版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022年普通高等學(xué)校招生全國統(tǒng)一考試新高考卷數(shù)學(xué)模擬測
試(一)
1.(I二利二()
A.3:?B.3AiC.I3/D.1+3,
2.已知集合M,N是全集U的兩個(gè)非空子集,且\I£C「N,貝M)
A.MCN=0B.MCNC.NCMD.NUCjA/=U
3.橢圓〃,/+/=1的焦點(diǎn)在y軸上,短軸長與焦距相等,則實(shí)數(shù)m的值為()
A.2B.1C.4D.y/2
4.若某圓臺(tái)的上底面半徑為2,下底面半徑為4,高為3,則該圓臺(tái)的體積為.()
A287r-…、
A.—-—B.2()7rC.287rD.327r
?5
亡r卜,sin2a.、
5.已知lane=3,則——=()
sinn
Q9I
A.B.-C.-D.6
/LI
6.在1859年的時(shí)候,德國數(shù)學(xué)家黎曼向科學(xué)院提交了題目為《論小于某值的素?cái)?shù)個(gè)數(shù)》
的論文并提出了一個(gè)命題,也就是著名的黎曼猜想.在此之前,著名數(shù)學(xué)家歐拉也曾研究過
這個(gè)問題,并得到小于數(shù)字x的素?cái)?shù)個(gè)數(shù)可以表示為Mr)七丁匚的結(jié)論.若根據(jù)歐拉得出的
結(jié)論,估計(jì)1(戶以內(nèi)的素?cái)?shù)的個(gè)數(shù)為(素?cái)?shù)即質(zhì)數(shù),lgev0,343,計(jì)算結(jié)果取整數(shù),()
A.2172B.4343C.869D.8686
7.一展開式中常數(shù)項(xiàng)是()
A.56B,-56C.70D.-70
8.已知函數(shù)/(」?)=hir-1,直線i/=mr+n是曲線v=/(.r)的一條切線,則m+2”的
X
取值范圍是()
A.[―3.+oo)B.[-2In2—4.+oc)
e-35
C.(-oc,—^―]D,[In2-+oo)
9.為了慶祝中國共產(chǎn)黨成立100周年,謳歌中華民族實(shí)現(xiàn)偉大復(fù)興的奮斗歷程,增進(jìn)全體
黨員干部職工對(duì)黨史的了解,某單位組織開展黨史知識(shí)競賽活動(dòng),將本單位全體黨員黨史知
識(shí)競賽的成績(均位于阿).1()。]之內(nèi))整理,得到如圖所示的頻率分布直方圖.根據(jù)此頻率分布
第1.頁,共16頁
直方圖,下列結(jié)論正確的是()
A.本次成績不低于80分的人數(shù)的占比為75%
B.本次成績低于70分的人數(shù)的占比為5%
C.估計(jì)本次成績的平均分不高于85分
D.本次成績位于「0.90)的人數(shù)是其他人數(shù)的3倍
10.如圖所示,四棱錐S-的底面為正方形,S/)_L底面A8CD,SD=AB,則下
列選項(xiàng)中兩異面直線所成夾角大于15的是()
A.BC與SDB.AB與SCC.SB與ADD.AC與SB
11.已知函數(shù)/(工)=486(21+夕)-1(4>0,0</<二),若函數(shù)y=|/(工)|的部分圖象
如圖所示,函數(shù)g(f)=.4si】i(Ar-r),則下列結(jié)論不正確的是()
4P
7F
A.函數(shù)g(.r)的圖象關(guān)于直線丁=一日對(duì)稱
B.函數(shù)g")的圖象關(guān)于點(diǎn)(:.())對(duì)稱
C.將函數(shù)“=/(1)+1的圖象向左平移個(gè)單位長度可得到函數(shù)3,)的圖象
D.函數(shù)川.r)在區(qū)間0,^上的單調(diào)遞減區(qū)間為0.;
第2頁,共16頁
12.阿基米德(公元前287年-公元前212年)是古希臘偉大的物理學(xué)家、數(shù)學(xué)家、天文學(xué)
家,不僅在物理學(xué)方面貢獻(xiàn)巨大,還享有“數(shù)學(xué)之神”的稱號(hào),拋物線上任意兩點(diǎn)A、8處
的切線交于點(diǎn)P,稱為“阿基米德三角形”.已知拋物線C:1=8?/的焦點(diǎn)為F,
過A、B兩點(diǎn)的直線的方程為4/一3//+6=0,關(guān)于“阿基米德三角形"△「小,,下列結(jié)
論正確的是()
39
A.\AB\=—B.PALPB
C.點(diǎn)、P的坐標(biāo)為D.PFLAB
13.在正項(xiàng)等比數(shù)列{”“}中,若"/川=4,則1(嶇2。2+log2aio=.
