![2023-2024學(xué)年湖南省株洲市株洲縣中考數(shù)學(xué)押題試卷含解析_第1頁](http://file4.renrendoc.com/view5/M00/2B/16/wKhkGGYDUiKAJNymAALaBhrq-Q8655.jpg)
![2023-2024學(xué)年湖南省株洲市株洲縣中考數(shù)學(xué)押題試卷含解析_第2頁](http://file4.renrendoc.com/view5/M00/2B/16/wKhkGGYDUiKAJNymAALaBhrq-Q86552.jpg)
![2023-2024學(xué)年湖南省株洲市株洲縣中考數(shù)學(xué)押題試卷含解析_第3頁](http://file4.renrendoc.com/view5/M00/2B/16/wKhkGGYDUiKAJNymAALaBhrq-Q86553.jpg)
![2023-2024學(xué)年湖南省株洲市株洲縣中考數(shù)學(xué)押題試卷含解析_第4頁](http://file4.renrendoc.com/view5/M00/2B/16/wKhkGGYDUiKAJNymAALaBhrq-Q86554.jpg)
![2023-2024學(xué)年湖南省株洲市株洲縣中考數(shù)學(xué)押題試卷含解析_第5頁](http://file4.renrendoc.com/view5/M00/2B/16/wKhkGGYDUiKAJNymAALaBhrq-Q86555.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023-2024學(xué)年湖南省株洲市株洲縣中考數(shù)學(xué)押題試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.為弘揚(yáng)傳統(tǒng)文化,某校初二年級(jí)舉辦傳統(tǒng)文化進(jìn)校園朗誦大賽,小明同學(xué)根據(jù)比賽中九位評(píng)委所給的某位參賽選手的分?jǐn)?shù),制作了一個(gè)表格,如果去掉一個(gè)最高分和一個(gè)最低分,則表中數(shù)據(jù)一定不發(fā)生變化的是()中位數(shù)眾數(shù)平均數(shù)方差9.29.39.10.3A.中位數(shù) B.眾數(shù) C.平均數(shù) D.方差2.如圖,兩個(gè)轉(zhuǎn)盤A,B都被分成了3個(gè)全等的扇形,在每一扇形內(nèi)均標(biāo)有不同的自然數(shù),固定指針,同時(shí)轉(zhuǎn)動(dòng)轉(zhuǎn)盤A,B,兩個(gè)轉(zhuǎn)盤停止后觀察兩個(gè)指針?biāo)干刃蝺?nèi)的數(shù)字(若指針停在扇形的邊線上,當(dāng)作指向上邊的扇形).小明每轉(zhuǎn)動(dòng)一次就記錄數(shù)據(jù),并算出兩數(shù)之和,其中“和為7”的頻數(shù)及頻率如下表:轉(zhuǎn)盤總次數(shù)10203050100150180240330450“和為7”出現(xiàn)頻數(shù)27101630465981110150“和為7”出現(xiàn)頻率0.200.350.330.320.300.300.330.340.330.33如果實(shí)驗(yàn)繼續(xù)進(jìn)行下去,根據(jù)上表數(shù)據(jù),出現(xiàn)“和為7”的頻率將穩(wěn)定在它的概率附近,估計(jì)出現(xiàn)“和為7”的概率為()A.0.33 B.0.34 C.0.20 D.0.353.在如圖所示的正方形網(wǎng)格中,網(wǎng)格線的交點(diǎn)稱為格點(diǎn),已知A、B是兩格點(diǎn),如果C也是圖中的格點(diǎn),且使得△ABC為等腰直角三角形,則這樣的點(diǎn)C有()A.6個(gè) B.7個(gè) C.8個(gè) D.9個(gè)4.隨機(jī)擲一枚均勻的硬幣兩次,至少有一次正面朝上的概率為()A. B. C. D.5.統(tǒng)計(jì)學(xué)校排球隊(duì)員的年齡,發(fā)現(xiàn)有12、13、14、15等四種年齡,統(tǒng)計(jì)結(jié)果如下表:年齡(歲)12131415人數(shù)(個(gè))2468根據(jù)表中信息可以判斷該排球隊(duì)員年齡的平均數(shù)、眾數(shù)、中位數(shù)分別為()A.13、15、14 B.14、15、14 C.13.5、15、14 D.15、15、156.