版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第初中數(shù)學(xué)常用公式大全大全(15篇)
初中數(shù)學(xué)常用公式大全大全(15篇)
初中數(shù)學(xué)常用公式大全1
1、每份數(shù)_份數(shù)=總數(shù)總數(shù)÷每份數(shù)=份數(shù)總數(shù)÷份數(shù)=每份數(shù)
2、1倍數(shù)_倍數(shù)=幾倍數(shù)幾倍數(shù)÷1倍數(shù)=倍數(shù)幾倍數(shù)÷倍數(shù)=1倍數(shù)
3、速度_時(shí)間=路程路程÷速度=時(shí)間路程÷時(shí)間=速度
4、單價(jià)_數(shù)量=總價(jià)總價(jià)÷單價(jià)=數(shù)量總價(jià)÷數(shù)量=單價(jià)
5、工作效率_工作時(shí)間=工作總量工作總量÷工作效率=工作時(shí)間工作總量÷工作時(shí)間=工作效率
6、加數(shù)+加數(shù)=和和-一個(gè)加數(shù)=另一個(gè)加數(shù)7、被減數(shù)-減數(shù)=差被減數(shù)-差=減數(shù)差+減數(shù)=被減數(shù)
8、因數(shù)_因數(shù)=積積÷一個(gè)因數(shù)=另一個(gè)因數(shù)9、被除數(shù)÷除數(shù)=商被除數(shù)÷商=除數(shù)商_除數(shù)=被除數(shù)小學(xué)數(shù)學(xué)圖形計(jì)算公式
1、正方形C周長(zhǎng)S面積a邊長(zhǎng)周長(zhǎng)=邊長(zhǎng)_4C=4a面積=邊長(zhǎng)_邊長(zhǎng)S=a_a
2、正方體V:體積a:棱長(zhǎng)表面積=棱長(zhǎng)_棱長(zhǎng)_6S表=a_a_6體積=棱長(zhǎng)_棱長(zhǎng)_棱長(zhǎng)V=a_a_a
3、長(zhǎng)方形C周長(zhǎng)S面積a邊長(zhǎng)周長(zhǎng)=(長(zhǎng)+寬)_2C=2(a+b)面積=長(zhǎng)_寬S=ab
4、長(zhǎng)方體V:體積s:面積a:長(zhǎng)b:寬h:高(1)表面積(長(zhǎng)_寬+長(zhǎng)_高+寬_高)_2S=2(ab+ah+bh)(2)體積=長(zhǎng)_寬_高V=abh
5三角形s面積a底h高面積=底_高÷2s=ah÷2三角形高=面積_2÷底三角形底=面積_2÷高
6平行四邊形s面積a底h高面積=底_高s=ah
7梯形s面積a上底b下底h高面積=(上底+下底)_高÷2s=(a+b)_h÷2
8圓形S面積C周長(zhǎng)∏d=直徑r=半徑(1)周長(zhǎng)=直徑_∏=2_∏_半徑C=∏d=2∏r(2)面積=半徑_半徑_∏
9圓柱體v:體積h:高s;底面積r:底面半徑c:底面周長(zhǎng)
(1)側(cè)面積=底面周長(zhǎng)_高
(2)表面積=側(cè)面積+底面積_2
(3)體積=底面積_高
(4)體積=側(cè)面積÷2_半徑
初中數(shù)學(xué)常用公式大全2
三角形的面積=底_高÷2。公式S=a_h÷2正方形的面積=邊長(zhǎng)_邊長(zhǎng)公式S=a_a長(zhǎng)方形的面積=長(zhǎng)_寬公式S=a_b平行四邊形的面積=底_高公式S=a_h梯形的面積=(上底+下底)_高÷2公式S=(a+b)h÷2內(nèi)角和:三角形的內(nèi)角和=180度。長(zhǎng)方體的體積=長(zhǎng)_寬_高公式:V=abh長(zhǎng)方體(或正方體)的體積=底面積_高公式:V=abh正方體的體積=棱長(zhǎng)_棱長(zhǎng)_棱長(zhǎng)公式:V=aaa圓的周長(zhǎng)=直徑_π公式:L=πd=2πr圓的面積=半徑_半徑_π公式:S=πr2
圓柱的表(側(cè))面積:圓柱的表(側(cè))面積等于底面的周長(zhǎng)乘高。公式:S=ch=πdh=2πrh圓柱的表面積:圓柱的表面積等于底面的周長(zhǎng)乘高再加上兩頭的圓的面積。公式:S=ch+2s=ch+2πr2
圓柱的體積:圓柱的體積等于底面積乘高。公式:V=Sh圓錐的體積=1/3底面_積高。公式:V=1/3Sh
分?jǐn)?shù)的加、減法則:同分母的分?jǐn)?shù)相加減,只把分子相加減,分母不變。異分母的分?jǐn)?shù)相加減,先通分,然后再加減。
分?jǐn)?shù)的乘法則:用分子的積做分子,用分母的積做分母。分?jǐn)?shù)的除法則:除以一個(gè)數(shù)等于乘以這個(gè)數(shù)的倒數(shù)。讀懂理解會(huì)應(yīng)用以下定義定理性質(zhì)公式一、算術(shù)方面
1、加法交換律:兩數(shù)相加交換加數(shù)的位置,和不變。
2、加法結(jié)合律:三個(gè)數(shù)相加,先把前兩個(gè)數(shù)相加,或先把后兩個(gè)數(shù)相加,再同第三個(gè)數(shù)相加,和不變。
3、乘法交換律:兩數(shù)相乘,交換因數(shù)的位置,積不變。
4、乘法結(jié)合律:三個(gè)數(shù)相乘,先把前兩個(gè)數(shù)相乘,或先把后兩個(gè)數(shù)相乘,再和第三個(gè)數(shù)相乘,它們的積不變。
5、乘法分配律:兩個(gè)數(shù)的和同一個(gè)數(shù)相乘,可以把兩個(gè)加數(shù)分別同這個(gè)數(shù)相乘,再把兩個(gè)積相加,結(jié)果不變。如:(2+4)_5=2_5+4_5
6、除法的性質(zhì):在除法里,被除數(shù)和除數(shù)同時(shí)擴(kuò)大(或縮?。┫嗤谋稊?shù),商不變。O除以任何不是O的數(shù)都得O。
簡(jiǎn)便乘法:被乘數(shù)、乘數(shù)末尾有O的乘法,可以先把O前面的相乘,零不參加運(yùn)算,有幾個(gè)零都落下,添在積的末尾。
7、么叫等式?等號(hào)左邊的數(shù)值與等號(hào)右邊的數(shù)值相等的式子叫做等式。
等式的基本性質(zhì):等式兩邊同時(shí)乘以(或除以)一個(gè)相同的數(shù),等式仍然成立。
8、什么叫方程式?答:含有未知數(shù)的等式叫方程式。
