![浙江省金華市重點達(dá)標(biāo)名校2023-2024學(xué)年中考一模數(shù)學(xué)試題含解析_第1頁](http://file4.renrendoc.com/view4/M02/10/1A/wKhkGGYKlWGAFREkAAH02RrQ7Qw453.jpg)
![浙江省金華市重點達(dá)標(biāo)名校2023-2024學(xué)年中考一模數(shù)學(xué)試題含解析_第2頁](http://file4.renrendoc.com/view4/M02/10/1A/wKhkGGYKlWGAFREkAAH02RrQ7Qw4532.jpg)
![浙江省金華市重點達(dá)標(biāo)名校2023-2024學(xué)年中考一模數(shù)學(xué)試題含解析_第3頁](http://file4.renrendoc.com/view4/M02/10/1A/wKhkGGYKlWGAFREkAAH02RrQ7Qw4533.jpg)
![浙江省金華市重點達(dá)標(biāo)名校2023-2024學(xué)年中考一模數(shù)學(xué)試題含解析_第4頁](http://file4.renrendoc.com/view4/M02/10/1A/wKhkGGYKlWGAFREkAAH02RrQ7Qw4534.jpg)
![浙江省金華市重點達(dá)標(biāo)名校2023-2024學(xué)年中考一模數(shù)學(xué)試題含解析_第5頁](http://file4.renrendoc.com/view4/M02/10/1A/wKhkGGYKlWGAFREkAAH02RrQ7Qw4535.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
浙江省金華市重點達(dá)標(biāo)名校2023-2024學(xué)年中考一模數(shù)學(xué)試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,點M是正方形ABCD邊CD上一點,連接MM,作DE⊥AM于點E,BF⊥AM于點F,連接BE,若AF=1,四邊形ABED的面積為6,則∠EBF的余弦值是()A. B. C. D.2.全球芯片制造已經(jīng)進(jìn)入10納米到7納米器件的量產(chǎn)時代.中國自主研發(fā)的第一臺7納米刻蝕機,是芯片制造和微觀加工最核心的設(shè)備之一,7納米就是0.000000007米.?dāng)?shù)據(jù)0.000000007用科學(xué)記數(shù)法表示為()A.0.7×10﹣8 B.7×10﹣8 C.7×10﹣9 D.7×10﹣103.如圖,正方形ABCD的邊長為2,其面積標(biāo)記為S1,以CD為斜邊作等腰直角三角形,以該等腰直角三角形的一條直角邊為邊向外作正方形,其面積標(biāo)記為S2,…,按照此規(guī)律繼續(xù)下去,則S2018的值為()A. B. C. D.4.(2011?黑河)已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,現(xiàn)有下列結(jié)論:①b2﹣4ac>0②a>0③b>0④c>0⑤9a+3b+c<0,則其中結(jié)論正確的個數(shù)是() A、2個 B、3個 C、4個 D、5個5.將一把直尺與一塊三角板如圖所示放置,若則∠2的度數(shù)為()A.50° B.110° C.130° D.150°6.某市今年1月份某一天的最高氣溫是3℃,最低氣溫是—4℃,那么這一天的最高氣溫比最低氣溫高A.—7℃ B.7℃ C.—1℃ D.1℃7.的算術(shù)平方根是()A.4 B.±4 C.2 D.±28.下列圖形是我國國產(chǎn)品牌汽車的標(biāo)識,在這些汽車標(biāo)識中,是中心對稱圖形的是()A. B. C. D.9.計算的結(jié)果是().A. B. C. D.10.根據(jù)下表中的二次函數(shù)的自變量與函數(shù)的對應(yīng)值,可判斷該二次函數(shù)的圖象與軸().
