人教版九年級物理第十五章第1節(jié)兩種電荷(課件32張)_第1頁
人教版九年級物理第十五章第1節(jié)兩種電荷(課件32張)_第2頁
人教版九年級物理第十五章第1節(jié)兩種電荷(課件32張)_第3頁
人教版九年級物理第十五章第1節(jié)兩種電荷(課件32張)_第4頁
人教版九年級物理第十五章第1節(jié)兩種電荷(課件32張)_第5頁
已閱讀5頁,還剩49頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

主講老師:陳震***三角函數(shù)的誘導(dǎo)公式主講老師:陳震***三角函數(shù)的一、化簡問題練習(xí)1.復(fù)習(xí)引入同角三角函數(shù)的關(guān)系一、化簡問題練習(xí)1.復(fù)習(xí)引入同角三角函數(shù)的關(guān)系一、化簡問題練習(xí)1.復(fù)習(xí)引入同角三角函數(shù)的關(guān)系練習(xí)2.一、化簡問題練習(xí)1.復(fù)習(xí)引入同角三角函數(shù)的關(guān)系練習(xí)2.化簡的基本要求

項數(shù)最少、次數(shù)最低、函數(shù)種類最少;2.分母不含根號,能求值的要求值.復(fù)習(xí)引入同角三角函數(shù)的關(guān)系化簡的基本要求項數(shù)最少、次數(shù)最低、函數(shù)種類2.分母不練習(xí)3.教材P.20練習(xí)第4題.復(fù)習(xí)引入同角三角函數(shù)的關(guān)系練習(xí)3.教材P.20練習(xí)第4題.復(fù)習(xí)引入同角三角函數(shù)的關(guān)系二、證明問題例1.復(fù)習(xí)引入同角三角函數(shù)的關(guān)系二、證明問題例1.復(fù)習(xí)引入同角三角函數(shù)的關(guān)系關(guān)于三角恒等式的證明,常有以下方法:小結(jié):復(fù)習(xí)引入同角三角函數(shù)的關(guān)系關(guān)于三角恒等式的證明,常有以下方法:小結(jié):復(fù)習(xí)引入同角三關(guān)于三角恒等式的證明,常有以下方法:

從一邊開始,證得它等于另一邊,一般由繁到簡;小結(jié):復(fù)習(xí)引入同角三角函數(shù)的關(guān)系關(guān)于三角恒等式的證明,常有以下方法:從一邊開始,證得它等關(guān)于三角恒等式的證明,常有以下方法:

從一邊開始,證得它等于另一邊,一般由繁到簡;(2)左右歸一法:證明左、右兩邊式子等于同一個式子.小結(jié):復(fù)習(xí)引入同角三角函數(shù)的關(guān)系關(guān)于三角恒等式的證明,常有以下方法:從一邊開始,證得它等(3)比較法:復(fù)習(xí)引入同角三角函數(shù)的關(guān)系小結(jié):(3)比較法:復(fù)習(xí)引入同角三角函數(shù)的關(guān)系小結(jié):(4)變式證明法:(3)比較法:將原等式轉(zhuǎn)化為與其等價的式子加以證明.復(fù)習(xí)引入同角三角函數(shù)的關(guān)系小結(jié):(4)變式證明法:(3)比較法:將原等式轉(zhuǎn)化為與其等價的(4)變式證明法:(3)比較法:將原等式轉(zhuǎn)化為與其等價的式子加以證明.(5)分析法.復(fù)習(xí)引入同角三角函數(shù)的關(guān)系小結(jié):(4)變式證明法:(3)比較法:將原等式轉(zhuǎn)化為與其等價的練習(xí)4.教材P.20練習(xí)第5題.復(fù)習(xí)引入同角三角函數(shù)的關(guān)系練習(xí)4.教材P.20練習(xí)第5題.復(fù)習(xí)引入同角三角函數(shù)的關(guān)系講授新課誘導(dǎo)公式(一)講授新課誘導(dǎo)公式(一)講授新課誘導(dǎo)公式(一)講授新課誘導(dǎo)公式(一)講授新課誘導(dǎo)公式的結(jié)構(gòu)特征講授新課誘導(dǎo)公式的結(jié)構(gòu)特征講授新課①終邊相同的角的同一三角函數(shù)值相等;②把求任意角的三角函數(shù)值問題轉(zhuǎn)化為求0°~360°角的三角函數(shù)值問題.誘導(dǎo)公式的結(jié)構(gòu)特征講授新課①終邊相同的角的同一三角函數(shù)值相等;誘導(dǎo)公式的結(jié)構(gòu)特講授新課試求下列三角函數(shù)的值(1)sin1110°;(2)sin1290°.練習(xí).講授新課試求下列三角函數(shù)的值(1)sin1110°;講授新課(1)210o能否用(180+

)的形式表達?