9、什么叫一元一次方程式?答:含有一個(gè)未知數(shù),并且未知數(shù)的次數(shù)是一次的等式叫做一元一次方程式。
學(xué)會(huì)一元一次方程式的例法及計(jì)算。即例出代有χ的算式并計(jì)算。10、分?jǐn)?shù):把單位“1”平均分成若干份,表示這樣的一份或幾分的數(shù),叫做分?jǐn)?shù)。
11、分?jǐn)?shù)的加減法則:同分母的分?jǐn)?shù)相加減,只把分子相加減,分母不變。異分母的分?jǐn)?shù)相加減,先通分,然后再加減。
12、分?jǐn)?shù)大小的比較:同分母的分?jǐn)?shù)相比較,分子大的大,分子小的小。異分母的分?jǐn)?shù)相比較,先通分然后再比較;若分子相同,分母大的反而小。
13、分?jǐn)?shù)乘整數(shù),用分?jǐn)?shù)的分子和整數(shù)相乘的積作分子,分母不變。14、分?jǐn)?shù)乘分?jǐn)?shù),用分子相乘的積作分子,分母相乘的積作為分母。15、分?jǐn)?shù)除以整數(shù)(0除外),等于分?jǐn)?shù)乘以這個(gè)整數(shù)的倒數(shù)。16、真分?jǐn)?shù):分子比分母小的分?jǐn)?shù)叫做真分?jǐn)?shù)。
17、假分?jǐn)?shù):分子比分母大或者分子和分母相等的分?jǐn)?shù)叫做假分?jǐn)?shù)。假分?jǐn)?shù)大于或等于1。18、帶分?jǐn)?shù):把假分?jǐn)?shù)寫成整數(shù)和真分?jǐn)?shù)的形式,叫做帶分?jǐn)?shù)。19、分?jǐn)?shù)的基本性質(zhì):分?jǐn)?shù)的分子和分母同時(shí)乘以或除以同一個(gè)數(shù)(0除外),分?jǐn)?shù)的大小不變。
20、一個(gè)數(shù)除以分?jǐn)?shù),等于這個(gè)數(shù)乘以分?jǐn)?shù)的倒數(shù)。21、甲數(shù)除以乙數(shù)(0除外),等于甲數(shù)乘以乙數(shù)的倒數(shù)。數(shù)量關(guān)系計(jì)算公式方面1、單價(jià)_數(shù)量=總價(jià)2、單產(chǎn)量_數(shù)量=總產(chǎn)量3、速度_時(shí)間=路程4、工效_時(shí)間=工作總量5、加數(shù)+加數(shù)=和一個(gè)加數(shù)=和+另一個(gè)加數(shù)
被減數(shù)-減數(shù)=差減數(shù)=被減數(shù)-差被減數(shù)=減數(shù)+差因數(shù)_因數(shù)=積一個(gè)因數(shù)=積÷另一個(gè)因數(shù)被除數(shù)÷除數(shù)=商除數(shù)=被除數(shù)÷商被除數(shù)=商_除數(shù)有余數(shù)的除法:被除數(shù)=商_除數(shù)+余數(shù)一個(gè)數(shù)連續(xù)用兩個(gè)數(shù)除,可以先把后兩個(gè)數(shù)相乘,再用它們的積去除這個(gè)數(shù),結(jié)果不變。例:90÷5÷6=90÷(5_6)
6、1公里=1千米1千米=1000米
1米=10分米1分米=10厘米1厘米=10毫米
1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米
1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米
1噸=1000千克1千克=1000克=1公斤=1市斤1公頃=10000平方米。1畝=666。666平方米。1升=1立方分米=1000毫升1毫升=1立方厘米
7、什么叫比:兩個(gè)數(shù)相除就叫做兩個(gè)數(shù)的比。如:2÷5或3:6或1/3比的前項(xiàng)和后項(xiàng)同時(shí)乘以或除以一個(gè)相同的數(shù)(0除外),比值不變。8、什么叫比例:表示兩個(gè)比相等的式子叫做比例。如3:6=9:189、比例的基本性質(zhì):在比例里,兩外項(xiàng)之積等于兩內(nèi)項(xiàng)之積。10、解比例:求比例中的未知項(xiàng),叫做解比例。如3:χ=9:18
11、正比例:兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著化,如果這兩種量中相對(duì)應(yīng)的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關(guān)系就叫做正比例關(guān)系。如:y/_=k(k一定)或k_=y
12、反比例:兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對(duì)應(yīng)的兩個(gè)數(shù)的積一定,這兩種量就叫做成反比例的量,它們的關(guān)系就叫做反比例關(guān)系。如:__y=k(k一定)或k/_=y百分?jǐn)?shù):表示一個(gè)數(shù)是另一個(gè)數(shù)的百分之幾的數(shù),叫做百分?jǐn)?shù)。百分?jǐn)?shù)也叫做百分率或百分比。
13、把小數(shù)化成百分?jǐn)?shù),只要把小數(shù)點(diǎn)向右移動(dòng)兩位,同時(shí)在后面添上百分號(hào)。其實(shí),把小數(shù)化成百分?jǐn)?shù),只要把這個(gè)小數(shù)乘以100%就行了。
把百分?jǐn)?shù)化成小數(shù),只要把百分號(hào)去掉,同時(shí)把小數(shù)點(diǎn)向左移動(dòng)兩位。
