2023-2024學年江蘇省無錫市錫東片達標名校中考數(shù)學最后沖刺濃縮精華卷含解析_第1頁
2023-2024學年江蘇省無錫市錫東片達標名校中考數(shù)學最后沖刺濃縮精華卷含解析_第2頁
2023-2024學年江蘇省無錫市錫東片達標名校中考數(shù)學最后沖刺濃縮精華卷含解析_第3頁
2023-2024學年江蘇省無錫市錫東片達標名校中考數(shù)學最后沖刺濃縮精華卷含解析_第4頁
2023-2024學年江蘇省無錫市錫東片達標名校中考數(shù)學最后沖刺濃縮精華卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2023-2024學年江蘇省無錫市錫東片達標名校中考數(shù)學最后沖刺濃縮精華卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,AB∥CD,F(xiàn)H平分∠BFG,∠EFB=58°,則下列說法錯誤的是()A.∠EGD=58° B.GF=GH C.∠FHG=61° D.FG=FH2.下列判斷正確的是()A.任意擲一枚質(zhì)地均勻的硬幣10次,一定有5次正面向上B.天氣預報說“明天的降水概率為40%”,表示明天有40%的時間都在降雨C.“籃球隊員在罰球線上投籃一次,投中”為隨機事件D.“a是實數(shù),|a|≥0”是不可能事件3.如圖,在?ABCD中,BF平分∠ABC,交AD于點F,CE平分∠BCD,交AD于點E,若AB=6,EF=2,則BC的長為()A.8 B.10 C.12 D.144.如果,那么()A. B. C. D.5.據(jù)統(tǒng)計,2015年廣州地鐵日均客運量均為人次,將用科學記數(shù)法表示為()A. B. C. D.6.如圖,是半圓的直徑,點、是半圓的三等分點,弦.現(xiàn)將一飛鏢擲向該圖,則飛鏢落在陰影區(qū)域的概率為()A. B. C. D.7.下列圖形中,是中心對稱圖形但不是軸對稱圖形的是()A. B. C. D.8.如圖,A(4,0),B(1,3),以OA、OB為邊作□OACB,反比例函數(shù)(k≠0)的圖象經(jīng)過點C.則下列結(jié)論不正確的是()A.□OACB的面積為12B.若y<3,則x>5C.將□OACB向上平移12個單位長度,點B落在反比例函數(shù)的圖象上.D.將□OACB繞點O旋轉(zhuǎn)180°,點C的對應點落在反比例函數(shù)圖象的另一分支上.9.如圖,在平面直角坐標系xOy中,等腰梯形ABCD的頂點坐標分別為A(1,1),B(2,﹣1),C(﹣2,﹣1),D(﹣1,1).以A為對稱中心作點P(0,2)的對稱點P1,以B為對稱中心作點P1的對稱點P2,以C為對稱中心作點P2的對稱點P3,以D為對稱中心作點P3的對稱點P4,…,重復操作依次得到點P1,P2,…,則點P2010的坐標是()A.(2010,2) B.(2010,﹣2) C.(2012,﹣2) D.(0,2)10.如圖,兩個同心圓(圓心相同半徑不同的圓)的半徑分別為6cm和3cm,大圓的弦AB與小圓相切,則劣弧AB的長為()A.2πcm B.4πcm C.6πcm D.8πcm二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,P為正方形ABCD內(nèi)一點,PA:PB:PC=1:2:3,則∠APB=_____________.12.如圖,在平面直角坐標系中,函數(shù)y=(x>0)的圖象經(jīng)過矩形OABC的邊AB、BC的中點E、F,則四邊形OEBF的面積為________.13.如圖,將邊長為1的正方形的四條邊分別向外延長一倍,得到第二個正方形,將第二個正方形的四條邊分別向外延長一倍得到第三個正方形,…,則第2018個正方形的面積為_____.14.請從以下兩個小題中任選一個作答,若多選,則按第一題計分.A.正多邊形的一個外角是40°,則這個正多邊形的邊數(shù)是____________.B.運用科學計算器比較大?。篲_______sin37.5°.15.分解因式:____________.16.如圖甲,對于平面上不大于90°的∠MON,我們給出如下定義:如果點P在∠MON的內(nèi)部,作PE⊥OM,PF⊥ON,垂足分別為點E、F,那么稱PE+PF的值為點P相對于∠MON的“點角距離”,記為d(P,∠MON).如圖乙,在平面直角坐標系xOy中,點P在坐標平面內(nèi),且點P的橫坐標比縱坐標大2,對于∠xOy,滿足d(P,∠xOy)=10,點P的坐標是_____.三、解答題(共8題,共72分)17.(8分)觀察規(guī)律并填空.______(用含n的代數(shù)式表示,n是正整數(shù),且n≥2)18.(8分)數(shù)學興趣小組為了解我校初三年級1800名學生的身體健康情況,從初三隨機抽取了若干名學生,將他們按體重(均為整數(shù),單位:kg)分成五組(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依據(jù)統(tǒng)計數(shù)據(jù)繪制了如下兩幅尚不完整的統(tǒng)計圖.