




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年湘西市重點(diǎn)中學(xué)中考數(shù)學(xué)最后一模試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖是某個(gè)幾何體的展開圖,該幾何體是()A.三棱柱 B.圓錐 C.四棱柱 D.圓柱2.若關(guān)于x的分式方程的解為非負(fù)數(shù),則a的取值范圍是()A.a(chǎn)≥1 B.a(chǎn)>1 C.a(chǎn)≥1且a≠4 D.a(chǎn)>1且a≠43.下列式子一定成立的是()A.2a+3a=6a B.x8÷x2=x4C. D.(﹣a﹣2)3=﹣4.函數(shù)y=中,自變量x的取值范圍是()A.x>3 B.x<3 C.x=3 D.x≠35.將2001×1999變形正確的是()A.20002﹣1 B.20002+1 C.20002+2×2000+1 D.20002﹣2×2000+16.如圖在△ABC中,AC=BC,過點(diǎn)C作CD⊥AB,垂足為點(diǎn)D,過D作DE∥BC交AC于點(diǎn)E,若BD=6,AE=5,則sin∠EDC的值為()A. B. C. D.7.在一個(gè)不透明的口袋中裝有4個(gè)紅球和若干個(gè)白球,他們除顏色外其他完全相同.通過多次摸球?qū)嶒?yàn)后發(fā)現(xiàn),摸到紅球的頻率穩(wěn)定在25%附近,則口袋中白球可能有()A.16個(gè) B.15個(gè) C.13個(gè) D.12個(gè)8.李老師在編寫下面這個(gè)題目的答案時(shí),不小心打亂了解答過程的順序,你能幫他調(diào)整過來嗎?證明步驟正確的順序是已知:如圖,在中,點(diǎn)D,E,F(xiàn)分別在邊AB,AC,BC上,且,,求證:∽.證明:又,,,,∽.A. B. C. D.9.下列計(jì)算正確的是()A.a(chǎn)2+a2=a4 B.(-a2)3=a6C.(a+1)2=a2+1 D.8ab2÷(-2ab)=-4b10.如圖,點(diǎn)A,B,C在⊙O上,∠ACB=30°,⊙O的半徑為6,則的長等于()A.π B.2π C.3π D.4π二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖,在正方形網(wǎng)格中,線段A′B′可以看作是線段AB經(jīng)過若干次圖形的變化(平移、旋轉(zhuǎn)、軸對稱)得到的,寫出一種由線段AB得到線段A′B′的過程______12.已知△ABC∽△DEF,若△ABC與△DEF的相似比為,則△ABC與△DEF對應(yīng)中線的比為_____.13.已知⊙O半徑為1,A、B在⊙O上,且,則AB所對的圓周角為__o.14.如圖,一艘海輪位于燈塔P的北偏東方向60°,距離燈塔為4海里的點(diǎn)A處,如果海輪沿正南方向航行到燈塔的正東位置,海輪航行的距離AB長_____海里.15.如圖,在等邊△ABC中,AB=4,D是BC的中點(diǎn),將△ABD繞點(diǎn)A旋轉(zhuǎn)后得到△ACE,連接DE交AC于點(diǎn)F,則△AEF的面積為_______.16.已知:如圖,△ABC的面積為12,點(diǎn)D、E分別是邊AB、AC的中點(diǎn),則四邊形BCED的面積為_____.三、解答題(共8題,共72分)17.(8分)如圖,已知AB是圓O的直徑,F(xiàn)是圓O上一點(diǎn),∠BAF的平分線交⊙O于點(diǎn)E,交⊙O的切線BC于點(diǎn)C,過點(diǎn)E作ED⊥AF,交AF的延長線于點(diǎn)D.求證:DE是⊙O的切線;若DE=3,CE=2.