14、把分?jǐn)?shù)化成百分?jǐn)?shù),通常先把分?jǐn)?shù)化成小數(shù)(除不盡時(shí),通常保留三位小數(shù)),再把小數(shù)化成百分?jǐn)?shù)。其實(shí),把分?jǐn)?shù)化成百分?jǐn)?shù),要先把分?jǐn)?shù)化成小數(shù)后,再乘以100%就行了。把百分?jǐn)?shù)化成分?jǐn)?shù),先把百分?jǐn)?shù)改寫成分?jǐn)?shù),能約分的要約成最簡(jiǎn)分?jǐn)?shù)。15、要學(xué)會(huì)把小數(shù)化成分?jǐn)?shù)和把分?jǐn)?shù)化成小數(shù)的化發(fā)。16、最大公約數(shù):幾個(gè)數(shù)都能被同一個(gè)數(shù)一次性整除,這個(gè)數(shù)就叫做這幾個(gè)數(shù)的最大公約數(shù)。(或幾個(gè)數(shù)公有的約數(shù),叫做這幾個(gè)數(shù)的公約數(shù)。其中最大的一個(gè),叫做最大公約數(shù)。)17、互質(zhì)數(shù):公約數(shù)只有1的兩個(gè)數(shù),叫做互質(zhì)數(shù)。
18、最小公倍數(shù):幾個(gè)數(shù)公有的倍數(shù),叫做這幾個(gè)數(shù)的公倍數(shù),其中最小的`一個(gè)叫做這幾個(gè)數(shù)的最小公倍數(shù)。
19、通分:把異分母分?jǐn)?shù)的分別化成和原來分?jǐn)?shù)相等的同分母的分?jǐn)?shù),叫做通分。(通分用最小公倍數(shù))
20、約分:把一個(gè)分?jǐn)?shù)化成同它相等,但分子、分母都比較小的分?jǐn)?shù),叫做約分。(約分用最大公約數(shù))
21、最簡(jiǎn)分?jǐn)?shù):分子、分母是互質(zhì)數(shù)的分?jǐn)?shù),叫做最簡(jiǎn)分?jǐn)?shù)。分?jǐn)?shù)計(jì)算到最后,得數(shù)必須化成最簡(jiǎn)分?jǐn)?shù)。
個(gè)位上是0、2、4、6、8的數(shù),都能被2整除,即能用2進(jìn)行
約分。個(gè)位上是0或者5的數(shù),都能被5整除,即能用5進(jìn)行約分。在約分時(shí)應(yīng)注意利用。22、偶數(shù)和奇數(shù):能被2整除的數(shù)叫做偶數(shù)。不能被2整除的數(shù)叫做奇數(shù)。23、質(zhì)數(shù)(素?cái)?shù)):一個(gè)數(shù),如果只有1和它本身兩個(gè)約數(shù),這樣的數(shù)叫做質(zhì)數(shù)(或素?cái)?shù))。24、合數(shù):一個(gè)數(shù),如果除了1和它本身還有別的約數(shù),這樣的數(shù)叫做合數(shù)。1不是質(zhì)數(shù),也不是合數(shù)。
28、利息=本金_利率_時(shí)間(時(shí)間一般以年或月為單位,應(yīng)與利率的單位相對(duì)應(yīng))
29、利率:利息與本金的比值叫做利率。一年的利息與本金的比值叫做年利率。一月的利息與本金的比值叫做月利率。
30、自然數(shù):用來表示物體個(gè)數(shù)的整數(shù),叫做自然數(shù)。0也是自然數(shù)。
31、循環(huán)小數(shù):一個(gè)小數(shù),從小數(shù)部分的某一位起,一個(gè)數(shù)字或幾個(gè)數(shù)字依次不斷的重復(fù)出現(xiàn),這樣的小數(shù)叫做循環(huán)小數(shù)。如3。14141432、不循環(huán)小數(shù):一個(gè)小數(shù),從小數(shù)部分起,沒有一個(gè)數(shù)字或幾個(gè)數(shù)字依次不斷的重復(fù)出現(xiàn),這樣的小數(shù)叫做不循環(huán)小數(shù)。如3。141592654
33、無限不循環(huán)小數(shù):一個(gè)小數(shù),從小數(shù)部分起到無限位數(shù),沒有一個(gè)數(shù)字或幾個(gè)數(shù)字依次不斷的重復(fù)出現(xiàn),這樣的小數(shù)叫做無限不循環(huán)小數(shù)。如3。141592654……34、什么叫代數(shù)?代數(shù)就是用字母代替數(shù)。
35、什么叫代數(shù)式?用字母表示的式子叫做代數(shù)式。如:3_=(a+b)_c
初中數(shù)學(xué)知識(shí)點(diǎn)歸納。
有理數(shù)的加法運(yùn)算
同號(hào)兩數(shù)來相加,絕對(duì)值加不變號(hào)。
異號(hào)相加大減小,大數(shù)決定和符號(hào)。
互為相反數(shù)求和,結(jié)果是零須記好?!咀ⅰ俊按蟆睖p“小”是指絕對(duì)值的大小。
有理數(shù)的減法運(yùn)算
減正等于加負(fù),減負(fù)等于加正。有理數(shù)的乘法運(yùn)算符號(hào)法則
同號(hào)得正異號(hào)負(fù),一項(xiàng)為零積是零。合并同類項(xiàng)
說起合并同類項(xiàng),法則千萬不能忘。只求系數(shù)代數(shù)和,字母指數(shù)留原樣。去、添括號(hào)法則
去括號(hào)或添括號(hào),關(guān)鍵要看連接號(hào)。擴(kuò)號(hào)前面是正號(hào),去添括號(hào)不變號(hào)。括號(hào)前面是負(fù)號(hào),去添括號(hào)都變號(hào)。解方程
已知未知鬧分離,分離要靠移完成。移加變減減變加,移乘變除除變乘。平方差公式
兩數(shù)和乘兩數(shù)差,等于兩數(shù)平方差。積化和差變兩項(xiàng),完全平方不是它。完全平方公式
二數(shù)和或差平方,展開式它共三項(xiàng)。首平方與末平方,首末二倍中間放。和的平方加聯(lián)結(jié),先減后加差平方。完全平方公式
首平方又末平方,二倍首末在中央。和的平方加再加,先減后加差平方。解一元一次方程
先去分母再括號(hào),移項(xiàng)變號(hào)要記牢。同類各項(xiàng)去合并,系數(shù)化“1”還沒好。求得未知須檢驗(yàn),回代值等才算了。解一元一次方程
先去分母再括號(hào),移項(xiàng)合并同類項(xiàng)。系數(shù)化1還沒好,準(zhǔn)確無誤不白忙。因式分解與乘法
和差化積是乘法,乘法本身是運(yùn)算。積化和差是分解,因式分解非運(yùn)算。因式分解
兩式平方符號(hào)異,因式分解你別怕。兩底和乘兩底差,分解結(jié)果就是它。兩式平方符號(hào)同,底積2倍坐中央。因式分解能與否,符號(hào)上面有文章。