(0o<

<90o)(2)210o角的終邊與30o的終邊關(guān)系如何?思考下列問題一:講授新課(1)210o能否用(180+)的形式表達?(講授新課(1)210o能否用(180+

)的形式表達?

(0o<

<90o)

[210o=180+30o](2)210o角的終邊與30o的終邊關(guān)系如何?思考下列問題一:講授新課(1)210o能否用(180+)的形式表達?(講授新課(1)210o能否用(180+

)的形式表達?

(0o<

<90o)

[210o=180+30o](2)210o角的終邊與30o的終邊關(guān)系如何?

[互為反向延長線或關(guān)于原點對稱]思考下列問題一:講授新課(1)210o能否用(180+)的形式表達?(講授新課(5)sin210o與sin30o的值關(guān)系如何?(4)設(shè)點P(x,y),則點P'怎樣表示?

(3)設(shè)210o、30o角的終邊分別交單位圓于點P、P',則點P與P'的位置關(guān)系如何?

思考下列問題一:講授新課(5)sin210o與sin30o的值關(guān)系如何?(講授新課(5)sin210o與sin30o的值關(guān)系如何?(4)設(shè)點P(x,y),則點P'怎樣表示?

(3)設(shè)210o、30o角的終邊分別交單位圓于點P、P',則點P與P'的位置關(guān)系如何?

[關(guān)于原點對稱]思考下列問題一:講授新課(5)sin210o與sin30o的值關(guān)系如何?(講授新課(5)sin210o與sin30o的值關(guān)系如何?(4)設(shè)點P(x,y),則點P'怎樣表示?

[P'(-x,-y)](3)設(shè)210o、30o角的終邊分別交單位圓于點P、P',則點P與P'的位置關(guān)系如何?

[關(guān)于原點對稱]思考下列問題一:講授新課(5)sin210o與sin30o的值關(guān)系如何?(講授新課

對于任意角

,sin

與sin(180+

)的關(guān)系如何呢?講授新課對于任意角,sin與sin(1講授新課思考下列問題二:(1)角

與(180o+

)的終邊關(guān)系如何?(2)設(shè)

與(180o+

)的終邊分別交單位圓于P,

P',則點P與P'具有什么關(guān)系?

(3)設(shè)點P(x,y),那么點P'坐標(biāo)怎樣表示?

講授新課思考下列問題二:(1)角與(180o+)的終邊講授新課(1)角

與(180o+

)的終邊關(guān)系如何?

[互為反向延長線或關(guān)于原點對稱](2)設(shè)

與(180o+

)的終邊分別交單位圓于P,

P',則點P與P'具有什么關(guān)系?

(3)設(shè)點P(x,y),那么點P'坐標(biāo)怎樣表示?

思考下列問題二:講授新課(1)角與(180o+)的終邊關(guān)系如何?思考下講授新課(1)角

與(180o+

)的終邊關(guān)系如何?

[互為反向延長線或關(guān)于原點對稱](2)設(shè)

與(180o+

)的終邊分別交單位圓于P,

P',則點P與P'具有什么關(guān)系?

[關(guān)于原點對稱](3)設(shè)點P(x,y),那么點P'坐標(biāo)怎樣表示?

思考下列問題二:講授新課(1)角與(180o+)的終邊關(guān)系如何?思考下講授新課(1)角

與(180o+

)的終邊關(guān)系如何?

[互為反向延長線或關(guān)于原點對稱](2)設(shè)

與(180o+

)的終邊分別交單位圓于P,

P',則點P與P'具有什么關(guān)系?

[關(guān)于原點對稱](3)設(shè)點P(x,y),那么點P'坐標(biāo)怎樣表示?