①求的值;②若點(diǎn)G為AE上一點(diǎn),求OG+EG最小值.18.(8分)如圖,在銳角三角形ABC中,點(diǎn)D,E分別在邊AC,AB上,AG⊥BC于點(diǎn)G,AF⊥DE于點(diǎn)F,∠EAF=∠GAC.求證:△ADE∽△ABC;若AD=3,AB=5,求的值.19.(8分)如圖,已知與拋物線C1過A(-1,0)、B(3,0)、C(0,-3).(1)求拋物線C1的解析式.(2)設(shè)拋物線的對稱軸與x軸交于點(diǎn)P,D為第四象限內(nèi)的一點(diǎn),若△CPD為等腰直角三角形,求出D點(diǎn)坐標(biāo).20.(8分)經(jīng)過校園某路口的行人,可能左轉(zhuǎn),也可能直行或右轉(zhuǎn).假設(shè)這三種可能性相同,現(xiàn)有小明和小亮兩人經(jīng)過該路口,請用列表法或畫樹狀圖法,求兩人之中至少有一人直行的概率.21.(8分)為了解朝陽社區(qū)歲居民最喜歡的支付方式,某興趣小組對社區(qū)內(nèi)該年齡段的部分居民展開了隨機(jī)問卷調(diào)查(每人只能選擇其中一項(xiàng)),并將調(diào)查數(shù)據(jù)整理后繪成如下兩幅不完整的統(tǒng)計(jì)圖.請根據(jù)圖中信息解答下列問題:求參與問卷調(diào)查的總?cè)藬?shù).補(bǔ)全條形統(tǒng)計(jì)圖.該社區(qū)中歲的居民約8000人,估算這些人中最喜歡微信支付方式的人數(shù).22.(10分)((1)計(jì)算:;(2)先化簡,再求值:,其中a=.23.(12分)如圖,ABC中,∠ACB=90°,以BC為直徑的⊙O交AB于點(diǎn)D,過點(diǎn)D作⊙O的切線交CB的延長線于點(diǎn)E,交AC于點(diǎn)F.(1)求證:點(diǎn)F是AC的中點(diǎn);(2)若∠A=30°,AF=,求圖中陰影部分的面積.24.已知:如圖,平行四邊形ABCD,對角線AC與BD相交于點(diǎn)E,點(diǎn)G為AD的中點(diǎn),連接CG,CG的延長線交BA的延長線于點(diǎn)F,連接FD.求證:AB=AF;若AG=AB,∠BCD=120°,判斷四邊形ACDF的形狀,并證明你的結(jié)論.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】
側(cè)面為三個(gè)長方形,底邊為三角形,故原幾何體為三棱柱.【詳解】解:觀察圖形可知,這個(gè)幾何體是三棱柱.
故選A.【點(diǎn)睛】本題考查的是三棱柱的展開圖,對三棱柱有充分的理解是解題的關(guān)鍵..2、C【解析】試題分析:分式方程去分母轉(zhuǎn)化為整式方程,表示出整式方程的解,根據(jù)解為非負(fù)數(shù)及分式方程分母不為1求出a的范圍即可.解:去分母得:2(2x﹣a)=x﹣2,解得:x=,由題意得:≥1且≠2,解得:a≥1且a≠4,故選C.點(diǎn)睛:此題考查了分式方程的解,需注意在任何時(shí)候都要考慮分母不為1.3、D【解析】
根據(jù)合并同類項(xiàng)、同底數(shù)冪的除法法則、分?jǐn)?shù)指數(shù)運(yùn)算法則、冪的乘方法則進(jìn)行計(jì)算即可.【詳解】解:A:2a+3a=(2+3)a=5a,故A錯(cuò)誤;B:x8÷x2=x8-2=x6,故B錯(cuò)誤;C:=,故C錯(cuò)誤;D:(-a-2)3=-a-6=-,故D正確.故選D.【點(diǎn)睛】本題考查了合并同類項(xiàng)、同底數(shù)冪的除法法則、分?jǐn)?shù)指數(shù)運(yùn)算法則、冪的乘方法則.其中指數(shù)為分?jǐn)?shù)的情況在初中階段很少出現(xiàn).4、D【解析】由題意得,x﹣1≠0,解得x≠1.故選D.5、A【解析】