同和異差先平方,還要加上正負(fù)號(hào)。
同正則正負(fù)就負(fù),異則需添冪符號(hào)。因式分解
一提二套三分組,十字相乘也上數(shù)。四種方法都不行,拆項(xiàng)添項(xiàng)去重組。重組無望試求根,換元或者算余數(shù)。多種方法靈活選,連乘結(jié)果是基礎(chǔ)。同式相乘若出現(xiàn),乘方表示要記住?!咀ⅰ恳惶幔ㄌ峁蚴剑┒祝ㄌ坠剑?/p>
因式分解
一提二套三分組,叉乘求根也上數(shù)。五種方法都不行,拆項(xiàng)添項(xiàng)去重組。對(duì)癥下藥穩(wěn)又準(zhǔn),連乘結(jié)果是基礎(chǔ)。二次三項(xiàng)式的因式分解
先想完全平方式,十字相乘是其次。兩種方法行不通,求根分解去嘗試。比和比例
兩數(shù)相除也叫比,兩比相等叫比例。外項(xiàng)積等內(nèi)項(xiàng)積,等積可化八比例。分別交換內(nèi)外項(xiàng),統(tǒng)統(tǒng)都要叫更比。同時(shí)交換內(nèi)外項(xiàng),便要稱其為反比。前后項(xiàng)和比后項(xiàng),比值不變叫合比。前后項(xiàng)差比后項(xiàng),組成比例是分比。兩項(xiàng)和比兩項(xiàng)差,比值相等合分比。前項(xiàng)和比后項(xiàng)和,比值不變叫等比。解比例
外項(xiàng)積等內(nèi)項(xiàng)積,列出方程并解之。求比值
由已知去求比值,多種途徑可利用?;钣帽壤咝再|(zhì),變量替換也走紅。消元也是好辦法,殊途同歸會(huì)變通。正比例與反比例
商定變量成正比,積定變量成反比。正比例與反比例
變化過程商一定,兩個(gè)變量成正比。變化過程積一定,兩個(gè)變量成反比。判斷四數(shù)成比例
四數(shù)是否成比例,遞增遞減先排序。兩端積等中間積,四數(shù)一定成比例。判斷四式成比例
四式是否成比例,生或降冪先排序。兩端積等中間積,四式便可成比例。比例中項(xiàng)
成比例的四項(xiàng)中,外項(xiàng)相同會(huì)遇到。有時(shí)內(nèi)項(xiàng)會(huì)相同,比例中項(xiàng)少不了。比例中項(xiàng)很重要,多種場(chǎng)合會(huì)碰到。成比例的四項(xiàng)中,外項(xiàng)相同有不少。有時(shí)內(nèi)項(xiàng)會(huì)相同,比例中項(xiàng)出現(xiàn)了。同數(shù)平方等異積,比例中項(xiàng)無處逃。根式與無理式
表示方根代數(shù)式,都可稱其為根式。用平方差公式因式分解
異號(hào)兩個(gè)平方項(xiàng),因式分解有辦法。兩底和乘兩底差,分解結(jié)果就是它。用完全平方公式因式分解
兩平方項(xiàng)在兩端,底積2倍在中部。同正兩底和平方,全負(fù)和方相反數(shù)。分成兩底差平方,方正倍積要為負(fù)。兩邊為負(fù)中間正,底差平方相反數(shù)。一平方又一平方,底積2倍在中路。根式異于無理式,被開方式無限制。被開方式有字母,才能稱為無理式。無理式都是根式,區(qū)分它們有標(biāo)志。被開方式有字母,又可稱為無理式。求定義域
求定義域有講究,四項(xiàng)原則須留意。負(fù)數(shù)不能開平方,分母為零無意義。指是分?jǐn)?shù)底正數(shù),數(shù)零沒有零次冪。限制條件不唯一,滿足多個(gè)不等式。求定義域要過關(guān),四項(xiàng)原則須注意。負(fù)數(shù)不能開平方,分母為零無意義。分?jǐn)?shù)指數(shù)底正數(shù),數(shù)零沒有零次冪。限制條件不唯一,不等式組求解集。解一元一次不等式
先去分母再括號(hào),移項(xiàng)合并同類項(xiàng)。系數(shù)化“1”有講究,同乘除負(fù)要變向。先去分母再括號(hào),移項(xiàng)別忘要變號(hào)。同類各項(xiàng)去合并,系數(shù)化“1”注意了。同乘除正無防礙,同乘除負(fù)也變號(hào)。解一元一次不等式組
大于頭來小于尾,大小不一中間找。大大小小沒有解,四種情況全來了。同向取兩邊,異向取中間。中間無元素,無解便出現(xiàn)。
幼兒園小鬼當(dāng)家,(同小相對(duì)取較小)敬老院以老為榮,(同大就要取較大)軍營(yíng)里沒老沒少。(大小小大就是它)大大小小解集空。(小小大大哪有哇)解一元二次不等式
首先化成一般式,構(gòu)造函數(shù)第二站。判別式值若非負(fù),曲線橫軸有交點(diǎn)。a正開口它向上,大于零則取兩邊。代數(shù)式若小于零,解集交點(diǎn)數(shù)之間。方程若無實(shí)數(shù)根,口上大零解為全。小于零將沒有解,開口向下正相反。三正兩底和平方,全負(fù)和方相反數(shù)。分成兩底差平方,兩端為正倍積負(fù)。兩邊若負(fù)中間正,底差平方相反數(shù)。用公式法解一元二次方程
要用公式解方程,首先化成一般式。調(diào)整系數(shù)隨其后,使其成為最簡(jiǎn)比。確定參數(shù)abc,計(jì)算方程判別式。判別式值與零比,有無實(shí)根便得知。有實(shí)根可套公式,沒有實(shí)根要告之。用常規(guī)配方法解一元二次方程
左未右已先分離,二系化“1”是其次。一系折半再平方,兩邊同加沒問題。左邊分解右合并,直接開方去解題。該種解法叫配方,解方程時(shí)多練習(xí)。用間接配方法解一元二次方程
已知未知先分離,因式分解是其次。調(diào)整系數(shù)等互反,和差積套恒等式。完全平方等常數(shù),間接配方顯優(yōu)勢(shì)【注】恒等式解一元二次方程
方程沒有一次項(xiàng),直接開方最理想。如果缺少常數(shù)項(xiàng),因式分解沒商量。b、c相等都為零,等根是零不要忘。b、c同時(shí)不為零,因式分解或配方,也可直接套公式,因題而異擇良方。正比例函數(shù)的鑒別
判斷正比例函數(shù),檢驗(yàn)當(dāng)分兩步走。一量表示另一量,有沒有。
若有再去看取值,全體實(shí)數(shù)都需要。區(qū)分正比例函數(shù),衡量可分兩步走。一量表示另一量,是與否。
若有還要看取值,全體實(shí)數(shù)都要有。正比例函數(shù)的圖象與性質(zhì)