…
…
…
…A.只有一個交點 B.有兩個交點,且它們分別在軸兩側(cè)C.有兩個交點,且它們均在軸同側(cè) D.無交點二、填空題(共7小題,每小題3分,滿分21分)11.已知n>1,M=,N=,P=,則M、N、P的大小關(guān)系為.12.若關(guān)于x的方程x2-x+sinα=0有兩個相等的實數(shù)根,則銳角α的度數(shù)為___.13.如圖,將△AOB以O(shè)為位似中心,擴(kuò)大得到△COD,其中B(3,0),D(4,0),則△AOB與△COD的相似比為_____.14.分解因式:ax2-a=______.15.不等式組的解集為______.16.若分式方程有增根,則m的值為______.17.從“線段,等邊三角形,圓,矩形,正六邊形”這五個圖形中任取一個,取到既是軸對稱圖形又是中心對稱圖形的概率是_____.三、解答題(共7小題,滿分69分)18.(10分)(7分)某中學(xué)1000名學(xué)生參加了”環(huán)保知識競賽“,為了了解本次競賽成績情況,從中抽取了部分學(xué)生的成績(得分取整數(shù),滿分為100分)作為樣本進(jìn)行統(tǒng)計,并制作了如圖頻數(shù)分布表和頻數(shù)分布直方圖(不完整且局部污損,其中“■”表示被污損的數(shù)據(jù)).請解答下列問題:成績分組頻數(shù)頻率50≤x<6080.1660≤x<7012a70≤x<80■0.580≤x<9030.0690≤x≤100bc合計■1(1)寫出a,b,c的值;(2)請估計這1000名學(xué)生中有多少人的競賽成績不低于70分;(3)在選取的樣本中,從競賽成績是80分以上(含80分)的同學(xué)中隨機抽取兩名同學(xué)參加環(huán)保知識宣傳活動,求所抽取的2名同學(xué)來自同一組的概率.19.(5分)如圖,在矩形ABCD中,AB=3,AD=4,P沿射線BD運動,連接AP,將線段AP繞點P順時針旋轉(zhuǎn)90°得線段PQ.(1)當(dāng)點Q落到AD上時,∠PAB=____°,PA=_____,長為_____;(2)當(dāng)AP⊥BD時,記此時點P為P0,點Q為Q0,移動點P的位置,求∠QQ0D的大??;(3)在點P運動中,當(dāng)以點Q為圓心,BP為半徑的圓與直線BD相切時,求BP的長度;(4)點P在線段BD上,由B向D運動過程(包含B、D兩點)中,求CQ的取值范圍,直接寫出結(jié)果.20.(8分)如圖,在△ABC中,AB=AC,點,在邊上,.求證:.21.(10分)某商場將進(jìn)價為2000元的冰箱以2400元售出,平均每天能售出8臺,為了配合國家“家電下鄉(xiāng)”政策的實施,商場決定采取適當(dāng)?shù)慕祪r措施.調(diào)查表明:這種冰箱的售價每降低50元,平均每天就能多售出4臺.商場要想在這種冰箱銷售中每天盈利4800元,同時又要使百姓得到實惠,每臺冰箱應(yīng)降價多少元?22.(10分)計算:2cos30°+--()-223.(12分)如圖,在矩形ABCD中,AB=1DA,以點A為圓心,AB為半徑的圓弧交DC于點E,交AD的延長線于點F,設(shè)DA=1.求線段EC的長;求圖中陰影部分的面積.24.(14分)在Rt△ABC中,∠C=90°,∠B=30°,AB=10,點D是射線CB上的一個動點,△ADE是等邊三角形,點F是AB的中點,連接EF.(1)如圖,點D在線段CB上時,①求證:△AEF≌△ADC;②連接BE,設(shè)線段CD=x,BE=y,求y2﹣x2的值;(2)當(dāng)∠DAB=15°時,求△ADE的面積.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】