計(jì)算的值為()A. B.-4 C. D.-27.已知正方形ABCD的邊長為4cm,動(dòng)點(diǎn)P從A出發(fā),沿AD邊以1cm/s的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從B出發(fā),沿BC,CD邊以2cm/s的速度運(yùn)動(dòng),點(diǎn)P,Q同時(shí)出發(fā),運(yùn)動(dòng)到點(diǎn)D均停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為x(秒),△BPQ的面積為y(cm2),則y與x之間的函數(shù)圖象大致是()A. B. C. D.8.一條數(shù)學(xué)信息在一周內(nèi)被轉(zhuǎn)發(fā)了2180000次,將數(shù)據(jù)2180000用科學(xué)記數(shù)法表示為()A.2.18×106B.2.18×105C.21.8×106D.21.8×1059.完全相同的6個(gè)小矩形如圖所示放置,形成了一個(gè)長、寬分別為n、m的大矩形,則圖中陰影部分的周長是()A.6(m﹣n) B.3(m+n) C.4n D.4m10.直線y=x+4與x軸、y軸分別交于點(diǎn)A和點(diǎn)B,點(diǎn)C,D分別為線段AB,OB的中點(diǎn),點(diǎn)P為OA上一動(dòng)點(diǎn),PC+PD值最小時(shí)點(diǎn)P的坐標(biāo)為()A.(-3,0) B.(-6,0) C.(-,0) D.(-,0)二、填空題(共7小題,每小題3分,滿分21分)11.化簡(jiǎn):a+1+a(a+1)+a(a+1)2+…+a(a+1)99=________.12.如圖,直線l經(jīng)過⊙O的圓心O,與⊙O交于A、B兩點(diǎn),點(diǎn)C在⊙O上,∠AOC=30°,點(diǎn)P是直線l上的一個(gè)動(dòng)點(diǎn)(與圓心O不重合),直線CP與⊙O相交于點(diǎn)Q,且PQ=OQ,則滿足條件的∠OCP的大小為_______.13.一個(gè)多邊形的內(nèi)角和比它的外角和的3倍少180°,則這個(gè)多邊形的邊數(shù)是______.14.在正方形中,,點(diǎn)在對(duì)角線上運(yùn)動(dòng),連接,過點(diǎn)作,交直線于點(diǎn)(點(diǎn)不與點(diǎn)重合),連接,設(shè),,則和之間的關(guān)系是__________(用含的代數(shù)式表示).15.某校九年級(jí)(1)班40名同學(xué)中,14歲的有1人,15歲的有21人,16歲的有16人,17歲的有2人,則這個(gè)班同學(xué)年齡的中位數(shù)是___歲.16.對(duì)于函數(shù)y=,當(dāng)函數(shù)y﹤-3時(shí),自變量x的取值范圍是____________.17.21世紀(jì)納米技術(shù)將被廣泛應(yīng)用.納米是長度的度量單位,1納米=0.000000001米,則12納米用科學(xué)記數(shù)法表示為_______米.三、解答題(共7小題,滿分69分)18.(10分)某工廠計(jì)劃生產(chǎn),兩種產(chǎn)品共10件,其生產(chǎn)成本和利潤如下表.種產(chǎn)品種產(chǎn)品成本(萬元件)25利潤(萬元件)13(1)若工廠計(jì)劃獲利14萬元,問,兩種產(chǎn)品應(yīng)分別生產(chǎn)多少件?(2)若工廠計(jì)劃投入資金不多于44萬元,且獲利多于22萬元,問工廠有哪幾種生產(chǎn)方案?19.(5分)自學(xué)下面材料后,解答問題。分母中含有未知數(shù)的不等式叫分式不等式。如:<0等。那么如何求出它們的解集呢?根據(jù)我們學(xué)過的有理數(shù)除法法則可知:兩數(shù)相除,同號(hào)得正,異號(hào)得負(fù)。其字母表達(dá)式為:若a>0,b>0,則>0;若a<0,b<0,則>0;若a>0,b<0,則<0;若a<0,b>0,則<0.