnodes,andgoestothenextbranch).Thetraversalisshowninbluearrows.
Path:
S->D->G
InformedSearchingAlgorithms
Informedsearchalgorithmscontaininformationaboutthegoalstate.Thiswillhelpinmoreefficientsearching.Itcontainsanarrayofknowledgeabouthowcloseisthegoalstatetothepresentstate,pathcost,howtoreachthegoal,etc.Informedsearchalgorithmsareusefulinlargedatabaseswhereuninformedsearchalgorithmscan’tmakeanaccurateresult.
Informedsearchalgorithmsarealsocalledheuristicsearchsinceitusestheideaofheuristics.
Theheuristicfunctionisafunctionusedtomeasuretheclosenessofthecurrentstatetothegoalstateandheuristicpropertiesareusedtofindoutthebestpossiblepathtoreachthegoalstateconcerningthepathcost.
ConsideranexampleofsearchingaplaceyouwanttovisitonGooglemaps.Thecurrentlocationandthedestinationplacearegiventothesearchalgorithmforcalculatingtheaccuratedistance,timetaken,andreal-timetrafficupdatesonthatparticularroute.Thisisexecutedusinginformedsearchalgorithms.
InformedSearchAlgorithms:
Here,thealgorithmshaveinformationonthegoalstate,whichhelpsinmoreefficientsearching.Thisinformationisobtainedbysomethingcalleda
heuristic.
Inthissection,wewilldiscussthefollowingsearchalgorithms.
GreedySearch
A*TreeSearch
A*GraphSearch
SearchHeuristics:
Inaninformedsearch,aheuristicisa
function
thatestimateshowcloseastateistothegoalstate.Forexample–Manhattandistance,Euclideandistance,etc.(Lesserthedistance,closerthegoal.)Differentheuristicsareusedindifferentinformedalgorithmsdiscussedbelow.
GreedySearch:
Ingreedysearch,weexpandthenodeclosesttothegoalnode.The“closeness”isestimatedbyaheuristich(x).
Heuristic:
Aheuristichisdefinedas-
h(x)=Estimateofdistanceofnodexfromthegoalnode.
Lowerthevalueofh(x),closeristhenodefromthegoal.
Strategy:
Expandthenodeclosesttothegoalstate,
i.e.
expandthenodewithalowerhvalue.
Example:
Question.
FindthepathfromStoGusinggreedysearch.Theheuristicvalueshofeachnodebelowthenameofthenode.
Solution.
StartingfromS,wecantraversetoA(h=9)orD(h=5).WechooseD,asithasthelowerheuristiccost.NowfromD,wecanmovetoB(h=4)orE(h=3).WechooseEwithalowerheuristiccost.Finally,fromE,wegotoG(h=0).Thisentiretraversalisshowninthesearchtreebelow,inblue.
Path:
?S->D->E->G
Advantage:
Workswellwithinformedsearchproblems,withfewerstepstoreachagoal.
Disadvantage:
CanturnintounguidedDFSintheworstcase.
A*TreeSearch:
A*TreeSearch,orsimplyknownasA*Search,combinesthestrengthsofuniform-costsearchandgreedysearch.Inthissearch,theheuristicisthesummationofthecostinUCS,denotedbyg(x),andthecostinthegreedysearch,denotedbyh(x).Thesummedcostisdenotedbyf(x).
Heuristic:
ThefollowingpointsshouldbenotedwrtheuristicsinA*search.
Here,h(x)iscalledthe
forwardcost
andisanestimateofthedistanceofthecurrentnodefromthegoalnode.
And,g(x)iscalledthe
backwardcost
andisthecumulativecostofanodefromtherootnode.
A*searchisoptimalonlywhenforallnodes,theforwardcostforanodeh(x)underestimatestheactualcosth*(x)toreachthegoal.Thispropertyof
A*
heuristiciscalled
admissibility.
Admissibility:?
Strategy:
Choosethenodewiththelowestf(x)value.
Example:
Question.
FindthepathtoreachfromStoGusingA*search.
Solution.
StartingfromS,thealgorithmcomputesg(x)+h(x)forallnodesinthefringeateachstep,choosingthenod
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 遼寧省沈陽市(2024年-2025年小學(xué)六年級(jí)語文)統(tǒng)編版小升初真題(下學(xué)期)試卷及答案
- 土地經(jīng)營權(quán)委托流轉(zhuǎn)協(xié)議書(2篇)
- 鋁塑窗施工合同紀(jì)念堂改造
- 社區(qū)照明場(chǎng)地場(chǎng)平施工合同
- 雕塑公園隔音墻施工合同
- 跨界應(yīng)用二手房合同范文
- 學(xué)徒培訓(xùn)合同
- 土地置換合同
- 2024煤礦建筑施工勞務(wù)合作承包合同
- 游泳館裝飾工程合同
- 小學(xué)生科普人工智能
- 物流運(yùn)籌學(xué)附錄習(xí)題答案
- 市政府副市長年道路春運(yùn)工作會(huì)議講話稿
- GB_T 37514-2019 動(dòng)植物油脂 礦物油的檢測(cè)(高清版)
- 肝臟的常見腫瘤的超聲診斷
- 閘門水力計(jì)算說明
- 大型塔器“立裝成段整體就位”工法
- 車輛使用授權(quán)書
- 常用函數(shù)圖像(1)
- 說明書ZWY-150(120)-45L煤礦用挖掘式裝載機(jī)
- 《鍋爐及鍋爐房設(shè)備》課程設(shè)計(jì)北京市某燃煤廠區(qū)蒸汽鍋爐房設(shè)計(jì)
評(píng)論
0/150
提交評(píng)論