補全條形統(tǒng)計圖,并估計我校初三年級體重介于47kg至53kg的學生大約有多少名.19.(8分)十八大報告首次提出建設生態(tài)文明,建設美麗中國.十九大報告再次明確,到2035年美麗中國目標基本實現(xiàn).森林是人類生存發(fā)展的重要生態(tài)保障,提高森林的數(shù)量和質(zhì)量對生態(tài)文明建設非常關(guān)鍵.截止到2013年,我國已經(jīng)進行了八次森林資源清查,其中全國和北京的森林面積和森林覆蓋率情況如下:表1全國森林面積和森林覆蓋率清查次數(shù)一(1976年)二(1981年)三(1988年)四(1993年)五(1998年)六(2003年)七(2008年)八(2013年)森林面積(萬公頃)122001150125001340015894.0917490.9219545.2220768.73森林覆蓋率12.7%12%12.98%13.92%16.55%18.21%20.36%21.63%表2北京森林面積和森林覆蓋率清查次數(shù)一(1976年)二(1981年)三(1988年)四(1993年)五(1998年)六(2003年)七(2008年)八(2013年)森林面積(萬公頃)33.7437.8852.0558.81森林覆蓋率11.2%8.1%12.08%14.99%18.93%21.26%31.72%35.84%(以上數(shù)據(jù)來源于中國林業(yè)網(wǎng))請根據(jù)以上信息解答下列問題:(1)從第次清查開始,北京的森林覆蓋率超過全國的森林覆蓋率;(2)補全以下北京森林覆蓋率折線統(tǒng)計圖,并在圖中標明相應數(shù)據(jù);(3)第八次清查的全國森林面積20768.73(萬公頃)記為a,全國森林覆蓋率21.63%記為b,到2018年第九次森林資源清查時,如果全國森林覆蓋率達到27.15%,那么全國森林面積可以達到萬公頃(用含a和b的式子表示).20.(8分)某企業(yè)信息部進行市場調(diào)研發(fā)現(xiàn):信息一:如果單獨投資A種產(chǎn)品,所獲利潤yA(萬元)與投資金額x(萬元)之間存在某種關(guān)系的部分對應值如下表:x(萬元)122.535yA(萬元)0.40.811.22信息二:如果單獨投資B種產(chǎn)品,則所獲利潤yB(萬元)與投資金額x(萬元)之間存在二次函數(shù)關(guān)系:yB=ax2+bx,且投資2萬元時獲利潤2.4萬元,當投資4萬元時,可獲利潤3.2萬元.(1)求出yB與x的函數(shù)關(guān)系式;(2)從所學過的一次函數(shù)、二次函數(shù)、反比例函數(shù)中確定哪種函數(shù)能表示yA與x之間的關(guān)系,并求出yA與x的函數(shù)關(guān)系式;(3)如果企業(yè)同時對A、B兩種產(chǎn)品共投資15萬元,請設計一個能獲得最大利潤的投資方案,并求出按此方案能獲得的最大利潤是多少?21.(8分)為了解某市市民“綠色出行”方式的情況,某校數(shù)學興趣小組以問卷調(diào)查的形式,隨機調(diào)查了某市部分出行市民的主要出行方式(參與問卷調(diào)查的市民都只從以下五個種類中選擇一類),并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計圖.種類ABCDE出行方式共享單車步行公交車的士私家車根據(jù)以上信息,回答下列問題:(1)參與本次問卷調(diào)查的市民共有人,其中選擇B類的人數(shù)有人;(2)在扇形統(tǒng)計圖中,求A類對應扇形圓心角α的度數(shù),并補全條形統(tǒng)計圖;(3)該市約有12萬人出行,若將A,B,C這三類出行方式均視為“綠色出行”方式,請估計該市“綠色出行”方式的人數(shù).22.(10分)如圖,在Rt△ABC中,∠C=90°,翻折∠C,使點C落在斜邊AB上某一點D處,折痕為EF(點E、F分別在邊AC、BC上)若△CEF與△ABC相似.①當AC=BC=2時,AD的長為;②當AC=3,BC=4時,AD的長為;當點D是AB的中點時,△CEF與△ABC相似嗎?請說明理由.23.(12分)請根據(jù)圖中提供的信息,回答下列問題:(1)一個水瓶與一個水杯分別是多少元?(2)甲、乙兩家商場同時出售同樣的水瓶和水杯,為了迎接新年,兩家商場都在搞促銷活動,甲商場規(guī)定:這兩種商品都打八折;乙商場規(guī)定:買一個水瓶贈送兩個水杯,另外購買的水杯按原價賣.若某單位想要買5個水瓶和n(n>10,且n為整數(shù))個水杯,請問選擇哪家商場購買更合算,并說明理由.(必須在同一家購買)24.為落實“美麗撫順”的工作部署,市政府計劃對城區(qū)道路進行了改造,現(xiàn)安排甲、乙兩個工程隊完成.已知甲隊的工作效率是乙隊工作效率的倍,甲隊改造360米的道路比乙隊改造同樣長的道路少用3天.(1)甲、乙兩工程隊每天能改造道路的長度分別是多少米?(2)若甲隊工作一天需付費用7萬元,乙隊工作一天需付費用5萬元,如需改造的道路全長1200米,改造總費用不超過145萬元,至少安排甲隊工作多少天?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