反之:若>0,則或,(1)若<0,則___或___.(2)根據(jù)上述規(guī)律,求不等式>0的解集.20.(8分)計(jì)算:﹣12+﹣(3.14﹣π)0﹣|1﹣|.21.(10分)某商場(chǎng)經(jīng)營某種品牌的童裝,購進(jìn)時(shí)的單價(jià)是60元.根據(jù)市場(chǎng)調(diào)查,在一段時(shí)間內(nèi),銷售單價(jià)是80元時(shí),銷售量是200件,而銷售單價(jià)每降低1元,就可多售出20件.寫出銷售量y件與銷售單價(jià)x元之間的函數(shù)關(guān)系式;寫出銷售該品牌童裝獲得的利潤w元與銷售單價(jià)x元之間的函數(shù)關(guān)系式;若童裝廠規(guī)定該品牌童裝銷售單價(jià)不低于76元,且商場(chǎng)要完成不少于240件的銷售任務(wù),則商場(chǎng)銷售該品牌童裝獲得的最大利潤是多少?22.(10分)計(jì)算下列各題:(1)tan45°?sin60°?cos30°;(2)sin230°+sin45°?tan30°.23.(12分)化簡(jiǎn):(x+7)(x-6)-(x-2)(x+1)24.(14分)一只不透明的袋子中裝有2個(gè)白球和1個(gè)紅球,這些球除顏色外都相同,攪勻后從中任意摸出1個(gè)球(不放回),再從余下的2個(gè)球中任意摸出1個(gè)球.用樹狀圖或列表等方法列出所有可能出現(xiàn)的結(jié)果;求兩次摸到的球的顏色不同的概率.
參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、A【解析】
根據(jù)中位數(shù):將一組數(shù)據(jù)按照從小到大(或從大到?。┑捻樞蚺帕校绻麛?shù)據(jù)的個(gè)數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù);如果這組數(shù)據(jù)的個(gè)數(shù)是偶數(shù),則中間兩個(gè)數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù)可得答案.【詳解】如果去掉一個(gè)最高分和一個(gè)最低分,則表中數(shù)據(jù)一定不發(fā)生變化的是中位數(shù).故選A.點(diǎn)睛:本題主要考查了中位數(shù),關(guān)鍵是掌握中位數(shù)定義.2、A【解析】
根據(jù)上表數(shù)據(jù),出現(xiàn)“和為7”的頻率將穩(wěn)定在它的概率附近,估計(jì)出現(xiàn)“和為7”的概率即可.【詳解】由表中數(shù)據(jù)可知,出現(xiàn)“和為7”的概率為0.33.故選A.【點(diǎn)睛】本題考查了利用頻率估計(jì)概率:大量重復(fù)實(shí)驗(yàn)時(shí),事件發(fā)生的頻率在某個(gè)固定位置左右擺動(dòng),并且擺動(dòng)的幅度越來越小,可以用頻率的集中趨勢(shì)來估計(jì)概率,這個(gè)固定的近似值就是這個(gè)事件的概率.用頻率估計(jì)概率得到的是近似值,隨實(shí)驗(yàn)次數(shù)的增多,值越來越精確.3、A【解析】
根據(jù)題意,結(jié)合圖形,分兩種情況討論:①AB為等腰△ABC底邊;②AB為等腰△ABC其中的一條腰.【詳解】如圖:分情況討論:①AB為等腰直角△ABC底邊時(shí),符合條件的C點(diǎn)有2個(gè);②AB為等腰直角△ABC其中的一條腰時(shí),符合條件的C點(diǎn)有4個(gè).故選:C.【點(diǎn)睛】本題考查了等腰三角形的判定;解答本題關(guān)鍵是根據(jù)題意,畫出符合實(shí)際條件的圖形,再利用數(shù)學(xué)知識(shí)來求解.?dāng)?shù)形結(jié)合的思想是數(shù)學(xué)解題中很重要的解題思想.4、D【解析】
先求出兩次擲一枚硬幣落地后朝上的面的所有情況,再根據(jù)概率公式求解.【詳解】隨機(jī)擲一枚均勻的硬幣兩次,落地后情況如下:至少有一次正面朝上的概率是,故選:D.【點(diǎn)睛】本題考查了隨機(jī)事件的概率,如果一個(gè)事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率.5、B【解析】