原式變形后,利用平方差公式計(jì)算即可得出答案.【詳解】解:原式=(2000+1)×(2000-1)=20002-1,故選A.【點(diǎn)睛】此題考查了平方差公式,熟練掌握平方差公式是解本題的關(guān)鍵.6、A【解析】
由等腰三角形三線合一的性質(zhì)得出AD=DB=6,∠BDC=∠ADC=90°,由AE=5,DE∥BC知AC=2AE=10,∠EDC=∠BCD,再根據(jù)正弦函數(shù)的概念求解可得.【詳解】∵△ABC中,AC=BC,過點(diǎn)C作CD⊥AB,∴AD=DB=6,∠BDC=∠ADC=90°,∵AE=5,DE∥BC,∴AC=2AE=10,∠EDC=∠BCD,∴sin∠EDC=sin∠BCD=,故選:A.【點(diǎn)睛】本題主要考查解直角三角形,解題的關(guān)鍵是熟練掌握等腰三角形三線合一的性質(zhì)和平行線的性質(zhì)及直角三角形的性質(zhì)等知識點(diǎn).7、D【解析】
由摸到紅球的頻率穩(wěn)定在25%附近得出口袋中得到紅色球的概率,進(jìn)而求出白球個(gè)數(shù)即可.【詳解】解:設(shè)白球個(gè)數(shù)為:x個(gè),
∵摸到紅色球的頻率穩(wěn)定在25%左右,
∴口袋中得到紅色球的概率為25%,
∴,
解得:x=12,
經(jīng)檢驗(yàn)x=12是原方程的根,
故白球的個(gè)數(shù)為12個(gè).
故選:D.【點(diǎn)睛】本題考查了利用頻率估計(jì)概率,根據(jù)大量反復(fù)試驗(yàn)下頻率穩(wěn)定值即概率得出是解題的關(guān)鍵.8、B【解析】
根據(jù)平行線的性質(zhì)可得到兩組對應(yīng)角相等,易得解題步驟;【詳解】證明:,,又,,∽.故選B.【點(diǎn)睛】本題考查了相似三角形的判定與性質(zhì);關(guān)鍵是證明三角形相似.9、D【解析】
各項(xiàng)計(jì)算得到結(jié)果,即可作出判斷.【詳解】A、原式=2a2,不符合題意;B、原式=-a6,不符合題意;C、原式=a2+2ab+b2,不符合題意;D、原式=-4b,符合題意,故選:D.【點(diǎn)睛】此題考查了整式的混合運(yùn)算,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.10、B【解析】
根據(jù)圓周角得出∠AOB=60°,進(jìn)而利用弧長公式解答即可.【詳解】解:∵∠ACB=30°,∴∠AOB=60°,∴的長==2π,故選B.【點(diǎn)睛】此題考查弧長的計(jì)算,關(guān)鍵是根據(jù)圓周角得出∠AOB=60°.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、將線段AB繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°,在向右平移2個(gè)單位長度【解析】
根據(jù)圖形的旋轉(zhuǎn)和平移性質(zhì)即可解題.【詳解】解:將線段AB繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°,在向右平移2個(gè)單位長度即可得到A′B′、【點(diǎn)睛】本題考查了旋轉(zhuǎn)和平移,屬于簡單題,熟悉旋轉(zhuǎn)和平移的概念是解題關(guān)鍵.12、3:4【解析】由于相似三角形的相似比等于對應(yīng)中線的比,∴△ABC與△DEF對應(yīng)中線的比為3:4故答案為3:4.13、45o或135o【解析】試題解析:如圖所示,∵OC⊥AB,∴C為AB的中點(diǎn),即在Rt△AOC中,OA=1,根據(jù)勾股定理得:即OC=AC,∴△AOC為等腰直角三角形,同理∵∠AOB與∠ADB都對,∵大角則弦AB所對的圓周角為或故答案為或14、1【解析】分析:首先由方向角的定義及已知條件得出∠NPA=60°,AP=4海里,∠ABP=90°,再由AB∥NP,根據(jù)平行線的性質(zhì)得出∠A=∠NPA=60°.