根據(jù)平行線的性質(zhì)以及角平分線的定義,即可得到正確的結(jié)論.【詳解】解:,故A選項正確;又故B選項正確;平分,,故C選項正確;,故選項錯誤;故選.【點睛】本題主要考查了平行線的性質(zhì),解題時注意:兩直線平行,同位角相等;兩直線平行,內(nèi)錯角相等.2、C【解析】

直接利用概率的意義以及隨機事件的定義分別分析得出答案.【詳解】A、任意擲一枚質(zhì)地均勻的硬幣10次,一定有5次正面向上,錯誤;B、天氣預報說“明天的降水概率為40%”,表示明天有40%的時間都在降雨,錯誤;C、“籃球隊員在罰球線上投籃一次,投中”為隨機事件,正確;D、“a是實數(shù),|a|≥0”是必然事件,故此選項錯誤.故選C.【點睛】此題主要考查了概率的意義以及隨機事件的定義,正確把握相關(guān)定義是解題關(guān)鍵.3、B【解析】試題分析:根據(jù)平行四邊形的性質(zhì)可知AB=CD,AD∥BC,AD=BC,然后根據(jù)平行線的性質(zhì)和角平分線的性質(zhì)可知AB=AF,DE=CD,因此可知AF+DE=AD+EF=2AB=12,解得AD=BC=12-2=10.故選B.點睛:此題主要考查了平行四邊形的性質(zhì)和等腰三角形的性質(zhì),解題關(guān)鍵是把所求線段轉(zhuǎn)化為題目中已知的線段,根據(jù)等量代換可求解.4、B【解析】試題分析:根據(jù)二次根式的性質(zhì),由此可知2-a≥0,解得a≤2.故選B點睛:此題主要考查了二次根式的性質(zhì),解題關(guān)鍵是明確被開方數(shù)的符號,然后根據(jù)性質(zhì)可求解.5、D【解析】