14.寫出一個(gè)同時(shí)滿足下列條件①0的向量IT.①01=1;②向量才與
了=(1,-1)的夾角。€(0-j)-
15.已知/(工)=工+片里",則函數(shù)/")的極小值為.
16.已知在正四面體「-.43C中,48=3,記以力為直徑的球?yàn)榍颉?,則平面A8C截
球。所得截面的面積為.
17.如圖,在梯形A8CD中,A/3〃C。,點(diǎn)E在邊CD上,NC=12(),3。=24,
Z.CEB=45°.
⑵若AB=7,求sinN4E8.
18.已知數(shù)列{%}滿足支+%+,??+,=亍?
(1)求數(shù)列{明}的通項(xiàng)公式;
⑵對(duì)任意的令“,=|::'"?’;:?,求數(shù)列{鼠}的前2n項(xiàng)和民”.
I2"",n為偶數(shù)
19.如圖,在長方體ABC。一小場中,點(diǎn)E,F分別在44,8場上,
A\D\=A\B\=A\E=BF=1,AAi=3.
第3頁,共16頁
⑴證明:4F〃平面EBQi.
⑵求二面角8-4的余弦值.
20.《中共中央國務(wù)院關(guān)于實(shí)現(xiàn)鞏固拓展脫貧攻堅(jiān)成果同鄉(xiāng)村振興有效銜接的意見》明確提
出,支持脫貧地區(qū)鄉(xiāng)村特色產(chǎn)業(yè)發(fā)展壯大,加快脫貧地區(qū)農(nóng)產(chǎn)品和食品倉儲(chǔ)保鮮、冷鏈物流
設(shè)施建設(shè),支持農(nóng)產(chǎn)品流通企業(yè)、電商、批發(fā)市場與區(qū)域特色產(chǎn)業(yè)精準(zhǔn)對(duì)接.當(dāng)前脫貧地區(qū)相
關(guān)設(shè)施建設(shè)情況如何?怎樣實(shí)現(xiàn)精準(zhǔn)對(duì)接?未來如何進(jìn)一步補(bǔ)齊發(fā)展短板?針對(duì)上述問題,
假定有A、B、C三個(gè)解決方案,通過調(diào)查發(fā)現(xiàn)有:的受調(diào)查者贊成方案A,有:的受調(diào)查者
贊成方案B,有:的受調(diào)查者贊成方案C,現(xiàn)有甲、乙、丙三人獨(dú)立參加投票(以頻率作為概
率).
(1)求甲、乙兩人投票方案不同的概率;
(2)若某人選擇方案A或方案8,則對(duì)應(yīng)方案可獲得2票;選擇方案C,則方案C獲得1票.
設(shè)X是甲、乙、丙三人投票后三個(gè)方案獲得票數(shù)之和,求X的分布列和數(shù)學(xué)期望.
22
21.已知雙曲線C:二_5=1(0>0,6>0)的漸近線方程為“=±8工,過雙曲線C的
a2g
右焦點(diǎn)尸(2.())的直線人與雙曲線C分別交于左、右兩支上的人、8兩點(diǎn).
(1)求雙曲線C的方程.
(2)過原點(diǎn)O作直線%,使得/“//】,且與雙曲線C分別交于左、右兩支上的點(diǎn)M、N.是否
存在定值入,使得?瓦N=A血?若存在,請(qǐng)求出A的值;若不存在,請(qǐng)說明理由.