然后解Rt△ABP,得出AB=AP?cos∠A=1海里.詳解:如圖,由題意可知∠NPA=60°,AP=4海里,∠ABP=90°.∵AB∥NP,∴∠A=∠NPA=60°.在Rt△ABP中,∵∠ABP=90°,∠A=60°,AP=4海里,∴AB=AP?cos∠A=4×cos60°=4×=1海里.故答案為1.點(diǎn)睛:本題考查了解直角三角形的應(yīng)用-方向角問題,平行線的性質(zhì),三角函數(shù)的定義,正確理解方向角的定義是解題的關(guān)鍵.15、【解析】
首先,利用等邊三角形的性質(zhì)求得AD=2;然后根據(jù)旋轉(zhuǎn)的性質(zhì)、等邊三角形的性質(zhì)推知△ADE為等邊三角形,則DE=AD,便可求出EF和AF,從而得到△AEF的面積.【詳解】解:∵在等邊△ABC中,∠B=60o,AB=4,D是BC的中點(diǎn),∴AD⊥BC,∠BAD=∠CAD=30o,∴AD=ABcos30o=4×=2,根據(jù)旋轉(zhuǎn)的性質(zhì)知,∠EAC=∠DAB=30o,AD=AE,∴∠DAE=∠EAC+∠CAD=60o,∴△ADE的等邊三角形,∴DE=AD=2,∠AEF=60o,∵∠EAC=∠CAD∴EF=DF=,AF⊥DE∴AF=EFtan60o=×=3,∴S△AEF=EF×AF=××3=.故答案為:.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì),等邊三角形的判定與性質(zhì),熟記各性質(zhì)并求出△ADE是等邊三角形是解題的關(guān)鍵.16、1【解析】【分析】設(shè)四邊形BCED的面積為x,則S△ADE=12﹣x,由題意知DE∥BC且DE=BC,從而得,據(jù)此建立關(guān)于x的方程,解之可得.【詳解】設(shè)四邊形BCED的面積為x,則S△ADE=12﹣x,∵點(diǎn)D、E分別是邊AB、AC的中點(diǎn),∴DE是△ABC的中位線,∴DE∥BC,且DE=BC,∴△ADE∽△ABC,則=,即,解得:x=1,即四邊形BCED的面積為1,故答案為1.【點(diǎn)睛】本題主要考查相似三角形的判定與性質(zhì),解題的關(guān)鍵是掌握中位線定理及相似三角形的面積比等于相似比的平方的性質(zhì).三、解答題(共8題,共72分)17、(1)證明見解析(2)①②3【解析】
(1)作輔助線,連接OE.根據(jù)切線的判定定理,只需證DE⊥OE即可;(2)①連接BE.根據(jù)BC、DE兩切線的性質(zhì)證明△ADE∽△BEC;又由角平分線的性質(zhì)、等腰三角形的兩個(gè)底角相等求得△ABE∽△AFD,所以;②連接OF,交AD于H,由①得∠FOE=∠FOA=60°,連接EF,則△AOF、△EOF都是等邊三角形,故四邊形AOEF是菱形,由對稱性可知GO=GF,過點(diǎn)G作GM⊥OE于M,則GM=EG,OG+EG=GF+GM,根據(jù)兩點(diǎn)之間線段最短,當(dāng)F、G、M三點(diǎn)共線,OG+EG=GF+GM=FM最小,此時(shí)FM=3.故OG+EG最小值是3.