正比函數(shù)圖直線,經(jīng)過和原點(diǎn)。K正一三負(fù)二四,變化趨勢(shì)記心間。
K正左低右邊高,同大同小向爬山。K負(fù)左高右邊低,一大另小下山巒。一次函數(shù)
一次函數(shù)圖直線,經(jīng)過點(diǎn)。
K正左低右邊高,越走越高向爬山。K負(fù)左高右邊低,越來越低很明顯。K稱斜率b截距,截距為零變正函。反比例函數(shù)
反比函數(shù)雙曲線,經(jīng)過點(diǎn)。
直平之間是鈍角,平周之間叫優(yōu)角。
互余兩角和直角,和是平角互補(bǔ)角。一點(diǎn)出發(fā)兩射線,組成圖形叫做角。平角反向且共線,平角之半叫直角。平角兩倍成周角,小于直角叫銳角。鈍角界于直平間,平周之間叫優(yōu)角。和為直角叫互余,互為補(bǔ)角和平角。證等積或比例線段
等積或比例線段,多種途徑可以證。K正一三負(fù)二四,兩軸是它漸近線。K正左高右邊低,一三象限滑下山。K負(fù)左低右邊高,二四象限如爬山。二次函數(shù)
二次方程零換y,二次函數(shù)便出現(xiàn)。全體實(shí)數(shù)定義域,圖像叫做拋物線。拋物線有對(duì)稱軸,兩邊單調(diào)正相反。A定開口及大小,線軸交點(diǎn)叫頂點(diǎn)。頂點(diǎn)非高即最低。上低下高很顯眼。如果要畫拋物線,平移也可去描點(diǎn),提取配方定頂點(diǎn),兩條途徑再挑選。列表描點(diǎn)后連線,平移規(guī)律記心間。左加右減括號(hào)內(nèi),號(hào)外上加下要減。二次方程零換y,就得到二次函數(shù)。圖像叫做拋物線,定義域全體實(shí)數(shù)。A定開口及大小,開口向上是正數(shù)。絕對(duì)值大開口小,開口向下A負(fù)數(shù)。拋物線有對(duì)稱軸,增減特性可看圖。線軸交點(diǎn)叫頂點(diǎn),頂點(diǎn)縱標(biāo)最值出。如果要畫拋物線,描點(diǎn)平移兩條路。提取配方定頂點(diǎn),平移描點(diǎn)皆成圖。列表描點(diǎn)后連線,三點(diǎn)大致定全圖。若要平移也不難,先畫基礎(chǔ)拋物線,頂點(diǎn)移到新位置,開口大小隨基礎(chǔ)。【注】基礎(chǔ)拋物線直線、射線與線段
直線射線與線段,形狀相似有關(guān)聯(lián)。直線長(zhǎng)短不確定,可向兩方無限延。射線僅有一端點(diǎn),反向延長(zhǎng)成直線。線段定長(zhǎng)兩端點(diǎn),雙向延伸變直線。兩點(diǎn)定線是共性,組成圖形最常見。角
一點(diǎn)出發(fā)兩射線,組成圖形叫做角。共線反向是平角,平角之半叫直角。平角兩倍成周角,小于直角叫銳角。證等積要改等比,對(duì)照?qǐng)D形看特征。共點(diǎn)共線線相交,平行截比把題證。三點(diǎn)定型十分像,想法來把相似證。圖形明顯不相似,等線段比替換證。換后結(jié)論能成立,原來命題即得證。實(shí)在不行用面積,射影角分線也成。只要學(xué)習(xí)肯登攀,手腦并用無不勝。解無理方程
一無一有各一邊,兩無也要放兩邊。乘方根號(hào)無蹤跡,方程可解無負(fù)擔(dān)。兩無一有相對(duì)難,兩次乘方也好辦。特殊情況去換元,得解驗(yàn)根是必然。解分式方程
先約后乘公分母,整式方程轉(zhuǎn)化出。特殊情況可換元,去掉分母是出路。求得解后要驗(yàn)根,原留增舍別含糊。列方程解應(yīng)用題
列方程解應(yīng)用題,審設(shè)列解雙檢答。審題弄清已未知,設(shè)元直間兩辦法。列表畫圖造方程,解方程時(shí)守章法。檢驗(yàn)準(zhǔn)且合題意,問求同一才作答。添加輔助線
學(xué)習(xí)幾何體會(huì)深,成敗也許一線牽。分散條件要集中,常要添加輔助線。畏懼心理不要有,其次要把觀念變。熟能生巧有規(guī)律,真知灼見靠實(shí)踐。圖中已知有中線,倍長(zhǎng)中線把線連。旋轉(zhuǎn)構(gòu)造全等形,等線段角可代換。多條中線連中點(diǎn),便可得到中位線。倘若知角平分線,既可兩邊作垂線。也可沿線去翻折,全等圖形立呈現(xiàn)。角分線若加垂線,等腰三角形可見。角分線加平行線,等線段角位置變。已知線段中垂線,連接兩端等線段。輔助線必畫虛線,便與原圖聯(lián)系看。
兩點(diǎn)間距離公式
同軸兩點(diǎn)求距離,大減小數(shù)就為之。與軸等距兩個(gè)點(diǎn),間距求法亦如此。平面任意兩個(gè)點(diǎn),橫縱標(biāo)差先求值。差方相加開平方,距離公式要牢記。矩形的判定
任意一個(gè)四邊形,三個(gè)直角成矩形;對(duì)角線等互平分,四邊形它是矩形。已知平行四邊形,一個(gè)直角叫矩形;兩對(duì)角線若相等,理所當(dāng)然為矩形。菱形的判定
任意一個(gè)四邊形,四邊相等成菱形;四邊形的對(duì)角線,垂直互分是菱形。已知平行四邊形,鄰邊相等叫菱形;兩對(duì)角線若垂直,順理成章為菱形。
初中數(shù)學(xué)常用公式大全3
一、常用數(shù)學(xué)公式之三角函數(shù)公式
半角公式
sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化積
2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB
二、初中數(shù)學(xué)正方形定理公式
關(guān)于正方形定理公式的內(nèi)容精講知識(shí),希望同學(xué)們很好的掌握下面的內(nèi)容。
正方形定理公式
特征:
①正方形的四邊相等;
②正方形的四個(gè)角都是直角;
③正方形的兩條對(duì)角線相等,且互相垂直平分,每一條對(duì)角線平分一組對(duì)角;
判定:
①有一個(gè)角是直角的菱形是正方形;
②有一組鄰邊相等的矩形是正方形。
三、初中數(shù)學(xué)平行四邊形定理公式
同學(xué)們認(rèn)真學(xué)習(xí),下面是老師對(duì)數(shù)學(xué)中平行四邊形定理公式的內(nèi)容講解。
平行四邊形
性質(zhì):
①平行四邊形的對(duì)邊相等;
②平行四邊形的對(duì)角相等;
③平行四邊形的對(duì)角線互相平分;
判定:
①兩組對(duì)角分別相等的四邊形是平行四邊形;
②兩組對(duì)邊分別相等的'四邊形是平行四邊形;
③對(duì)角線互相平分的四邊形是平行四邊形;
④一組對(duì)邊平行且相等的四邊形是平行四邊形。
四、初中數(shù)學(xué)直角三角形定理公式
下面是對(duì)直角三角形定理公式的內(nèi)容講解,希望給同學(xué)們的學(xué)習(xí)很好的幫助。
性質(zhì):
①直角三角形的兩個(gè)銳角互為余角;
②直角三角形斜邊上的中線等于斜邊的一半;
③直角三角形的兩直角邊的平方和等于斜邊的平方(勾股定理);
④直角三角形中30度角所對(duì)的直角邊等于斜邊的一半;
判定:
①有兩個(gè)角互余的三角形是直角三角形;
②如果三角形的三邊長(zhǎng)a、b、c有下面關(guān)系a^2+b^2=c^2,那么這個(gè)三角形是直角三角形(勾股定理的逆定理)。
五、初中數(shù)學(xué)等腰三角形的性質(zhì)定理公式
下面是對(duì)等腰三角形的性質(zhì)定理公式的內(nèi)容學(xué)習(xí),希望同學(xué)們認(rèn)真看看。
性質(zhì):
①等腰三角形的兩個(gè)底角相等;
②等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合(三線合一)
六、初中數(shù)學(xué)三角形定理公式
對(duì)于三角形定理公式的學(xué)習(xí),我們做下面的內(nèi)容講解學(xué)習(xí)哦。
三角形
三角形的三邊關(guān)系定理及推論:三角形的兩邊之和大于第三邊,兩邊之差小于第三邊;
三角形的內(nèi)角和定理:三角形的三個(gè)內(nèi)角的和等于180度;
三角形的外角和定理:三角形的一個(gè)外角等于和它不相鄰的兩個(gè)的和;
三角形的外角和定理推理:三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角;
三角形的三條角平分線交于一點(diǎn)(內(nèi)心);
三角形的三邊的垂直平分線交于一點(diǎn)(外心);
三角形中位線定理:三角形兩邊中點(diǎn)的連線平行于第三邊,并且等于第三邊的一半;
以上對(duì)三角形定理公式的內(nèi)容講解學(xué)習(xí),希望同學(xué)們都能很好的掌握,并在考試中取得很好的成績(jī)哦。
初中數(shù)學(xué)常用公式大全4
初中數(shù)學(xué)點(diǎn)、線、角的定理
點(diǎn)的定理:過兩點(diǎn)有且只有一條直線
點(diǎn)的定理:兩點(diǎn)之間線段最短
角的定理:同角或等角的補(bǔ)角相等
角的定理:同角或等角的余角相等
直線定理:過一點(diǎn)有且只有一條直線和已知直線垂直
直線定理:直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短
初中數(shù)學(xué)幾何平行定理
平行定理:經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行
推論:如果兩條直線都和第三條直線平行,這兩條直線也互相平行
證明兩直線平行定理:
同位角相等,兩直線平行
內(nèi)錯(cuò)角相等,兩直線平行
同旁內(nèi)角互補(bǔ),兩直線平行
兩直線平行推論:
兩直線平行,同位角相等
兩直線平行,內(nèi)錯(cuò)角相等
兩直線平行,同旁內(nèi)角互補(bǔ)
初中數(shù)學(xué)定理:三角形內(nèi)角定理
定理:三角形兩邊的和大于第三邊
推論:三角形兩邊的差小于第三邊
三角形內(nèi)角和定理:三角形三個(gè)內(nèi)角的和等于180°
推論1:直角三角形的兩個(gè)銳角互余
推論2:三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和
推論3:三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角
初中數(shù)學(xué)定理:全等三角形判定定理
定理:全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等
邊角邊定理(SAS):有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等
角邊角定理(ASA):有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等
推論(AAS):有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等
邊邊邊定理(SSS):有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等
斜邊、直角邊定理(HL):有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等
初中數(shù)學(xué)定理:角的平分線定理
定理1:在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等
定理2:到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上
角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合
初中數(shù)學(xué)定理:等腰三角形性質(zhì)定理
等腰三角形的性質(zhì)定理:等腰三角形的兩個(gè)底角相等(即等邊對(duì)等角)
推論1:等腰三角形頂角的平分線平分底邊并且垂直于底邊
等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
推論3:等邊三角形的各角都相等,并且每一個(gè)角都等于60°
等腰三角形的判定定理:如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊)
推論1:三個(gè)角都相等的三角形是等邊三角形
推論2有一個(gè)角等于60°的等腰三角形是等邊三角形
初中數(shù)學(xué)公式定理:對(duì)稱定理