22.已知函數(shù)/(1)=ar-sinr.
(1)若函數(shù)/")為增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)證明:當(dāng)J〉。時(shí),>2sinj-.
第4頁,共16頁
答案和解析
1.【答案】D
【解析】【分析】
本題考查復(fù)數(shù)的代數(shù)形式的乘除運(yùn)算,屬于基礎(chǔ)題.
根據(jù)復(fù)數(shù)的乘除法直接運(yùn)算即可.
【解答】
解:復(fù)數(shù)空霓=("4即=—3,—4戶=-+3,
i產(chǎn)-1
故選:D.
2.【答案】2
【解析】【分析】
本題考查了全集、補(bǔ)集和子集的定義與應(yīng)用問題,屬于基礎(chǔ)題.
根據(jù)全集、補(bǔ)集和子集的定義,即可得出M、N之間的關(guān)系,從而作出正確的判斷.
【解答】
解:全集U,M,N是U的非空子集,且.UGGN,
所以MDN=0.
故選:A
3.【答案】A
【解析】【分析】
本題考查橢圓的幾何性質(zhì),涉及橢圓的標(biāo)準(zhǔn)方程,注意橢圓的焦點(diǎn)的位置.
根據(jù)題意,分析可得橢圓的標(biāo)準(zhǔn)方程為:“,分析可得a、b、c的值,結(jié)合題意可得
m
=解可得m的值,即可得答案.
【解答】
解:根據(jù)題意,橢圓小/+/=1的焦點(diǎn)在y軸上,
■>X2
則標(biāo)準(zhǔn)方程為:"+T=1,
第5頁,共16頁
解可得m=2,
故選:4
4.【答案】C
【解析】【分析】
本題考查圓臺(tái)的體積,考查直觀想象與數(shù)學(xué)運(yùn)算的數(shù)學(xué)素養(yǎng),屬于基礎(chǔ)題.
根據(jù)圓臺(tái)的體積公式計(jì)算即可.
【解答】
22
解:由題意,得圓臺(tái)的體積為V=;(s'+\^S+S)h=37r-2+公22.丁.42+,r-4)x3=2&r.
J<5
故選:c.
5.【答案】8
【解析】【分析】
本題考查了同角三角函數(shù)的基本關(guān)系,二倍角公式,屬于基礎(chǔ)題.
先化簡,再分子分母同時(shí)除以code,轉(zhuǎn)化為正切計(jì)算即可.
【解答】
解:由tana=3,
sin2n_2sinacosn_2tana_2x3_2
sin2asin2atan2a323'
故選:B.
6.【答案】D
【解析】【分析】
本題考查了對(duì)數(shù)的運(yùn)算及閱讀能力及進(jìn)行簡單的推理,屬于基礎(chǔ)題.
由對(duì)數(shù)的運(yùn)算得:1"10=卷,再結(jié)合題意及進(jìn)行簡單的合情推理得:
5
MlO)*:inJ=2x10*xlne,即可得解.
''In10,
【解答】
A”,1051052X10'
解:由通意可知:"(10')"iw=riin=1in,
''In10"5hi10In10
由對(duì)數(shù)的性質(zhì)可得:In10=J,
Ige
日口/S八1051052x104
即"(1°)"調(diào)=而曠Fib
=2x10*xhie?2x101x0.4343=2x4343=8686.
故選。.
7.【答案】A
【解析】【分析】
第6頁,共16頁
本題考查二項(xiàng)展開式的特定項(xiàng),屬于基礎(chǔ)題.
由一10+:—2,=一如生E,再利用(工-1)'展開式的通項(xiàng)公式即可求解.
【解答】
(7一1)8展開式的通項(xiàng)為。+1=(-1)‘仁工''(r=0.1,2,..?,8),
令8-r=3,得,,=5,(—1)5方=一56,
所以展開式中常數(shù)項(xiàng)是56.
8.【答案】B
【解析】【分析】
本題考查導(dǎo)數(shù)的幾何意義和利用導(dǎo)數(shù)求最值,屬于一般題.