科學記數(shù)法就是將一個數(shù)字表示成(a×10的n次冪的形式),其中1≤|a|<10,n表示整數(shù).n為整數(shù)位數(shù)減1,即從左邊第一位開始,在首位非零的后面加上小數(shù)點,再乘以10的n次冪.【詳解】解:6

590

000=6.59×1.故選:D.【點睛】本題考查學生對科學記數(shù)法的掌握,一定要注意a的形式,以及指數(shù)n的確定方法.6、D【解析】

連接OC、OD、BD,根據(jù)點C,D是半圓O的三等分點,推導出OC∥BD且△BOD是等邊三角形,陰影部分面積轉(zhuǎn)化為扇形BOD的面積,分別計算出扇形BOD的面積和半圓的面積,然后根據(jù)概率公式即可得出答案.【詳解】解:如圖,連接OC、OD、BD,∵點C、D是半圓O的三等分點,∴,∴∠AOC=∠COD=∠DOB=60°,∵OC=OD,∴△COD是等邊三角形,∴OC=OD=CD,∵,∴,∵OB=OD,∴△BOD是等邊三角形,則∠ODB=60°,∴∠ODB=∠COD=60°,∴OC∥BD,∴,∴S陰影=S扇形OBD,S半圓O,飛鏢落在陰影區(qū)域的概率,故選:D.【點睛】本題主要考查扇形面積的計算和幾何概率問題:概率=相應的面積與總面積之比,解題的關(guān)鍵是把求不規(guī)則圖形的面積轉(zhuǎn)化為求規(guī)則圖形的面積.7、B【解析】

根據(jù)軸對稱圖形與中心對稱圖形的概念判斷即可.【詳解】解:A、是軸對稱圖形,也是中心對稱圖形,故錯誤;B、是中心對稱圖形,不是軸對稱圖形,故正確;C、是軸對稱圖形,也是中心對稱圖形,故錯誤;D、是軸對稱圖形,也是中心對稱圖形,故錯誤.故選B.【點睛】本題考查的是中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.8、B【解析】

先根據(jù)平行四邊形的性質(zhì)得到點的坐標,再代入反比例函數(shù)(k≠0)求出其解析式,再根據(jù)反比例函數(shù)的圖象與性質(zhì)對選項進行判斷.【詳解】解:A(4,0),B(1,3),,,反比例函數(shù)(k≠0)的圖象經(jīng)過點,,反比例函數(shù)解析式為.□OACB的面積為,正確;當時,,故錯誤;將□OACB向上平移12個單位長度,點的坐標變?yōu)?,在反比例函?shù)圖象上,故正確;因為反比例函數(shù)的圖象關(guān)于原點中心對稱,故將□OACB繞點O旋轉(zhuǎn)180°,點C的對應點落在反比例函數(shù)圖象的另一分支上,正確.故選:B.【點睛】本題綜合考查了平行四邊形的性質(zhì)和反比例函數(shù)的圖象與性質(zhì),結(jié)合圖形,熟練掌握和運用相關(guān)性質(zhì)定理是解答關(guān)鍵.9、B【解析】分析:根據(jù)題意,以A為對稱中心作點P(0,1)的對稱點P1,即A是PP1的中點,結(jié)合中點坐標公式即可求得點P1的坐標;同理可求得其它各點的坐標,分析可得規(guī)律,進而可得答案.詳解:根據(jù)題意,以A為對稱中心作點P(0,1)的對稱點P1,即A是PP1的中點,又∵A的坐標是(1,1),結(jié)合中點坐標公式可得P1的坐標是(1,0);同理P1的坐標是(1,﹣1),記P1(a1,b1),其中a1=1,b1=﹣1.根據(jù)對稱關(guān)系,依次可以求得:P3(﹣4﹣a1,﹣1﹣b1),P4(1+a1,4+b1),P5(﹣a1,﹣1﹣b1),P6(4+a1,b1),令P6(a6,b1),同樣可以求得,點P10的坐標為(4+a6,b1),即P10(4×1+a1,b1),∵1010=4×501+1,∴點P1010的坐標是(1010,﹣1),故選:B.點睛:本題考查了對稱的性質(zhì),坐標與圖形的變化---旋轉(zhuǎn),根據(jù)條件求出前邊幾個點的坐標,得到規(guī)律是解題關(guān)鍵.10、B【解析】