根據(jù)加權(quán)平均數(shù)、眾數(shù)、中位數(shù)的計(jì)算方法求解即可.【詳解】,15出現(xiàn)了8次,出現(xiàn)的次數(shù)最多,故眾數(shù)是15,從小到大排列后,排在10、11兩個(gè)位置的數(shù)是14,14,故中位數(shù)是14.故選B.【點(diǎn)睛】本題考查了平均數(shù)、眾數(shù)與中位數(shù)的意義.?dāng)?shù)據(jù)x1、x2、……、xn的加權(quán)平均數(shù):(其中w1、w2、……、wn分別為x1、x2、……、xn的權(quán)數(shù)).一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù).中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻?,最中間的那個(gè)數(shù)(或最中間兩個(gè)數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù).6、C【解析】
根據(jù)二次根式的運(yùn)算法則即可求出答案.【詳解】原式=-3=-2,故選C.【點(diǎn)睛】本題考查二次根式的運(yùn)算,解題的關(guān)鍵是熟練運(yùn)用二次根式的運(yùn)算法則,本題屬于基礎(chǔ)題型.7、B【解析】
根據(jù)題意,Q點(diǎn)分別在BC、CD上運(yùn)動(dòng)時(shí),形成不同的三角形,分別用x表示即可.【詳解】(1)當(dāng)0≤x≤2時(shí),BQ=2x當(dāng)2≤x≤4時(shí),如下圖由上可知故選:B.【點(diǎn)睛】本題是雙動(dòng)點(diǎn)問題,解答時(shí)要注意討論動(dòng)點(diǎn)在臨界兩側(cè)時(shí)形成的不同圖形,并要根據(jù)圖形列出函數(shù)關(guān)系式.8、A【解析】【分析】科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).【詳解】2180000的小數(shù)點(diǎn)向左移動(dòng)6位得到2.18,所以2180000用科學(xué)記數(shù)法表示為2.18×106,故選A.【點(diǎn)睛】本題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.9、D【解析】
解:設(shè)小長方形的寬為a,長為b,則有b=n-3a,陰影部分的周長:2(m-b)+2(m-3a)+2n=2m-2b+2m-6a+2n=4m-2(n-3a)-6a+2n=4m-2n+6a-6a+2n=4m.故選D.10、C【解析】
作點(diǎn)D關(guān)于x軸的對(duì)稱點(diǎn)D′,連接CD′交x軸于點(diǎn)P,此時(shí)PC+PD值最小,如圖所示.直線y=x+4與x軸、y軸的交點(diǎn)坐標(biāo)為A(﹣6,0)和點(diǎn)B(0,4),因點(diǎn)C、D分別為線段AB、OB的中點(diǎn),可得點(diǎn)C(﹣3,1),點(diǎn)D(0,1).再由點(diǎn)D′和點(diǎn)D關(guān)于x軸對(duì)稱,可知點(diǎn)D′的坐標(biāo)為(0,﹣1).設(shè)直線CD′的解析式為y=kx+b,直線CD′過點(diǎn)C(﹣3,1),D′(0,﹣1),所以,解得:,即可得直線CD′的解析式為y=﹣x﹣1.令y=﹣x﹣1中y=0,則0=﹣x﹣1,解得:x=﹣,所以點(diǎn)P的坐標(biāo)為(﹣,0).故答案選C.考點(diǎn):一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征;軸對(duì)稱-最短路線問題.二、填空題(共7小題,每小題3分,滿分21分)11、(a+1)1.【解析】
原式提取公因式,計(jì)算即可得到結(jié)果.【詳解】原式=(a+1)[1+a+a(a+1)+a(a+1)2+…+a(a+1)98],
=(a+1)2[1+a+a(a+1)+a(a+1)2+…+a(a+1)97],
=(a+1)3[1+a+a(a+1)+a(a+1)2+…+a(a+1)96],
=…,
=(a+1)1.