1Q
設(shè)切點(diǎn)、為P(t」⑴),利用導(dǎo)數(shù)的幾何意義求出切線方程,得,"+2”=9+211“一;一2,構(gòu)造
13
g(t)=^+2\nt---2,利用導(dǎo)數(shù)即可求解.
【解答】
解:設(shè)切點(diǎn)為口匕/⑴),ra)=;+(,
曲線"=/(X)在切點(diǎn)尸⑴)處的切線的斜率為;+,,切線方程為y-f(t)=r(f)(T-t),
整理得V=(-+”)上+h"-工-1,
i3
所以in4-2〃=產(chǎn)+2In/—y—2.
令。⑴=三+21n,一7—2,則"⑺=2'十?——?.
tt
當(dāng)0<f<]時(shí),g'(t)<0,g?)單調(diào)遞減,
當(dāng)f>g時(shí),ff'(t)>(),g?)單調(diào)遞增?
故。⑴min=9(;)=-21n2-4,
則m+2,,的取值范圍[-2In2-4,+oo),
故選B
9.【答案】ABC
【解析】【分析】
本題考查頻率分布直方圖,考查獲取信息解決實(shí)際問題,考查數(shù)據(jù)分析,屬基礎(chǔ)題.
根據(jù)頻率分布直方圖解得a,逐項(xiàng)分析即可.
第7頁,共16頁
【解答】
解:本次成績不低于80分的人數(shù)占比為(0.050+0.025)x10=0.75=75%,故A正確;
因?yàn)?0(a+0.020+0.050+0.025)=1,所以"=0.005,
即本次成績低于70分的人數(shù)的占比為1(M=5%,故8正確;
本次成績的平均分為10x(0.005x65+0.02x75+0.05x85+0.025x95)=84.5,故C正確;
成績位于「0.90)的頻率為(0.020+0.050)x10=0.7,因?yàn)?.7<0.3x3,故。錯(cuò)誤.
故選ABC.
10.【答案】ACD
【解析】【分析】
本題主要考查了異面直線的夾角,通過平移的方法求異面直線的夾角及利用判定定理證明異面直
線垂直的應(yīng)用,
根據(jù)已知及線面垂直的判定,異面直線所成角的計(jì)算,可知正確是哪幾個(gè)
【解答】
解:對(duì)于A,因?yàn)镾OI底面八BCD,平面A8CO,
所以則8c與5。所成角的大小為乂),故A正確,
對(duì)于8,因?yàn)榈酌婷?CD是正方形,所以48〃C7),
則AB與5c所成的角為NSCO-45',故B錯(cuò)誤,
對(duì)于C,因?yàn)?4。〃“。.所以58與4。所成的角為乙SBC,
sc
由題知tanNSZ?C=衍=伍>1,所以NS8C>』5’,故C正確,
對(duì)于。,因?yàn)镾"_L底面A8CD,.4CU平面A8CD,
所以SOIAC,因?yàn)锳8CD是正方形,所以
因?yàn)閟onBOI),S75u平面SB。,平面S8D所以AC'L平面S8D,
所以.4C.S/?,則AC與58所成角的大小為W,故。正確.
1L【答案】A8D
【解析】【分析】
本題考查三角函數(shù)的圖象與性質(zhì),要求考生了解函數(shù)圖象的變換,了解函數(shù)
)=/1<,0?(3l+6+3中各參數(shù)對(duì)圖象的影響,理解正弦函數(shù)與余弦函數(shù)的單調(diào)性與對(duì)稱性
【解答】
解:根據(jù)“=1/")|的圖象可知.4=2,當(dāng)r=0時(shí),滿足/(0)=-2,
則2cos3-]=-2,即cos胃=,
27r
因?yàn)?)<,<?r,所以杉=可,gQ)=2sin
第8頁,共16頁
7T
對(duì)于A項(xiàng),當(dāng)工二一不時(shí),-1,故9(.r)的圖象不關(guān)于直線丁=一力對(duì)稱,A項(xiàng)錯(cuò)誤;
對(duì)于8項(xiàng),當(dāng)/=;時(shí),g瓜、故9")的圖象不關(guān)于點(diǎn)看0)對(duì)稱,8項(xiàng)錯(cuò)誤;
對(duì)于C項(xiàng),因?yàn)閂=/")+1=2cos(21+寺)=2sinp2x27萬r、3TF1、.