首先連接OC,AO,由切線的性質(zhì),可得OC⊥AB,根據(jù)已知條件可得:OA=2OC,進而求出∠AOC的度數(shù),則圓心角∠AOB可求,根據(jù)弧長公式即可求出劣弧AB的長.【詳解】解:如圖,連接OC,AO,

∵大圓的一條弦AB與小圓相切,

∴OC⊥AB,

∵OA=6,OC=3,

∴OA=2OC,

∴∠A=30°,

∴∠AOC=60°,

∴∠AOB=120°,

∴劣弧AB的長==4π,

故選B.【點睛】本題考查切線的性質(zhì),弧長公式,熟練掌握切線的性質(zhì)是解題關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、°【解析】

通過旋轉(zhuǎn),把PA、PB、PC或關(guān)聯(lián)的線段集中到同一個三角形,再根據(jù)兩邊的平方和等于第三邊求證直角三角形,可以求解∠APB.【詳解】把△PAB繞B點順時針旋轉(zhuǎn)90°,得△P′BC,則△PAB≌△P′BC,設PA=x,PB=2x,PC=3x,連PP′,得等腰直角△PBP′,PP′2=(2x)2+(2x)2=8x2,∠PP′B=45°.又PC2=PP′2+P′C2,得∠PP′C=90°.故∠APB=∠CP′B=45°+90°=135°.故答案為135°.【點睛】本題考查的是正方形四邊相等的性質(zhì),考查直角三角形中勾股定理的運用,把△PAB順時針旋轉(zhuǎn)90°使得A′與C點重合是解題的關(guān)鍵.12、2【解析】設矩形OABC中點B的坐標為,∵點E、F是AB、BC的中點,∴點E、F的坐標分別為:、,∵點E、F都在反比例函數(shù)的圖象上,∴S△OCF==,S△OAE=,∴S矩形OABC=,∴S四邊形OEBF=S矩形OABC-S△OAE-S△OCF=.即四邊形OEBF的面積為2.點睛:反比例函數(shù)中“”的幾何意義為:若點P是反比例函數(shù)圖象上的一點,連接坐標原點O和點P,過點P向坐標軸作垂線段,垂足為點D,則S△OPD=.13、1【解析】

先分別求出第1個、第2個、第3個正方形的面積,由此總結(jié)規(guī)律,得到第n個正方形的面積,將n=2018代入即可求出第2018個正方形的面積.【詳解】:∵第1個正方形的面積為:1+4×12×2×1=5=51;

第2個正方形的面積為:5+4×12×25×5=25=52;

第3個正方形的面積為:25+4×12×225×25=125=53【點睛】本題考查了規(guī)律型:圖形的變化類,解題的關(guān)鍵是得到第n個正方形的面積.14、9,>【解析】