定理:線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等
逆定理:和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上
線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合
定理1:關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形
定理2:如果兩個(gè)圖形關(guān)于某直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線
定理3:兩個(gè)圖形關(guān)于某直線對(duì)稱,如果它們的對(duì)應(yīng)線段或延長(zhǎng)線相交,那么交點(diǎn)在對(duì)稱軸上
逆定理:如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱
初中數(shù)學(xué)定理:直角三角形定理
定理:在直角三角形中,如果一個(gè)銳角等于30°那么它所對(duì)的直角邊等于斜邊的一半判定定理:直角三角形斜邊上的中線等于斜邊上的一半
勾股定理:直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2勾股定理的逆定理:如果三角形的三邊長(zhǎng)a、b、c有關(guān)系a^2+b^2=c^2,那么這個(gè)三角形是直角三角形
初中數(shù)學(xué)公式定理:多邊形內(nèi)角和定理
定理:四邊形的內(nèi)角和等于360°
四邊形的外角和等于360°
多邊形內(nèi)角和定理:n邊形的內(nèi)角的和等于(n-2)_180°
推論:任意多邊的外角和等于360°
初中數(shù)學(xué)公式定理:平行四邊形定理
平行四邊形性質(zhì)定理1:平行四邊形的對(duì)角相等
平行四邊形性質(zhì)定理2:平行四邊形的對(duì)邊相等
推論:夾在兩條平行線間的平行線段相等
平行四邊形性質(zhì)定理3:平行四邊形的對(duì)角線互相平分
平行四邊形判定定理1:兩組對(duì)角分別相等的四邊形是平行四邊形
平行四邊形判定定理2:兩組對(duì)邊分別相等的四邊形是平行四邊形
平行四邊形判定定理3:對(duì)角線互相平分的四邊形是平行四邊形
平行四邊形判定定理4:一組對(duì)邊平行相等的四邊形是平行四邊形
初中數(shù)學(xué)公式定理:矩形的定理
矩形性質(zhì)定理1:矩形的四個(gè)角都是直角
矩形性質(zhì)定理2:矩形的對(duì)角線相等
矩形判定定理1:有三個(gè)角是直角的四邊形是矩形
矩形判定定理2:對(duì)角線相等的平行四邊形是矩形
初中數(shù)學(xué)公式定理:菱形定理
菱形性質(zhì)定理1:菱形的四條邊都相等
菱形性質(zhì)定理2:菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角菱形面積=對(duì)角線乘積的一半,即S=(a_b)÷2
菱形判定定理1:四邊都相等的.四邊形是菱形
菱形判定定理2:對(duì)角線互相垂直的平行四邊形是菱形
初中數(shù)學(xué)公式定理:正方形定理
正方形性質(zhì)定理1:正方形的四個(gè)角都是直角,四條邊都相等
正方形性質(zhì)定理2:正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角
初中數(shù)學(xué)定理公式:中心對(duì)稱定理
定理1:關(guān)于中心對(duì)稱的兩個(gè)圖形是全等的
定理2:關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過對(duì)稱中心,并且被對(duì)稱中心平分逆定理:如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線都經(jīng)過某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱
初中數(shù)學(xué)定理:等腰梯形性質(zhì)定理
等腰梯形性質(zhì)定理:
1.等腰梯形在同一底上的兩個(gè)角相等
2.等腰梯形的兩條對(duì)角線相等
等腰梯形判定定理:
1.在同一底上的兩個(gè)角相等的梯形是等腰梯形
2.對(duì)角線相等的梯形是等腰梯形
平行線等分線段定理:如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等
推論1:經(jīng)過梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰
推論2:經(jīng)過三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊
初中數(shù)學(xué)公式定理:中位線定理
三角形中位線定理:三角形的中位線平行于第三邊,并且等于它的一半
梯形中位線定理:梯形的中位線平行于兩底,并且等于兩底和的一半L=(a+b)÷2S=L_h
初中數(shù)學(xué)公式定理:相似三角形定理
相似三角形定理:平行于三角形一邊的直線和其他兩邊(或兩邊的延長(zhǎng)線)相交,所構(gòu)成的三角形與原三角形相似
相似三角形判定定理1:兩角對(duì)應(yīng)相等,兩三角形相似(ASA)
直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似
判定定理2:兩邊對(duì)應(yīng)成比例且夾角相等,兩三角形相似(SAS)
判定定理3:三邊對(duì)應(yīng)成比例,兩三角形相似(SSS)
相似直角三角形定理:如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似
性質(zhì)定理1:相似三角形對(duì)應(yīng)高的比,對(duì)應(yīng)中線的比與對(duì)應(yīng)角平分線的比都等于相似比性質(zhì)定理2:相似三角形周長(zhǎng)的比等于相似比
性質(zhì)定理3:相似三角形面積的比等于相似比的平方