【詳解】(1)連接OE∵OA=OE,∴∠AEO=∠EAO∵∠FAE=∠EAO,∴∠FAE=∠AEO∴OE∥AF∵DE⊥AF,∴OE⊥DE∴DE是⊙O的切線(2)①解:連接BE∵直徑AB∴∠AEB=90°∵圓O與BC相切∴∠ABC=90°∵∠EAB+∠EBA=∠EBA+∠CBE=90°∴∠EAB=∠CBE∴∠DAE=∠CBE∵∠ADE=∠BEC=90°∴△ADE∽△BEC∴②連接OF,交AE于G,由①,設(shè)BC=2x,則AE=3x∵△BEC∽△ABC∴∴解得:x1=2,(不合題意,舍去)∴AE=3x=6,BC=2x=4,AC=AE+CE=8∴AB=,∠BAC=30°∴∠AEO=∠EAO=∠EAF=30°,∴∠FOE=2∠FAE=60°∴∠FOE=∠FOA=60°,連接EF,則△AOF、△EOF都是等邊三角形,∴四邊形AOEF是菱形由對稱性可知GO=GF,過點(diǎn)G作GM⊥OE于M,則GM=EG,OG+EG=GF+GM,根據(jù)兩點(diǎn)之間線段最短,當(dāng)F、G、M三點(diǎn)共線,OG+EG=GF+GM=FM最小,此時(shí)FM=FOsin60o=3.故OG+EG最小值是3.【點(diǎn)睛】本題考查了切線的性質(zhì)、相似三角形的判定與性質(zhì).比較復(fù)雜,解答此題的關(guān)鍵是作出輔助線,利用數(shù)形結(jié)合解答.18、(1)證明見解析;(2).【解析】
(1)由于AG⊥BC,AF⊥DE,所以∠AFE=∠AGC=90°,從而可證明∠AED=∠ACB,進(jìn)而可證明△ADE∽△ABC;(2)△ADE∽△ABC,,又易證△EAF∽△CAG,所以,從而可求解.【詳解】(1)∵AG⊥BC,AF⊥DE,∴∠AFE=∠AGC=90°,∵∠EAF=∠GAC,∴∠AED=∠ACB,∵∠EAD=∠BAC,∴△ADE∽△ABC,(2)由(1)可知:△ADE∽△ABC,∴由(1)可知:∠AFE=∠AGC=90°,∴∠EAF=∠GAC,∴△EAF∽△CAG,∴,∴=考點(diǎn):相似三角形的判定19、(1)y=x2-2x-3,(2)D1(4,-1),D2(3,-4),D3(2,-2)【解析】
(1)設(shè)解析式為y=a(x-3)(x+1),把點(diǎn)C(0,-3)代入即可求出解析式;(2)根據(jù)題意作出圖形,根據(jù)等腰直角三角形的性質(zhì)即可寫出坐標(biāo).【詳解】(1)設(shè)解析式為y=a(x-3)(x+1),把點(diǎn)C(0,-3)代入得-3=a×(-3)×1解得a=1,∴解析式為y=x2-2x-3,(2)如圖所示,對稱軸為x=1,過D1作D1H⊥x軸,∵△CPD為等腰直角三角形,∴△OPC≌△HD1P,∴PH=OC=3,HD1=OP=1,∴D1(4,-1)過點(diǎn)D2F⊥y軸,同理△OPC≌△FCD2,∴FD2=3,CF=1,故D2(3,-4)由圖可知CD1與PD2交于D3,此時(shí)PD3⊥CD3,且PD3=CD3,PC=,∴PD3=CD3=故D3(2,-2)∴D1(4,-1),D2(3,-4),D3(2,-2)使△CPD為等腰直角三角形.【點(diǎn)睛】此題主要考察二次函數(shù)與等腰直角三角形結(jié)合的題,解題的關(guān)鍵是熟知二次函數(shù)的圖像與性質(zhì)及等腰直角三角形的性質(zhì).20、兩人之中至少有一人直行的概率為.【解析】【分析】畫樹狀圖展示所有9種等可能的結(jié)果數(shù),找出“至少有一人直行”的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】畫樹狀圖為:共有9種等可能的結(jié)果數(shù),其中兩人之中至少有一人直行的結(jié)果數(shù)為5,所以兩人之中至少有一人直行的概率為.【點(diǎn)睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計(jì)算事件A或事件B的概率.概率=所求情況數(shù)與總情況數(shù)之比.21、(1)參與問卷調(diào)查的總?cè)藬?shù)為500人;(2)補(bǔ)全條形統(tǒng)計(jì)圖見解析;(3)這些人中最喜歡微信支付方式的人數(shù)約為2800人.【解析】