故答案是:(a+1)1.【點(diǎn)睛】考查了因式分解-提公因式法,熟練掌握提取公因式的方法是解本題的關(guān)鍵.12、40°【解析】:在△QOC中,OC=OQ,∴∠OQC=∠OCQ,在△OPQ中,QP=QO,∴∠QOP=∠QPO,又∵∠QPO=∠OCQ+∠AOC,∠AOC=30°,∠QOP+∠QPO+∠OQC=180°,∴3∠OCP=120°,∴∠OCP=40°13、7【解析】根據(jù)多邊形內(nèi)角和公式得:(n-2).得:14、或【解析】
當(dāng)F在邊AB上時(shí),如圖1作輔助線,先證明≌,得,,根據(jù)正切的定義表示即可;當(dāng)F在BA的延長線上時(shí),如圖2,同理可得:≌,表示AF的長,同理可得結(jié)論.【詳解】解:分兩種情況:
當(dāng)F在邊AB上時(shí),如圖1,
過E作,交AB于G,交DC于H,
四邊形ABCD是正方形,
,,,
,,
,
,
≌,
,
,
,
中,,
即;
當(dāng)F在BA的延長線上時(shí),如圖2,
同理可得:≌,
,
,
,
中,.【點(diǎn)睛】本題考查了正方形的性質(zhì)、三角形全等的性質(zhì)和判定、三角函數(shù)等知識(shí),熟練掌握正方形中輔助線的作法是關(guān)鍵,并注意F在直線AB上,分類討論.15、1.【解析】
根據(jù)中位數(shù)的定義找出第20和21個(gè)數(shù)的平均數(shù),即可得出答案.【詳解】解:∵該班有40名同學(xué),∴這個(gè)班同學(xué)年齡的中位數(shù)是第20和21個(gè)數(shù)的平均數(shù).∵14歲的有1人,1歲的有21人,∴這個(gè)班同學(xué)年齡的中位數(shù)是1歲.【點(diǎn)睛】此題考查了中位數(shù),中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻螅钪虚g的那個(gè)數(shù)(最中間兩個(gè)數(shù)的平均數(shù)),熟練掌握中位數(shù)的定義是本題的關(guān)鍵.16、-<x<0【解析】
根據(jù)反比例函數(shù)的性質(zhì):y隨x的增大而減小去解答.【詳解】解:函數(shù)y=中,y隨x的增大而減小,當(dāng)函數(shù)y﹤-3時(shí)又函數(shù)y=中,故答案為:-<x<0.【點(diǎn)睛】此題重點(diǎn)考察學(xué)生對(duì)反比例函數(shù)性質(zhì)的理解,熟練掌握反比例函數(shù)性質(zhì)是解題的關(guān)鍵.17、1.2×10﹣1.【解析】
絕對(duì)值小于1的正數(shù)也可以利用科學(xué)記數(shù)法表示,一般形式為a×10?n,與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負(fù)指數(shù)冪,指數(shù)由原數(shù)左邊起第一個(gè)不為零的數(shù)字前面的0的個(gè)數(shù)所決定.【詳解】解:12納米=12×0.000000001米=1.2×10?1米.故答案為1.2×10?1.【點(diǎn)睛】本題考查用科學(xué)記數(shù)法表示較小的數(shù),一般形式為a×10?n,其中1≤|a|<10,n為由原數(shù)左邊起第一個(gè)不為零的數(shù)字前面的0的個(gè)數(shù)所決定.三、解答題(共7小題,滿分69分)18、(1)生產(chǎn)產(chǎn)品8件,生產(chǎn)產(chǎn)品2件;(2)有兩種方案:方案①,種產(chǎn)品2件,則種產(chǎn)品8件;方案②,種產(chǎn)品3件,則種產(chǎn)品7件.【解析】