[P′(-x,-y)]思考下列問題二:講授新課(1)角與(180o+)的終邊關(guān)系如何?思考下講授新課(4)sin

與sin(180o+

)、cos

與cos(180o+

)、

tan

與tan(180o+

)關(guān)系如何?(5)經(jīng)過探索,你能把上述結(jié)論歸納成公式嗎?其公式特征如何?思考下列問題二:講授新課(4)sin與sin(180o+)、cos與講授新課誘導(dǎo)公式(二)講授新課誘導(dǎo)公式(二)講授新課誘導(dǎo)公式(二)講授新課誘導(dǎo)公式(二)講授新課誘導(dǎo)公式(二)的結(jié)構(gòu)特征講授新課誘導(dǎo)公式(二)的結(jié)構(gòu)特征講授新課誘導(dǎo)公式(二)的結(jié)構(gòu)特征①函數(shù)名不變,符號看象限(把

看作銳角時);②求(180o+

)的三角函數(shù)值轉(zhuǎn)化為求

的三角函數(shù)值.講授新課誘導(dǎo)公式(二)的結(jié)構(gòu)特征①函數(shù)名不變,符號看象限講授新課歸納公式sin(

)=sin

cos(

)=-cos

tan

(-

)=-tan

講授新課歸納公式sin(-)=sin講授新課例1.求下列三角函數(shù)值.(可查表)講授新課例1.求下列三角函數(shù)值.(可查表)講授新課思考下列問題三:(1)30o與(-30o)角的終邊關(guān)系如何?(2)設(shè)30o與(-30o)的終邊分別交單位圓于點P、P',則點P與P'

的關(guān)系如何?(3)設(shè)點P(x,y),則點P'的坐標(biāo)怎樣表示?(4)sin(-30o)與sin30o的值關(guān)系如何?講授新課思考下列問題三:(1)30o與(-30o)角的終邊講授新課(1)30o與(-30o)角的終邊關(guān)系如何?

[關(guān)于x軸對稱](2)設(shè)30o與(-30o)的終邊分別交單位圓于點P、P',則點P與P'

的關(guān)系如何?(3)設(shè)點P(x,y),則點P'的坐標(biāo)怎樣表示?(4)sin(-30o)與sin30o的值關(guān)系如何?思考下列問題三:講授新課(1)30o與(-30o)角的終邊關(guān)系如何?講授新課(1)30o與(-30o)角的終邊關(guān)系如何?

[關(guān)于x軸對稱](2)設(shè)30o與(-30o)的終邊分別交單位圓于點P、P',則點P與P'

的關(guān)系如何?(3)設(shè)點P(x,y),則點P'的坐標(biāo)怎樣表示?

[P'(x,-y)](4)sin(-30o)與sin30o的值關(guān)系如何?思考下列問題三:講授新課(1)30o與(-30o)角的終邊關(guān)系如何?講授新課

對于任意角

,sin

與sin(-

)的關(guān)系如何呢?講授新課對于任意角,sin與sin(-講授新課思考下列問題四:(1)

與(-

)角的終邊位置關(guān)系如何?

(2)設(shè)

與(-

)角的終邊分別交單位圓于點

P、P',則點P與P'位置關(guān)系如何?

(3)設(shè)點P(x,y),那么點P'的坐標(biāo)怎樣表示?講授新課思考下列問題四:(1)與(-)角的終邊位置關(guān)系講授新課(1)

與(-

)角的終邊位置關(guān)系如何?

[關(guān)于x軸對稱](2)設(shè)

與(-

)角的終邊分別交單位圓于點

P、P',則點P與P'位置關(guān)系如何?

(3)設(shè)點P(x,y),那么點P'的坐標(biāo)怎樣表示?思考下列問題四:講授新課(1)與(-)角的終邊位置關(guān)系如何?思考講授新課(1)

與(-

)角的終邊位置關(guān)系如何?

[關(guān)于x軸對稱](2)設(shè)

與(-

)角的終邊分別交單位圓于點

P、P',則點P與P'位置關(guān)系如何?

[關(guān)于x軸對稱](3)設(shè)點P(x,y),那么點P'的坐標(biāo)怎樣表示?思考下列問題四:講授新課(1)與(-)角的終邊位置關(guān)系如何?思考講授新課(1)

與(-

)角的終邊位置關(guān)系如何?

[關(guān)于x軸對稱](2)設(shè)

與(-

)角的終邊分別交單位圓于點

P、P',則點P與P'位置關(guān)系如何?

[關(guān)于x軸對稱](3)設(shè)點P(x,y),那么點P'的坐標(biāo)怎樣表示?

[P'

(x,-y)]思考下列問題四:講授新課(1)與(-)角的終邊位置關(guān)系如何?思考講授新課(4)sin

與sin(-

)、

co

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論