(1)根據(jù)喜歡支付寶支付的人數(shù)÷其所占各種支付方式的比例=參與問卷調(diào)查的總?cè)藬?shù),即可求出結(jié)論;
(2)根據(jù)喜歡現(xiàn)金支付的人數(shù)(41~60歲)=參與問卷調(diào)查的總?cè)藬?shù)×現(xiàn)金支付所占各種支付方式的比例-15,即可求出喜歡現(xiàn)金支付的人數(shù)(41~60歲),再將條形統(tǒng)計(jì)圖補(bǔ)充完整即可得出結(jié)論;
(3)根據(jù)喜歡微信支付方式的人數(shù)=社區(qū)居民人數(shù)×微信支付所占各種支付方式的比例,即可求出結(jié)論.【詳解】(1)(人.答:參與問卷調(diào)查的總?cè)藬?shù)為500人.(2)(人.補(bǔ)全條形統(tǒng)計(jì)圖,如圖所示.(3)(人.答:這些人中最喜歡微信支付方式的人數(shù)約為2800人.【點(diǎn)睛】本題考查了條形統(tǒng)計(jì)圖、扇形統(tǒng)計(jì)圖以及用樣本估計(jì)總體,解題的關(guān)鍵是:(1)觀察統(tǒng)計(jì)圖找出數(shù)據(jù),再列式計(jì)算;(2)通過計(jì)算求出喜歡現(xiàn)金支付的人數(shù)(41~60歲);(3)根據(jù)樣本的比例×總?cè)藬?shù),估算出喜歡微信支付方式的人數(shù).22、(1)2016;(2)a(a﹣2),.【解析】試題分析:(1)分別根據(jù)0指數(shù)冪及負(fù)整數(shù)指數(shù)冪的計(jì)算法則、特殊角的三角函數(shù)值、絕對值的性質(zhì)及數(shù)的開方法則計(jì)算出各數(shù),再根據(jù)實(shí)數(shù)混合運(yùn)算的法則進(jìn)行計(jì)算即可;(2)先算括號里面的,再算除法,最后把a(bǔ)的值代入進(jìn)行計(jì)算即可.試題解析:(1)原式==2016;(2)原式====a(a﹣2),當(dāng)a=時(shí),原式==.23、(1)見解析;(2)【解析】
(1)連接OD、CD,如圖,利用圓周角定理得到∠BDC=90°,再判定AC為⊙O的切線,則根據(jù)切線長定理得到FD=FC,然后證明∠3=∠A得到FD=FA,從而有FC=FA;(2)在Rt△ACB中利用含30度的直角三角形三邊的關(guān)系得到BC=AC=2,再證明△OBD為等邊三角形得到∠BOD=60°,接著根據(jù)切線的性質(zhì)得到OD⊥EF,從而
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025上海市建筑安全員B證考試題庫
- 不可抗因素合同范本
- 二年級口算題目總匯100道
- 三年級口算題練習(xí)1000道
- 產(chǎn)權(quán)贈予合同范本
- 化肥訂購合同范本
- 住房擔(dān)保貸款合同范本
- 公墓 穴位 賣賣合同范本
- KA門店飲料合同范本
- 2025遼寧省安全員《A證》考試題庫
- 甲狀腺術(shù)后出血搶救流程
- 個(gè)人購買家具合同
- 國際救生設(shè)備規(guī)則
- 第三方檢查應(yīng)對措施方案
- 2020年財(cái)產(chǎn)保險(xiǎn)公司部門職責(zé)和崗位說明書
- 抽水臺班記錄表
- TBA19利樂灌裝機(jī)操作手冊
- 人力資源管理咨詢實(shí)務(wù)人力資源總監(jiān)手冊
- ESC指導(dǎo)心包疾病最全
- 自考本科學(xué)士學(xué)位英語詞匯
- (完整版)建筑模型設(shè)計(jì)與制作
評論
0/150
提交評論