(1)設(shè)生產(chǎn)種產(chǎn)品件,則生產(chǎn)種產(chǎn)品件,根據(jù)“工廠計(jì)劃獲利14萬元”列出方程即可得出結(jié)論;(2)設(shè)生產(chǎn)產(chǎn)品件,則生產(chǎn)產(chǎn)品件,根據(jù)題意,列出一元一次不等式組,求出y的取值范圍,即可求出方案.【詳解】解:(1)設(shè)生產(chǎn)種產(chǎn)品件,則生產(chǎn)種產(chǎn)品件,依題意得:,解得:,則,答:生產(chǎn)產(chǎn)品8件,生產(chǎn)產(chǎn)品2件;(2)設(shè)生產(chǎn)產(chǎn)品件,則生產(chǎn)產(chǎn)品件,解得:.因?yàn)闉檎麛?shù),故或3;答:共有兩種方案:方案①,種產(chǎn)品2件,則種產(chǎn)品8件;方案②,種產(chǎn)品3件,則種產(chǎn)品7件.【點(diǎn)睛】此題考查的是一元一次方程的應(yīng)用和一元一次不等式組的應(yīng)用,掌握實(shí)際問題中的等量關(guān)系和不等關(guān)系是解決此題的關(guān)鍵.19、(1)或;(2)x>2或x<?1.【解析】
(1)根據(jù)兩數(shù)相除,異號(hào)得負(fù)解答;(2)先根據(jù)同號(hào)得正把不等式轉(zhuǎn)化成不等式組,然后根據(jù)一元一次不等式組的解法求解即可.【詳解】(1)若>0,則或;故答案為:或;(2)由上述規(guī)律可知,不等式轉(zhuǎn)化為或,所以,x>2或x<?1.【點(diǎn)睛】此題考查一元一次不等式組的應(yīng)用,解題關(guān)鍵在于掌握掌握運(yùn)算法則.20、1.【解析】
直接利用絕對(duì)值的性質(zhì)以及零指數(shù)冪的性質(zhì)和負(fù)指數(shù)冪的性質(zhì)分別化簡(jiǎn)得出答案.【詳解】解:原式=﹣1++4﹣1﹣(﹣1)=﹣1++4﹣1﹣+1=1.【點(diǎn)睛】本題考查了實(shí)數(shù)的運(yùn)算,零指數(shù)冪,負(fù)整數(shù)指數(shù)冪,解題的關(guān)鍵是掌握冪的運(yùn)算法則.21、(1);(2);(3)最多獲利4480元.【解析】
(1)銷售量y為200件加增加的件數(shù)(80﹣x)×20;(2)利潤w等于單件利潤×銷售量y件,即W=(x﹣60)(﹣20x+1800),整理即可;(3)先利用二次函數(shù)的性質(zhì)得到w=﹣20x2+3000x﹣108000的對(duì)稱軸為x=75,而﹣20x+1800≥240,x≤78,得76≤x≤78,根據(jù)二次函數(shù)的性質(zhì)得到當(dāng)76≤x≤78時(shí),W隨x的增大而減小,把x=76代入計(jì)算即可得到商場(chǎng)銷售該品牌童裝獲得的最大利潤.【詳解】(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 三年級(jí)數(shù)學(xué)三位數(shù)除以一位數(shù)質(zhì)量考核模擬題大全附答案
- 滬科版 信息技術(shù) 必修 5.1.1信息技術(shù)對(duì)個(gè)人的影響說課稿
- 2025年度房地產(chǎn)金融服務(wù)保密合同模板
- 公共服務(wù)中心裝修施工合同
- 新版國際標(biāo)準(zhǔn)貿(mào)易合同
- 合同機(jī)器人市場(chǎng)展望:迎來爆發(fā)式增長
- 商業(yè)地產(chǎn)租賃合同模板范本
- 質(zhì)押擔(dān)保借款合同范本
- 2025年度智慧城市基礎(chǔ)設(shè)施建設(shè)項(xiàng)目代建貸款合同范本
- 2025年度灰渣資源化利用項(xiàng)目環(huán)保驗(yàn)收合同
- 皮膚感染的護(hù)理診斷與護(hù)理措施
- 中考語文真題雙向細(xì)目表
- 2024年江蘇省對(duì)口單招英語試卷及答案
- 藥品集采培訓(xùn)課件
- 高中物理考試成績(jī)分析報(bào)告
- 動(dòng)靜脈內(nèi)瘺血栓
- 部編版小學(xué)語文三年級(jí)上冊(cè)同步練習(xí)試題含答案(全冊(cè))
- 朗誦《詩頌風(fēng)華》
- 血性胸水的護(hù)理課件
- 醫(yī)共體人財(cái)物管理系統(tǒng)需求說明
- 臨時(shí)占用城市道路申請(qǐng)表
評(píng)論
0/150
提交評(píng)論