首先證明△ABF≌△DEA得到BF=AE;設(shè)AE=x,則BF=x,DE=AF=1,利用四邊形ABED的面積等于△ABE的面積與△ADE的面積之和得到?x?x+?x×1=6,解方程求出x得到AE=BF=3,則EF=x-1=2,然后利用勾股定理計算出BE,最后利用余弦的定義求解.【詳解】∵四邊形ABCD為正方形,∴BA=AD,∠BAD=90°,∵DE⊥AM于點E,BF⊥AM于點F,∴∠AFB=90°,∠DEA=90°,∵∠ABF+∠BAF=90°,∠EAD+∠BAF=90°,∴∠ABF=∠EAD,在△ABF和△DEA中∴△ABF≌△DEA(AAS),∴BF=AE;設(shè)AE=x,則BF=x,DE=AF=1,∵四邊形ABED的面積為6,∴,解得x1=3,x2=﹣4(舍去),∴EF=x﹣1=2,在Rt△BEF中,,∴.故選B.【點睛】本題考查了正方形的性質(zhì):正方形的四條邊都相等,四個角都是直角;正方形具有四邊形、平行四邊形、矩形、菱形的一切性質(zhì).會運用全等三角形的知識解決線段相等的問題.也考查了解直角三角形.2、C【解析】
本題根據(jù)科學(xué)記數(shù)法進(jìn)行計算.【詳解】因為科學(xué)記數(shù)法的標(biāo)準(zhǔn)形式為a×(1≤|a|≤10且n為整數(shù)),因此0.000000007用科學(xué)記數(shù)法法可表示為7×,故選C.【點睛】本題主要考察了科學(xué)記數(shù)法,熟練掌握科學(xué)記數(shù)法是本題解題的關(guān)鍵.3、A【解析】
根據(jù)等腰直角三角形的性質(zhì)可得出2S2=S1,根據(jù)數(shù)的變化找出變化規(guī)律“Sn=()n﹣2”,依此規(guī)律即可得出結(jié)論.【詳解】如圖所示,∵正方形ABCD的邊長為2,△CDE為等腰直角三角形,∴DE2+CE2=CD2,DE=CE,∴2S2=S1.觀察,發(fā)現(xiàn)規(guī)律:S1=22=4,S2=S1=2,S2=S2=1,S4=S2=,…,∴Sn=()n﹣2.當(dāng)n=2018時,S2018=()2018﹣2=()3.故選A.【點睛】本題考查了等腰直角三角形的性質(zhì)、勾股定理,解題的關(guān)鍵是利用圖形找出規(guī)律“Sn=()n﹣2”.4、B【解析】分析:由拋物線的開口方向判斷a與0的關(guān)系,由拋物線與y軸的交點判斷c與0的關(guān)系,然后根據(jù)拋物線與x軸交點及x=1時二次函數(shù)的值的情況進(jìn)行推理,進(jìn)而對所得結(jié)論進(jìn)行判斷.解答:解:①根據(jù)圖示知,二次函數(shù)與x軸有兩個交點,所以△=b2-4ac>0;故①正確;
②根據(jù)圖示知,該函數(shù)圖象的開口向上,
∴a>0;
故②正確;
③又對稱軸x=-=1,
∴<0,
∴b<0;
故本選項錯誤;
④該函數(shù)圖象交于y軸的負(fù)半軸,
∴c<0;
故本選項錯誤;
⑤根據(jù)拋物線的對稱軸方程可知:(-1,0)關(guān)于對稱軸的對稱點是(3,0);
當(dāng)x=-1時,y<0,所以當(dāng)x=3時,也有y<0,即9a+3b+c<0;故⑤正確.
所以①②⑤三項正確.
故選B.5、C【解析】
如圖,根據(jù)長方形的性質(zhì)得出EF∥GH,推出∠FCD=∠2,代入∠FCD=∠1+∠A求出即可.【詳解】∵EF∥GH,∴∠FCD=∠2,∵∠FCD=∠1+∠A,∠1=40°,∠A=90°,∴∠2=∠FCD=130°,故選C.【點睛】本題考查了平行線的性質(zhì),三角形外角的性質(zhì)等,準(zhǔn)確識圖是解題的關(guān)鍵.6、B【解析】
求最高氣溫比最低氣溫高多少度,即是求最高氣溫與最低氣溫的差,這個實際問題可轉(zhuǎn)化為減法運算,列算式計算即可.【詳解】3-(-4)=3+4=7℃.
