綜合解析人教版數(shù)學(xué)八年級上冊期中綜合復(fù)習(xí)試題 卷(Ⅱ)(含詳解)_第1頁
綜合解析人教版數(shù)學(xué)八年級上冊期中綜合復(fù)習(xí)試題 卷(Ⅱ)(含詳解)_第2頁
綜合解析人教版數(shù)學(xué)八年級上冊期中綜合復(fù)習(xí)試題 卷(Ⅱ)(含詳解)_第3頁
綜合解析人教版數(shù)學(xué)八年級上冊期中綜合復(fù)習(xí)試題 卷(Ⅱ)(含詳解)_第4頁
綜合解析人教版數(shù)學(xué)八年級上冊期中綜合復(fù)習(xí)試題 卷(Ⅱ)(含詳解)_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

······線······○······封······○······密······○······內(nèi)······○······號學(xué) ······線······○······封······○······密······○······內(nèi)······○······號學(xué) 級年 名姓······線······○······封······○······密······○······外······○······考試時間:90分鐘;命題人:數(shù)學(xué)教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題35分)一、單選題(5小題,每小題3分,共計15分)1、下列圖形中,內(nèi)角和等于360°的是

(

)A.三角形 B.四邊形 C.五邊形 D.六邊形2、如圖,一束太陽光線平行照射在放置于地面的正六邊形上,若,則的度數(shù)為()A. B. C. D.3、如圖,在△ABC中,AD是BC邊上的高,∠BAF=∠CAG=90°,AB=AF,AC=AG,連接FG,交DA的延長線于點E,連接BG,CF,則下列結(jié)論:①BG=CF;②BG⊥CF;③∠EAF=∠ABC;④EF=EG,其中正確的有(

)A.①②③ B.①②④ C.①③④ D.①②③④4、如圖:∠B=∠C=90°,E是BC的中點,DE平分∠ADC,則下列說法正確的有幾個(

)(1)AE平分∠DAB;(2)△EBA≌△DCE;(3)AB+CD=AD;

(4)AE⊥DE.(5)DE=AEA.2個 B.3個 C.4個 D.55、將正六邊形與正五邊形按如圖所示方式擺放,公共頂點為O,且正六邊形的邊AB與正五邊形的邊DE在同一條直線上,則∠COF的度數(shù)是()A.74° B.76° C.84° D.86°二、多選題(5小題,每小題4分,共計20分)1、一個多邊形被截去一個角后,變?yōu)槲暹呅危瓉淼亩噙呅问菐走呅危?/p>

)A.3 B.4 C.5 D.62、在△ABC和△AˊB′C′中,已知∠A=∠A′,AB=A′B′,下面判斷中正確的是(

)······線······○······封······○······密······○······內(nèi)······○······號學(xué) 級年 名姓······線······○······封······○······密······○······內(nèi)······○······號學(xué) 級年 名姓······線······○······封······○······密······○······外······○······B.若添加條件BC=B′C′,則△ABC≌△A′B′C′C.若添加條件∠B=∠B′,則△ABC≌△A′B′C′D.若添加條件∠C=∠C′,則△ABC≌△A′B′C′3、將一個三角形紙片剪開分成兩個三角形,這兩個三角形可能是(

)A.都是直角三角形 B.都是鈍角三角形C.都是銳角三角形 D.是一個直角三角形和一個鈍角三角形4、如圖,在方格中,以為一邊作,使之與全等,則在,,,四個點中,符合條件的點有(