+W)-7T=2sm
32
2(+)-=2sin2x-
將其圖象向左平移12個(gè)單位長度可得函數(shù)"2sin[I^T](T)的圖象,
故c項(xiàng)正確;
八27r27r7T27r2TT7T
對(duì)于。項(xiàng),因?yàn)?。?所以當(dāng)2l一二e
,所以21一w€T3T,-2,
即工€0展時(shí),川,)單調(diào)遞減,。項(xiàng)錯(cuò)誤.
12.【答案】ABD
【解析】【分析】
本題考查直線與拋物線的位置關(guān)系,要求考生了解拋物線的定義,幾何圖形和標(biāo)準(zhǔn)方程,知道它
的簡單幾何性質(zhì).
聯(lián)立拋物線與雙曲線方程利用根與系數(shù)的關(guān)系可求得八〃的值可判斷A;求得直線PA和P8的
斜率可得到直線PA和PB的方程可判斷B;聯(lián)立兩直線方程可得到點(diǎn)P的坐標(biāo)可判斷C;由點(diǎn)P
和點(diǎn)F坐標(biāo)可得到直線PF的斜率,由點(diǎn)八和點(diǎn)B坐標(biāo)可得到直線A8的斜率,可判斷/).
x2=_
【解答】解:設(shè)八出,加),/>'/」用,聯(lián)立《4f+6=。,可得3/一83-48=。,
解得T=或工=—,不妨設(shè)TO=——?則〃】=6,Z/2=Q,
33d
(4《+色色尸+(6一2)?=?,A項(xiàng)正確;
333
又因?yàn)椤彼?/=;[故直線PA的斜率為±@=逐,
814
直線PA的方程為〃一6>/3(J-iv^i),
即“=鹵工一6,同理可得直線P8的方程為v:—熠一
3
/n
A-/-=-^xA/3=-1.所以P4_LPB,8項(xiàng)正確;
J
y=\/3x—6_4A/3
聯(lián)立<瓜工21可得,3,故點(diǎn)P的坐標(biāo)為-2,C項(xiàng)錯(cuò)誤;
y33!/=-2
第9頁,共16頁
易知點(diǎn)F的坐標(biāo)為(0,2),4\/3,LAB=—x—1.所以
0~~3-3
PF1AB,D項(xiàng)正確.
13.【答案】2
【解析】【分析】
本題考查等比數(shù)列性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.
由等比數(shù)列的性質(zhì)可得"Wx=oxno=4,由對(duì)數(shù)的運(yùn)算可得要求的式子=log2fl2flln,代入計(jì)算
對(duì)數(shù)的值即可.
【解答】
解:由題意可得log2a2+log.aio=I<?R2(?2?IO)=1唯(四你)=log24=2.
故答案為:2.
6+v/14VTI-6
14.【答案】H=(答案不唯一)
1()1()
【解析】【分析】
本題考查向量的夾角,向量的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題.
設(shè)才=(rV),得到C08O=三蟆I,令一片:求解即可,
【解答】
X-W
解:設(shè)a=(Z,'),得到cosa=-^-=1,
人6
令J-!/=W,
5
6-v/n
10
聯(lián)立<
6+\/14,
『-W-
取萬=
15.【答案】一
【解析】【分析】
本題考查函數(shù)的極值,要求考生會(huì)用導(dǎo)數(shù)求函數(shù)的極小值.
對(duì)/")求導(dǎo),根據(jù)單調(diào)性判斷極小值即可.