故選B.7、C【解析】
先求出的值,然后再利用算術(shù)平方根定義計算即可得到結(jié)果.【詳解】=4,4的算術(shù)平方根是2,所以的算術(shù)平方根是2,故選C.【點睛】本題考查了算術(shù)平方根,熟練掌握算術(shù)平方根的定義是解本題的關(guān)鍵.8、B【解析】由中心對稱圖形的定義:“把一個圖形繞一個點旋轉(zhuǎn)180°后,能夠與自身完全重合,這樣的圖形叫做中心對稱圖形”分析可知,上述圖形中,A、C、D都不是中心對稱圖形,只有B是中心對稱圖形.故選B.9、D【解析】
根據(jù)同底數(shù)冪的乘除法運算進(jìn)行計算.【詳解】3x2y2x3y2÷xy3=6x5y4÷xy3=6x4y.故答案選D.【點睛】本題主要考查同底數(shù)冪的乘除運算,解題的關(guān)鍵是知道:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加.10、B【解析】
根據(jù)表中數(shù)據(jù)可得拋物線的對稱軸為x=1,拋物線的開口方向向上,再根據(jù)拋物線的對稱性即可作出判斷.【詳解】解:由題意得拋物線的對稱軸為x=1,拋物線的開口方向向上則該二次函數(shù)的圖像與軸有兩個交點,且它們分別在軸兩側(cè)故選B.【點睛】本題考查二次函數(shù)的性質(zhì),屬于基礎(chǔ)應(yīng)用題,只需學(xué)生熟練掌握拋物線的對稱性,即可完成.二、填空題(共7小題,每小題3分,滿分21分)11、M>P>N【解析】∵n>1,∴n-1>0,n>n-1,∴M>1,0<N<1,0<P<1,∴M最大;,∴,∴M>P>N.點睛:本題考查了不等式的性質(zhì)和利用作差法比較兩個代數(shù)式的大小.作差法比較大小的方法是:如果a-b>0,那么a>b;如果a-b=0,那么a=b;如果a-b<0,那么a<b;另外本題還用到了不等式的傳遞性,即如果a>b,b>c,那么a>b>c.12、30°【解析】試題解析:∵關(guān)于x的方程有兩個相等的實數(shù)根,∴解得:∴銳角α的度數(shù)為30°;故答案為30°.13、3:1.【解析】∵△AOB與△COD關(guān)于點O成位似圖形,
∴△AOB∽△COD,
則△AOB與△COD的相似比為OB:OD=3:1,
故答案為3:1(或).14、【解析】
先提公因式,再套用平方差公式.【詳解】ax2-a=a(x2-1)=故答案為:【點睛】掌握因式分解的一般方法:提公因式法,公式法.15、1<x≤1【解析】解不等式x﹣3(x﹣2)<1,得:x>1,解不等式,得:x≤1,所以不等式組解集為:1<x≤1,故答案為1<x≤1.16、-1【解析】
增根是分式方程化為整式方程后產(chǎn)生的使分式方程的分母為0的根.把增根代入化為整式方程的方程即可求出m的值.【詳解】方程兩邊都乘(x-1),得x-1(x-1)=-m∵原方程增根為x=1,∴把x=1代入整式方程,得m=-1,故答案為:-1.【點睛】本題考查了分式方程的增根,增根確定后可按如下步驟進(jìn)行:化分式方程為整式方程;把增根代入整式方程即可求得相關(guān)字母的值.17、.【解析】
試題分析:在線段、等邊三角形、圓、矩形、正六邊形這五個圖形中,既是中心對稱圖形又是軸對稱圖形的有線段、圓、矩形、正六邊形,共4個,所以取到的圖形既是中心對稱圖形又是軸對稱圖形的概率為.【點睛】本題考查概率公式,掌握圖形特點是解題關(guān)鍵,難度不大.三、解答題(共7小題,滿分69分)18、(1)a=0.24,b=2,c=0.04;(2)600人;(3)人.【解析】