(1)根據(jù)任意多邊形外角和等于360可以得到正多邊形的邊數(shù)(2)用科學計算器計算即可比較大小.【詳解】(1)正多邊形的一個外角是40°,任意多邊形外角和等于360(2)利用科學計算器計算可知,sin37.5°.故答案為(1).9,(2).>【點睛】此題重點考察學生對正多邊形外交和的理解,掌握正多邊形外角和,會用科學計算器是解題的關(guān)鍵.15、【解析】試題分析:根據(jù)因式分解的方法,先提公因式,再根據(jù)平方差公式分解:.考點:因式分解16、(6,4)或(﹣4,﹣6)【解析】

設點P的橫坐標為x,表示出縱坐標,然后列方程求出x,再求解即可.【詳解】解:設點P的橫坐標為x,則點P的縱坐標為x-2,由題意得,

當點P在第一象限時,x+x-2=10,

解得x=6,

∴x-2=4,

∴P(6,4);

當點P在第三象限時,-x-x+2=10,

解得x=-4,

∴x-2=-6,

∴P(-4,-6).

故答案為:(6,4)或(-4,-6).【點睛】本題主要考查了點的坐標,讀懂題目信息,理解“點角距離”的定義并列出方程是解題的關(guān)鍵.三、解答題(共8題,共72分)17、【解析】

由前面算式可以看出:算式的左邊利用平方差公式因式分解,中間的數(shù)字互為倒數(shù),乘積為1,只剩下兩端的(1﹣)和(1+)相乘得出結(jié)果.【詳解】===.故答案為:.【點睛】本題考查了算式的運算規(guī)律,找出數(shù)字之間的聯(lián)系,得出運算規(guī)律,解決問題.18、576名【解析】試題分析:根據(jù)統(tǒng)計圖可以求得本次調(diào)查的人數(shù)和體重落在B組的人數(shù),從而可以將條形統(tǒng)計圖補充完整,進而可以求得我校初三年級體重介于47kg至53kg的學生大約有多少名.試題解析:本次調(diào)查的學生有:32÷16%=200(名),體重在B組的學生有:200﹣16﹣48﹣40﹣32=64(名),補全的條形統(tǒng)計圖如右圖所示,我校初三年級體重介于47kg至53kg的學生大約有:1800×=576(名),答:我校初三年級體重介于47kg至53kg的學生大約有576名.19、(1)四;(2)見解析;(3).【解析】

(1)比較兩個折線統(tǒng)計圖,找出滿足題意的調(diào)查次數(shù)即可;(2)描出第四次與第五次北京森林覆蓋率,補全折線統(tǒng)計圖即可;(3)根據(jù)第八次全面森林面積除以森林覆蓋率求出全國總面積,除以第九次的森林覆蓋率,即可得到結(jié)果.【詳解】解:(1)觀察兩折線統(tǒng)計圖比較得:從第四次清查開始,北京的森林覆蓋率超過全國的森林覆蓋率;故答案為四;(2)補全折線統(tǒng)計圖,如圖所示:(3)根據(jù)題意得:×27.15%=,則全國森林面積可以達到萬公頃,故答案為.【點睛】此題考查了折線統(tǒng)計圖,弄清題中的數(shù)據(jù)是解本題的關(guān)鍵.20、(1)yB=-0.2x2+1.6x(2)一次函數(shù),yA=0.4x(3)該企業(yè)投資A產(chǎn)品12萬元,投資B產(chǎn)品3萬元,可獲得最大利潤7.8萬元【解析】