【解答】
解:由/")=丁+”°1+15,得/'(r)=Z+”?+3/,令/=(),
第10頁,共16頁
得/0)=/'(,+3解得八())=3,所以〃工)=(l+2卜‘,/'")="+3)e。
令/'(1)=0,得r=-3,
則函數(shù)/")在(-8,-3)上單調(diào)遞減,在(-3,+oo)上單調(diào)遞增,
所以當(dāng)r=-3時(shí),/(丁)取得極小值,且極小值為〃-3)=—。
16.【答案】1
【解析】【分析】
本題考查平面與球的截面問題,要求考生了解正四面體與球的特征,會(huì)根據(jù)空間中的垂直關(guān)系求
出截面圓的直徑.
根據(jù)題目條件得到截面為圓,并得到直徑AE的大小即可求解.
【解答】
解:如圖,取BC的中點(diǎn)D,連接AD,過點(diǎn)P作PK1平面A8C于點(diǎn)E,
由正四面體。一.48「的特征可知,點(diǎn)E為人。上靠近點(diǎn)。的三等分點(diǎn).
因?yàn)镻A為球。的直徑,QZ?,平面A8C,ZAEP9(),
所以平面A8C截球。所得截面的直徑為
因?yàn)?8=3,所以4E=2A0=2X這=e,
332
故平面ABC截以PA為直徑的球所得截面面積為7Fx
17.【答案】解:(1)在aCEB中,
一,0CBEB
由正弦定理可付7,定石=[71,
smZCEBsmZc
26_EB
sin45°sin120°,
BE=3y/2,
由余弦定理可得EB2=EC'2+CB1-2ECCH-cos120°,
解得CE=3-瓜
第11頁,共16頁
(2)VAB//CD,
:./CEB=/.ABE=45°,
又因?yàn)楣?=7,BE=3>/2.
在AAEB中,由余弦定理可得
EA1=EB24-AB2-2EBABcos45。
=(3>/2)2+72-2X3\/2
=25,
所以£4=5,
_25+18-49__\/2
~2x5x3A/2-一而‘
又因?yàn)閟in2Z.AEB+cos2/.AEB=1,
所以sinN.4E8=92.
【解析】本題考查正弦定理和余弦定理.
(1)在中,由正弦定理可解得BE,再根據(jù)余弦定理解得CE;
(2)根據(jù)4B〃C??傻肗CEB=/ABE,在A4EB中,用余弦定理解得EA,再根據(jù)余弦定理
可解得cos乙4EB=-4,根據(jù)31?/4£3+862/4七8=1,得出sin/AEB的結(jié)果.
18.【答案】解:(1)當(dāng)"=1時(shí),"I=1:
,,、,一(12ar?-iri-1
當(dāng)"》2時(shí),可付5+%+—.+布=不:7r
71—12-n
當(dāng)〃=1時(shí),川=2-1=1也符合,故"”=2-";
2—n.〃為奇數(shù)
⑵由⑴知b"=,
22-n,n為偶數(shù)
22
S2M=[1+(-1)+(-3)+…+2-(2n-1)]+(2°+2-2+…+2-")
(1+3—2n)n1\4/
=(2-n)n+
第12頁,共16頁
【解析】本題考查數(shù)列的通項(xiàng)與求和,要求考生掌握求常見數(shù)列的通項(xiàng)的方法,能根據(jù)數(shù)列征選
取恰當(dāng)?shù)姆椒ㄇ蠛?,屬于??碱}.
(1)分”=1和〃》2兩種情況求解即可;
(2)利用奇偶并項(xiàng)求和法求和即可.
19.【答案】解:(1)證明:因?yàn)?E=3F=1,
所以AE=BiF=2,
因?yàn)?4E〃F8i,所以四邊形.4尸場E為平行四邊形,
所以
因?yàn)槠矫鍱BiOi,平面E310,
所以AF〃平面E31";
(2)以。為坐標(biāo)原點(diǎn),DA,DC,所在的直線分別為x,y,z軸,
建立空間直角坐標(biāo)系O-J7/2,
則E(l,0.2),4(1,0,3),9(0,0,3),01(1,1,3),
D^=(l.().-1),7^=(1.1.0).
設(shè)平面EBiQ的法向量為M=(T,弘z),
InlAJD\S(x—z=0(x=z
令J=l,得1/=一1,2=1,所以"=(1.一1.1).