(1)利用50≤x<60的頻數(shù)和頻率,根據(jù)公式:頻率=頻數(shù)÷總數(shù)先計算出樣本總?cè)藬?shù),再分別計算出a,b,c的值;(2)先計算出競賽分?jǐn)?shù)不低于70分的頻率,根據(jù)樣本估計總體的思想,計算出1000名學(xué)生中競賽成績不低于70分的人數(shù);(3)列樹形圖或列出表格,得到要求的所有情況和2名同學(xué)來自一組的情況,利用求概率公式計算出概率.【詳解】解:(1)樣本人數(shù)為:8÷0.16=50(名)a=12÷50=0.24,70≤x<80的人數(shù)為:50×0.5=25(名)b=50﹣8﹣12﹣25﹣3=2(名)c=2÷50=0.04所以a=0.24,b=2,c=0.04;(2)在選取的樣本中,競賽分?jǐn)?shù)不低于70分的頻率是0.5+0.06+0.04=0.6,根據(jù)樣本估計總體的思想,有:1000×0.6=600(人)∴這1000名學(xué)生中有600人的競賽成績不低于70分;(3)成績是80分以上的同學(xué)共有5人,其中第4組有3人,不妨記為甲,乙,丙,第5組有2人,不妨記作A,B從競賽成績是80分以上(含80分)的同學(xué)中隨機抽取兩名同學(xué),情形如樹形圖所示,共有20種情況:抽取兩名同學(xué)在同一組的有:甲乙,甲丙,乙甲,乙丙,丙甲,丙乙,AB,BA共8種情況,∴抽取的2名同學(xué)來自同一組的概率P==【點睛】本題考查了頻數(shù)、頻率、總數(shù)間關(guān)系及用列表法或樹形圖法求概率.列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹形圖法適合兩步或兩步以上完成的事件;概率=所求情況數(shù)與總情況數(shù)之比.19、(1)45,,π;(2)滿足條件的∠QQ0D為45°或135°;(3)BP的長為或;(4)≤CQ≤7.【解析】
(1)由已知,可知△APQ為等腰直角三角形,可得∠PAB,再利用三角形相似可得PA,及弧AQ的長度;(2)分點Q在BD上方和下方的情況討論求解即可.(3)分別討論點Q在BD上方和下方的情況,利用切線性質(zhì),在由(2)用BP0表示BP,由射影定理計算即可;(4)由(2)可知,點Q在過點Qo,且與BD夾角為45°的線段EF上運動,有圖形可知,當(dāng)點Q運動到點E時,CQ最長為7,再由垂線段最短,應(yīng)用面積法求CQ最小值.【詳解】解:(1)如圖,過點P做PE⊥AD于點E由已知,AP=PQ,∠APQ=90°∴△APQ為等腰直角三角形∴∠PAQ=∠PAB=45°設(shè)PE=x,則AE=x,DE=4﹣x∵PE∥AB∴△DEP∽△DAB∴=∴=解得x=∴PA=PE=∴弧AQ的長為?2π?=π.故答案為45,,π.(2)如圖,過點Q做QF⊥BD于點F由∠APQ=90°,∴∠APP0+∠QPD=90°∵∠P0AP+∠APP0=90°∴∠QPD=∠P0AP∵AP=PQ∴△APP0≌△PQF∴AP0=PF,P0P=QF∵AP0=P0Q0∴Q0D=P0P∴QF=FQ0∴∠QQ0D=45°.當(dāng)點Q在BD的右下方時,同理可得∠PQ0Q=45°,此時∠QQ0D=135°,綜上所述,滿足條件的∠QQ0D為45°或135°.(3)如圖當(dāng)點Q直線BD上方,當(dāng)以點Q為圓心,BP為半徑的圓與直線BD相切時過點Q做QF⊥BD于點F,則QF=BP由(2)可知,PP0=BP∴BP0=BP∵AB=3,AD=4∴BD=5∵△ABP0∽△DBA∴AB2=BP0?BD∴9=BP×5∴BP=同理,當(dāng)點Q位于BD下方時,可求得BP=故BP的長為或(4)由(2)可知∠QQ0D=45°則如圖,點Q在過點Q0,且與BD夾角為45°的線段EF上運動,當(dāng)點P與點B重合時,點Q與點F重合,此時,CF=4﹣3=1當(dāng)點P與點D重合時,點Q與點E重合,此時,CE=4+3=7∴EF===5過點C做CH⊥EF于點H由面積法可知CH===∴CQ的取值范圍為:≤CQ≤7【點睛】本題是幾何綜合題,考查了三角形全等、勾股定理、切線性質(zhì)以及三角形相似的相關(guān)知識,應(yīng)用了分類討論和數(shù)形結(jié)合的數(shù)學(xué)思想.20、見解析【解析】試題分析:證明△ABE≌△ACD即可.