)A. B. C. D.5、若將一副三角板按如圖所示的方式放置,則下列結(jié)論正確的是(

)A.∠1=∠2 B.如果∠2=30°,則有AC∥DEC.如果∠2=30°,則有BC∥AD D.如果∠2=30°,必有∠4=∠C第Ⅱ卷(非選擇題65分)三、填空題(5小題,每小題5分,共計25分)1、如圖,若△ABC≌△ADE,且∠1=35°,則∠2=_____.2、如圖,,點為上一點,、的角平分線交于點,已知,則________度.3、如圖,△ABC中,AB=AC,D、E分別在CA、BA的延長線上,連接BD、CE,且∠D+∠E=180°,若BD=6,則CE的長為__.4、正多邊形的每個內(nèi)角等于,則這個正多邊形的邊數(shù)為______________條.5、下列說法正確的有_____(填序號)①三角形的外角和為360°;······線······○······封······○······密······○······內(nèi)······○······號學(xué) ······線······○······封······○······密······○······內(nèi)······○······號學(xué) 級年 名姓······線······○······封······○······密······○······外······○······③三角形的任何兩邊之差小于第三邊;④四邊形具有穩(wěn)定性.四、解答題(5小題,每小題8分,共計40分)1、已知:如圖,△ABC是任意一個三角形,求證:∠A+∠B+∠C=180°.2、已知:在四邊形ABCD中,對角線AC、BD相交于點E,且AC⊥BD,作BF⊥CD,垂足為點F,BF與AC交于點C,∠BGE=∠ADE.(1)如圖1,求證:AD=CD;(2)如圖2,BH是△ABE的中線,若AE=2DE,DE=EG,在不添加任何輔助線的情況下,請直接寫出圖2中四個三角形,使寫出的每個三角形的面積都等于△ADE面積的2倍.3、某數(shù)學(xué)興趣小組在一次活動中進行了探究試驗活動,請你來加入.【探究與發(fā)現(xiàn)】(1)如圖1,AD是的中線,延長AD至點E,使,連接BE,證明:.【理解與應(yīng)用】(2)如圖2,EP是的中線,若,,設(shè),則x的取值范圍是________.(3)如圖3,AD是的中線,E、F分別在AB、AC上,且,求證:.4、如圖,BC⊥AD,垂足為點C,∠A27°,∠BED44°.求:(1)∠B的度數(shù);(2)∠BFD的度數(shù).5、如圖AB=AC,CD⊥AB于D,BE⊥AC于E,BE與CD相交于點O.(1)求證AD=AE;(2)連接OA,BC,試判斷直線OA,BC的關(guān)系并說明理由.-參考答案-······線······○······封······○······密······○······內(nèi)······○······號學(xué) ······線······○······封······○······密······○······內(nèi)······○······號學(xué) 級年 名姓······線······○······封······○······密······○······外······○······1、B【解析】【分析】根據(jù)多邊形內(nèi)角和公式,列式算出它是幾邊形.【詳解】解:由多邊形內(nèi)角和公式,,解得.故選:B.【考點】本題考查多邊形內(nèi)角和公式,解題的關(guān)鍵是掌握多邊形內(nèi)角和公式.2、A【解析】【分析】先求出正六邊形的內(nèi)角和外角,再根據(jù)三角形的外角性質(zhì)以及平行線的性質(zhì),即可求解.【詳解】解:∵正六邊形的每個內(nèi)角等于120°,每個外角等于60°,∴∠FAD=120°-∠1=101°,∠ADB=60°,∴∠ABD=101°-60°=41°∵光線是平行的,∴=∠ABD=,故選A【考點】本題主要考查平行線的性質(zhì),三角形外角性質(zhì)以及正六邊形的性質(zhì),掌握三角形的外角性質(zhì)以及平行線的性質(zhì)是解題的關(guān)鍵.3、D【解析】【分析】證得△CAF≌△GAB(SAS),從而推得①正確;利用△CAF≌△GAB及三角形內(nèi)角和與對頂角,可判斷②正確;證明△AFM≌△BAD(AAS),得出FM=AD,∠FAM=∠ABD,則③正確,同理△ANG≌△CDA,得出NG=AD,則FM=NG,證明△FME≌△GNE(AAS).可得出結(jié)論④正確.