易知W=(0,1,0)為平面的一個(gè)法向量
TT"亓-16
cos<m.n>=—Iii=,=一一,
阿卜|殖瓜3
由圖可知,二面角為銳角,
故二面角的余弦值為
3
【解析】本題考查線面平行的判定,空間向量與二面角等基礎(chǔ)知識(shí),考查空間想象能力,推理論
證能力,運(yùn)算求解能力,數(shù)形結(jié)合思想等,屬于中檔題.
(1)證出4F〃/31,根據(jù)線面平行的判定定理即可證出結(jié)論;
(2)以。為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系。一”/z,進(jìn)而得到平面向。1E的一個(gè)法向量為后,平
面。1ED的一個(gè)法向量為詞即可,通過法向量求出二面角的余弦值.
20.【答案】解:(1)因?yàn)榧住⒁覂扇送镀狈桨赶嗤母怕蕿?=
2233bbio
所以甲、乙兩人投票方案不相同的概率為1-1=2.
Io1O
(2)X的所有可能取值為3、4、5、6,則
第13頁,共16頁
P(X=3)=鏟=奈,P(X=4)=Cix(l)2(l-l)=^=A,
P(X=5)=C;x如一,端璃,Q(X=6)=C;(「》3嗡,
所以X的分布列為:
X3456
1525125
P
216727221()
故E(X)=3x[+44+5嚼+6乂熊=/
【解析】本題考查離散型隨機(jī)變量的分布列與均值、相互獨(dú)立事件的概率乘法公式、對(duì)立事件的
概率公式,屬于中檔題.
(1)先求出甲乙投票方案相同的概率,再利用對(duì)立事件的概率公式即可求出不相同的概率.
(2)確定X的所有可能的取值,求出X的所有可能的取值概率,得到分布列,由此即可求出X的
數(shù)學(xué)期望.
!8,解得
21.【答案】解:(1)由題意得
bi2+a2=4
所以雙曲線C的方程為12一(
(2)存在定值小,使得.而^=》血,
?.?J7N與加同向,.?.A=雪1,
I福
F(2,0),易知人的斜率不為0,設(shè)h:/=句+2,
工=fy+2
由(消去x整理得:(3產(chǎn)-1/+皿+9=。,
3
由交雙曲線C左右兩支于八、B兩點(diǎn),
3?-1和
有《(⑵戶一36(3產(chǎn)—I)=36(產(chǎn)+1)>0,
X\X2<0
3產(chǎn)-1/0
即c、,C、-(3^+4)c,則3i一1>0,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 郵政快遞伸縮縫安裝施工協(xié)議
- 室外廣告拍攝現(xiàn)場制片協(xié)議
- 合同負(fù)債在施工企業(yè)中的作用
- 水上運(yùn)動(dòng)賽事鉆深水井施工合同
- 雜志社采暖設(shè)施安裝協(xié)議
- 幼教科研機(jī)構(gòu)聘用合同范本
- 機(jī)場通風(fēng)空調(diào)系統(tǒng)安裝協(xié)議
- 農(nóng)產(chǎn)品質(zhì)檢員招聘合同范本
- 裝飾砂漿合同范例版
- 外甥聘用合同范例范例
- 網(wǎng)絡(luò)運(yùn)行以及維護(hù)
- 土木工程材料-說課
- 人教版道德與法治小學(xué)四年級(jí)上冊(cè)知識(shí)點(diǎn)匯總
- 110KV高壓線路檢修方案
- 消防救援-水域救援-冰域救援技術(shù)課件
- 課程設(shè)計(jì)列車變頻空挪用直流電源系統(tǒng)的設(shè)計(jì)
- 全貼合OGS,G,GFF等介紹
- 物業(yè)保潔新技術(shù)新設(shè)備的應(yīng)用
- 外科換藥操作評(píng)分標(biāo)準(zhǔn)
- 師生管理制度
- 【旅游學(xué)概論課件】旅游資源
評(píng)論
0/150
提交評(píng)論