(1)用待定系數(shù)法將坐標(2,2.4)(4,3.2)代入函數(shù)關(guān)系式y(tǒng)B=ax2+bx求解即可;(2)根據(jù)表格中對應的關(guān)系可以確定為一次函數(shù),通過待定系數(shù)法求得函數(shù)表達式;(3)根據(jù)等量關(guān)系“總利潤=投資A產(chǎn)品所獲利潤+投資B產(chǎn)品所獲利潤”列出函數(shù)關(guān)系式求得最大值【詳解】解:(1)yB=-0.2x2+1.6x,(2)一次函數(shù),yA=0.4x,(3)設投資B產(chǎn)品x萬元,投資A產(chǎn)品(15-x)萬元,投資兩種產(chǎn)品共獲利W萬元,則W=(-0.2x2+1.6x)+0.4(15-x)=-0.2x2+1.2x+6=-0.2(x-3)2+7.8,∴當x=3時,W最大值=7.8,答:該企業(yè)投資A產(chǎn)品12萬元,投資B產(chǎn)品3萬元,可獲得最大利潤7.8萬元.21、(1)800,240;(2)補圖見解析;(3)9.6萬人.【解析】試題分析:(1)由C類別人數(shù)及其百分比可得總?cè)藬?shù),總?cè)藬?shù)乘以B類別百分比即可得;(2)根據(jù)百分比之和為1求得A類別百分比,再乘以360°和總?cè)藬?shù)可分別求得;(3)總?cè)藬?shù)乘以樣本中A、B、C三類別百分比之和可得答案.試題解析:(1)本次調(diào)查的市民有200÷25%=800(人),∴B類別的人數(shù)為800×30%=240(人),故答案為800,240;(2)∵A類人數(shù)所占百分比為1﹣(30%+25%+14%+6%)=25%,∴A類對應扇形圓心角α的度數(shù)為360°×25%=90°,A類的人數(shù)為800×25%=200(人),補全條形圖如下:(3)12×(25%+30%+25%)=9.6(萬人),答:估計該市“綠色出行”方式的人數(shù)約為9.6萬人.考點:1、條形統(tǒng)計圖;2、用樣本估計總體;3、統(tǒng)計表;4、扇形統(tǒng)計圖22、解:(1)①.②或.(2)當點D是AB的中點時,△CEF與△ABC相似.理由見解析.【解析】

(1)①當AC=BC=2時,△ABC為等腰直角三角形;

②若△CEF與△ABC相似,分兩種情況:①若CE:CF=3:4,如圖1所示,此時EF∥AB,CD為AB邊上的高;②若CF:CE=3:4,如圖2所示.由相似三角形角之間的關(guān)系,可以推出∠A=∠ECD與∠B=∠FCD,從而得到CD=AD=BD,即D點為AB的中點;

(2)當點D是AB的中點時,△CEF與△ABC相似.可以推出∠CFE=∠A,∠C=∠C,從而可以證明兩個三角形相似.【詳解】(1)若△CEF與△ABC相似.①當AC=BC=2時,△ABC為等腰直角三角形,如答圖1所示,此時D為AB邊中點,AD=AC=.②當AC=3,BC=4時,有兩種情況:(I)若CE:CF=3:4,如答圖2所示,∵CE:CF=AC:BC,∴EF∥BC.由折疊性質(zhì)可知,CD⊥EF,∴CD⊥AB,即此時CD為AB邊上的高.在Rt△ABC中,AC=3,BC=4,∴BC=1.∴cosA=.∴AD=AC?cosA=3×=.(II)若CF:CE=3:4,如答圖3所示.∵△CEF∽△CAB,∴∠CEF=∠B.由折疊性質(zhì)可知,∠CEF+∠ECD=90°.又∵∠A+∠B=90°,∴∠A=∠ECD,∴AD=CD.同理可得:∠B=∠FCD,CD=BD.∴AD=BD.∴此時AD=AB=×1=.綜上所述,當AC=3,BC=4時,AD的長為或.(2)當點D是AB的中點時,△CEF與△CBA相似.理由如下:

如圖所示,連接CD,與EF交于點Q.

∵CD是Rt△ABC的中線

∴CD=DB=AB,

∴∠DCB=∠B.

由折疊性質(zhì)可知,∠CQF=∠DQF=90°,

∴∠DCB+∠C

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論