【詳解】解:∵∠BAF=∠CAG=90°,∴∠BAF+∠BAC=∠CAG+∠BAC,即∠CAF=∠GAB,又∵AB=AF=AC=AG,∴△CAF≌△GAB(SAS),∴BG=CF,故①正確;∵△FAC≌△BAG,∴∠FCA=∠BGA,又∵BC與AG所交的對頂角相等,∴BG與FC所交角等于∠GAC,即等于90°,······線······○······封······○······密······○······內(nèi)······○······號學(xué) ······線······○······封······○······密······○······內(nèi)······○······號學(xué) 級年 名姓······線······○······封······○······密······○······外······○······過點F作FM⊥AE于點M,過點G作GN⊥AE交AE的延長線于點N,∵∠FMA=∠FAB=∠ADB=90°,∴∠FAM+∠BAD=90°,∠FAM+∠AFM=90°,∴∠BAD=∠AFM,又∵AF=AB,∴△AFM≌△BAD(AAS),∴FM=AD,∠FAM=∠ABD,故③正確,同理△ANG≌△CDA,∴NG=AD,∴FM=NG,∵FM⊥AE,NG⊥AE,∴∠FME=∠ENG=90°,∵∠AEF=∠NEG,∴△FME≌△GNE(AAS).∴EF=EG.故④正確.故選:D.【考點】本題綜合考查了全等三角形的判定與性質(zhì)及等腰三角形的三線合一性質(zhì)與互余、對頂角,三角形內(nèi)角和等幾何基礎(chǔ)知識.熟練掌握全等三角形的判定與性質(zhì)是解題的關(guān)鍵.4、B【解析】【分析】過點E作EF⊥AD垂足為點F,證明△DEF≌△DEC(AAS);得出CE=EF,DC=DF,∠CED=∠FED,證明Rt△AFE≌Rt△ABE(HL);得出AF=AB,∠FAE=∠BAE,∠AEF=∠AEB,即可得出答案.【詳解】解:如圖,過點E作EF⊥AD,垂足為點F,可得∠DFE=90°,則∠DFE=∠C,∵DE平分∠ADC,∴∠FDE=∠CDE,在△DCE和△DFE中,,······線······○······封······○······密······○······內(nèi)······○······號學(xué) 級年 ······線······○······封······○······密······○······內(nèi)······○······號學(xué) 級年 名姓······線······○······封······○······密······○······外······○······∴CE=EF,DC=DF,∠CED=∠FED,∵E是BC的中點,∴CE=EB,∴EF=EB,在Rt△ABE和Rt△AFE中,,∴Rt△AFE≌Rt△ABE(HL);∴AF=AB,∠FAE=∠BAE,∠AEF=∠AEB,∴AE平分∠DAB,故結(jié)論(1)正確,則AD=AF+DF=AB+CD,故結(jié)論(3)正確;可得∠AED=∠FED+AEF=∠FEC+∠BEF=90°,即AE⊥DE故結(jié)論(4)正確.∵AB≠CD,AE≠DE,(5)錯誤,∴△EBA≌△DCE不可能成立,故結(jié)論(2)錯誤.綜上所知正確的結(jié)論有3個.故答案為:B.【考點】本題考查全等三角形的判定與性質(zhì)、平行線的判定等內(nèi)容,作出輔助線是解題的關(guān)鍵.5、C【解析】【分析】利用正多邊形的性質(zhì)求出∠EOF,∠BOC,∠BOE即可解決問題.【詳解】解:由題意得:∠EOF=108°,∠BOC=120°,∠OEB=72°,∠OBE=60°,∴∠BOE=180°﹣72°﹣60°=48°,∴∠COF=360°﹣108°﹣48°﹣120°=84°,故選:【考點】本題考查正多邊形,三角形內(nèi)角和定理等知識,解題的關(guān)鍵是熟練掌握基本知識.二、多選題1、BCD【解析】【分析】利用直線截去多邊形的一個角,注意分類討論,直線不過多邊形的頂點,過一個頂點,過兩個頂點,從而可得答案.【詳解】解:一個三角形被截去一個角后,得不到五邊形,故不符合題意;如圖,一個四邊形被截去一個角后,可得到五邊形,故符合題意;如圖,一個五邊形被截去一個角后,可得到五邊形,故符合題意;······線······○······封······○······密······○······內(nèi)······○······號學(xué) ······線······○······封······○······密······○······內(nèi)······○······號學(xué) 級年 名姓······線······○······封······○······密······○······外······○······如圖,一個六邊形被截去一個角后,可得到五邊形,故符合題意;故選:【考點】本題考查的是認識多邊形,利用直線截去多邊形的一個角所形成的新的多邊形,理解截的方法是解題的關(guān)鍵.2、ACD【解析】【分析】已知兩個三角形的一組角和角的一組邊相等,可添加已知角的另一組邊相等,利用SAS判定三角形全等,也可以添加另外兩個角中任意一組角相等,利用AAS或ASA判定三角形全等.