試題解析:法1:∵AB=AC,∴∠B=∠C,∵AD=CE,∴∠ADE=∠AED,∴△ABE≌△ACD,∴BE=CD,∴BD=CE,法2:如圖,作AF⊥BC于F,∵AB=AC,∴BF=CF,∵AD=AE,∴DF=EF,∴BF-DF=CF-EF,即BD=CE.21、100或200【解析】試題分析:此題利用每一臺冰箱的利潤×每天售出的臺數(shù)=每天盈利,設(shè)出每臺冰箱應(yīng)降價x元,列方程解答即可.試題解析:設(shè)每臺冰箱應(yīng)降價x元,每件冰箱的利潤是:元,賣(8+×4)件,列方程得,(8+×4)=4800,x2﹣300x+20000=0,解得x1=200,x2=100;要使百姓得到實惠,只能取x=200,答:每臺冰箱應(yīng)降價200元.考點:一元二次方程的應(yīng)用.22、5【解析】
根據(jù)實數(shù)的計算,先把各數(shù)化簡,再進(jìn)行合并即可.【詳解】原式==5【點睛】此題主要考查實數(shù)的計算,解題的關(guān)鍵是熟知特殊三角函數(shù)的化簡與二次根式的運算.23、(1);(1).【解析】
(1)根據(jù)矩形的性質(zhì)得出AB=AE=4,進(jìn)而利用勾股定理得出DE的長,即可得出答案;(1)利用銳角三角函數(shù)關(guān)系得出∠DAE=60°,進(jìn)而求出圖中陰影部分的面積為:,求出即可.【詳解】解:(1)∵在矩形ABCD中,AB=1DA,DA=1,∴AB=AE=4,∴DE=,∴EC=CD-DE=4-1;(1)∵sin∠DEA=,∴∠DEA=3
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 農(nóng)村溝渠清淤合同范本
- 2025年度滑雪場教練員培訓(xùn)與青少年滑雪普及推廣合同
- 2025年度教育管理信息平臺數(shù)據(jù)遷移與集成合同
- 監(jiān)理工作中施工單位的資金管理
- 農(nóng)村垃圾地合同范本
- 190萬投資理財合同范本
- 共同辦廠合同范本
- 醫(yī)師兼職合同范本
- 2025年金屬真空鍍膜行業(yè)深度研究分析報告
- 北京保安勞務(wù)合同范例
- 2024年電工(高級技師)考前必刷必練題庫500題(含真題、必會題)
- 《證券投資學(xué)》全套教學(xué)課件
- 2024年全國各地中考語文試題匯編:名著閱讀
- 公司組織架構(gòu)與管理體系制度
- 2024-2030年中國涂碳箔行業(yè)現(xiàn)狀調(diào)查與投資策略分析研究報告
- 2025高考語文步步高大一輪復(fù)習(xí)講義65練答案精析
- 部編版八年級語文下冊全冊單元教材分析
- 2024-2030年中國派對用品行業(yè)供需規(guī)模調(diào)研及發(fā)展趨勢預(yù)測研究報告
- 傳染病監(jiān)測預(yù)警與應(yīng)急指揮大數(shù)據(jù)引擎平臺建設(shè)需求
- 2023-2024年度數(shù)字經(jīng)濟(jì)與驅(qū)動發(fā)展公需科目答案(第5套)
- 2024年吉林省中考語文真題
評論
0/150
提交評論