【詳解】解:A選項,添加條件AC=A′C′,可利用SAS判定則△ABC≌△A′B′C′,選項正確,符合題意;B選項,添加條件BC=B′C′,不能判定兩個三角形全等,選項不正確;C選項,添加條件∠B=∠B′,可利用ASA判定△ABC≌△A′B′C′,選項正確,符合題意;D選項,添加條件∠C=∠C′,可利用AAS判定△ABC≌△A′B′C′,選項正確,符合題意;故選ACD【考點】本題主要考查全等三角形的判定定理,解決本題的關(guān)鍵是要熟練掌握全等三角形的判定定理.3、ABD【解析】【分析】分三種情況討論,即可得到這兩個三角形不可能都是銳角三角形.【詳解】解:如圖,沿三角形一邊上的高剪開即可得到兩個直角三角形.如圖,鈍角三角形沿虛線剪開即可得到兩個鈍角三角形.如圖,直角三角形沿虛線剪開即可得到一個直角三角形和一個鈍角三角形.因為剪開的邊上的兩個角是鄰補角,不可能都是銳角,故這兩個三角形不可能都是銳角三角形.綜上所述,將一個三角形剪成兩三角形,這兩個三角形不可能都是銳角三角形.故選:ABD【考點】本題主要考查了三角形的分類,理解題意,弄清問題中對所作圖形的要求,結(jié)合對應(yīng)幾何圖形的性質(zhì)和基本作圖的方法作圖.······線······○······封······○······密······○······內(nèi)······○······號學(xué) ······線······○······封······○······密······○······內(nèi)······○······號學(xué) 級年 名姓······線······○······封······○······密······○······外······○······【解析】【分析】根據(jù)全等三角形的對應(yīng)邊相等判斷即可.【詳解】解:要使△ABP與△ABC全等,點P到AB的距離應(yīng)該等于點C到AB的距離,即3個單位長度,故點P的位置可以是P1,P3,P4三個,故選:ACD.【考點】此題考查全等三角形的性質(zhì),掌握全等三角形的對應(yīng)邊相等是解題的關(guān)鍵.5、BD【解析】【分析】根據(jù)兩種三角形的各角的度數(shù),利用平行線的判定與性質(zhì)結(jié)合已知條件對各個結(jié)論逐一驗證,即可得出答案.【詳解】解:∵∠CAB=∠DAE=90°,∴∠1=∠3,故A錯誤.∵∠2=30°,∴∠1=∠3=60°∴∠CAD=90°+60°=150°,∴∠D+∠CAD=180°,∴AC∥DE,故B正確,∵∠2=30°,∴∠1=∠3=60°,∵,∴,不平行,故C錯誤,∵∠2=30°,∴∠1=∠3=60°,由三角形的內(nèi)角和定理可得:∴∠4=45°,∴,故D正確.故選:B,D【考點】此題考查平行線的判斷,三角形的內(nèi)角和定理的應(yīng)用,解題關(guān)鍵在于根據(jù)三角形的內(nèi)角和來進行計算.三、填空題1、35°.【解析】【分析】根據(jù)全等的性質(zhì)可得:∠EAD=∠CAB,再根據(jù)等式的基本性質(zhì)可得∠1=∠2=35°.······線······○······封······○······密······○······內(nèi)······○······號學(xué) ······線······○······封······○······密······○······內(nèi)······○······號學(xué) 級年 名姓······線······○······封······○······密······○······外······○······解:∵△ABC≌△ADE,∴∠EAD=∠CAB,∴∠EAD-∠CAD=∠CAB-∠CAD,∴∠2=∠1=35°.故答案為35°.【考點】此題考查的是全等三角形的性質(zhì),掌握全等三角形的對應(yīng)角相等是解決此題的關(guān)鍵.2、【解析】【分析】設(shè),,根據(jù)角平分線的定義得到,,根據(jù)外角的性質(zhì)得到,,由平行線的性質(zhì)得到,,于是得到方程,即可得到結(jié)論.【詳解】解:設(shè),,、的角平分線交于點,∴,,∴,,∵,∴,,∴,∴,∴.故答案為:.【考點】本題考查了平行線的性質(zhì)、角平分線的定義以及三角形的外角的性質(zhì):三角形的外角等于兩個不相鄰的內(nèi)角的和.正確識別圖形并通過設(shè)未知數(shù)建立方程是解題關(guān)鍵.3、6【解析】【分析】在AD上截取AF=AE,連接BF,易得△ABF≌△ACE,根據(jù)全等三角形的性質(zhì)可得∠BFA=∠E,CE=BF,則有∠D=∠DFB,然后根據(jù)等腰三角形的性質(zhì)可求解.【詳解】解:在AD上截取AF=AE,連接BF,如圖所示:AB=AC,∠FAB=∠EAC,,BF=EC,∠BFA=∠E,······線······○······封······○······密······○······內(nèi)······○······號學(xué) ······線······○······封······○······密······○······內(nèi)······○······號學(xué) 級年 名姓······線······○······封······○······密······○······外······○······∠DFB=∠D,BF=BD,BD=6,CE=6.故答案為6.【考點】本題主要考查全等三角形的性質(zhì)與判定及等腰三角形的性質(zhì)與判定,熟練掌握全等三角形的判定方法及等腰三角形的性質(zhì)與判定是解題的關(guān)鍵.4、12【解析】【詳解】多邊形內(nèi)角和為180o(n-2),則每個內(nèi)角為180o(n-2)/n=,n=12,所以應(yīng)填12.5、①③.【解析】【分析】根據(jù)三角形的外角和定理,三角形的分類,三角形的三邊關(guān)系,四邊形的不穩(wěn)定性進行判斷便可.【詳解】解:①任意多邊形的外角和都為360°,故①正確;②鈍角三角與直角三角形各只有兩個銳角,故②錯誤;③三角形的任意兩邊之和大于第三邊,任意兩邊之差小于第三邊,故③正確;④三角形具有穩(wěn)定性,四邊形具有不穩(wěn)定性,故④錯誤.故答案為:①③.【考點】本題主要考查了多邊形的外角和定理,三角形的分類的應(yīng)用,三角形的三邊關(guān)系,四邊形的不穩(wěn)定性,關(guān)鍵是熟記這些性質(zhì).四、解答題1、證明見解析【解析】【分析】過點A作EFBC,利用EFBC,可得∠1=∠B,∠2=∠C,而∠1+∠2+∠BAC=180°,利用等量代換可證∠BAC+∠B+∠C=180°.【詳解】解:如圖,過點A作EFBC,∵EFBC,∴∠1=∠B,∠2=∠C,∵∠1+∠2+∠BAC=180°,∴∠BAC+∠B+∠C=180°,即∠A+∠B+∠C=180°.【考點】本題考查了三角形的內(nèi)角和定理的證明,作輔助線把三角形的三個內(nèi)角轉(zhuǎn)化到一個平角上是解題的關(guān)鍵.2、(1)證明見解析;(2)△ACD、△ABE、△BCE、△BHG.······線······○······封······○······密······○······內(nèi)······○······號學(xué) ······線······○······封······○······密······○······內(nèi)······○······號學(xué) 級年 名姓······線······○······封······○······密······○······外······○······【詳解】分析:(1)由AC⊥BD、BF⊥CD知∠ADE+∠DAE=∠CGF+∠GCF,根據(jù)∠BGE=∠ADE=∠CGF得出∠DAE=∠GCF即可得;(2)設(shè)DE=a,先得出AE=2DE=2a、EG=DE=a、AH=HE=a、CE=AE=2a,據(jù)此知S△ADC=2a2=2S△ADE,證△ADE≌△BGE得BE=AE=2a,再分別求出S△ABE、S△ACE、S△BHG,從而得出答案.詳解:(1)∵∠BGE=∠ADE,∠BGE=∠CGF,∴∠ADE=∠CGF,∵AC⊥BD、BF⊥CD,∴∠ADE+∠DAE=∠CGF+∠GCF,∴∠DAE=∠GCF,∴AD=CD;(2)設(shè)DE=a,則AE=2DE=2a,EG=DE=a,∴S△ADE=AE×DE=×2a×a=a2,∵BH是△ABE的中線,∴AH=HE=a,∵AD=CD、AC⊥BD,∴CE=AE=2a,則S△ADC=AC?DE=?(2a+2a)?a=2a2=2S△ADE;在△ADE和△BGE中,∵,∴△ADE≌△BGE(ASA),∴BE=AE=2a,∴S△ABE=AE?BE=?(2a)?2a=2a2,S△ACE=CE?BE=?(2a)?2a=2a2,S△BHG=HG?BE=?(a+a)?2a=2a2,綜上,面積等于△ADE面積的2倍的三角形有△ACD、△ABE、△BCE、△BHG.點睛:本題主要考查全等三角形的判定與性質(zhì),解題的關(guān)鍵是掌握等腰三角形的判定與性質(zhì)及全等三角形的判定與性質(zhì).3、(1)見解析;(2);(3)見解析【解析】【分析】(1)根據(jù)全等三角形的判定即可得到結(jié)論;(2)延長至點,使,連接,根據(jù)全等三角形的性質(zhì)得到,根據(jù)三角形的三邊關(guān)系即可得到結(jié)論;(3)延長FD至G,使得,連接BG,EG,結(jié)合前面的做題思路,利用三角形三邊關(guān)系判斷即可.【詳解】(1)證明:,,,,(2);······線······○······封······○······密······○······內(nèi)······○······號學(xué) 級年 ·

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論