初中數(shù)學(xué)公式定理:三角函數(shù)定理
任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值
初中數(shù)學(xué)圓的定理
不共線的三點(diǎn)確定一個(gè)圓
經(jīng)過一點(diǎn)可以作無數(shù)個(gè)圓
經(jīng)過兩點(diǎn)也可以作無數(shù)個(gè)圓,且圓心都在連結(jié)這兩點(diǎn)的線段的垂直平分線上定理
經(jīng)過不共線的三個(gè)點(diǎn),可以作且只可以作一個(gè)圓
推論:三角形的三邊垂直平分線相交于一點(diǎn),這個(gè)點(diǎn)就是三角形的外心
三角形的三條高線的交點(diǎn)叫三角形的垂心
垂徑定理
初中數(shù)學(xué)常用公式大全5
1三角形中位線定理三角形的中位線平行于第三邊,并且等于它的一半
2梯形中位線定理梯形的中位線平行于兩底,并且等于兩底和的一半L=(a+b)2S=Lh
3(1)比例的基本性質(zhì)如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d
4(2)合比性質(zhì)如果a/b=c/d,那么(ab)/b=(cd)/d
5(3)等比性質(zhì)如果a/b=c/d==m/n(b+d++n0),那么(a+c++m)/(b+d++n)=a/b
6平行線分線段成比例定理三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例
7推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長(zhǎng)線),所得的對(duì)應(yīng)線段成比例
8定理如果一條直線截三角形的兩邊(或兩邊的延長(zhǎng)線)所得的對(duì)應(yīng)線段成比例,那么這條直線平行于三角形的第三邊
9平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對(duì)應(yīng)成比例
10定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長(zhǎng)線)相交,所構(gòu)成的三角形與原三角形相似
11相似三角形判定定理1兩角對(duì)應(yīng)相等,兩三角形相似(ASA)
12直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似
13判定定理2兩邊對(duì)應(yīng)成比例且夾角相等,兩三角形相似(SAS)
14判定定理3三邊對(duì)應(yīng)成比例,兩三角形相似(SSS)
15定理如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似
16性質(zhì)定理1相似三角形對(duì)應(yīng)高的比,對(duì)應(yīng)中線的比與對(duì)應(yīng)角平分線的比都等于相似比
17性質(zhì)定理2相似三角形周長(zhǎng)的比等于相似比
18性質(zhì)定理3相似三角形面積的比等于相似比的平方
19任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值
20任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值
21圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合
22圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合
23圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合
24同圓或等圓的.半徑相等
25到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓
26和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直平分線
27到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線
28到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線
29定理不在同一直線上的三點(diǎn)確定一個(gè)圓。
30垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧
31推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條?、谙业拇怪逼椒志€經(jīng)過圓心,并且平分弦所對(duì)的兩條?、燮椒窒宜鶎?duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧
32推論2圓的兩條平行弦所夾的弧相等
33圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形
34定理在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等
35推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等
36定理一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半
37推論1同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等
38推論2半圓(或直徑)所對(duì)的圓周角是直角;90的圓周角所對(duì)的弦是直徑
39推論3如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形
40定理圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角
初中數(shù)學(xué)常用公式大全6
1、同旁內(nèi)角互補(bǔ),兩直線平行
2、兩直線平行,同位角相等
3、兩直線平行,內(nèi)錯(cuò)角相等
4、兩直線平行,同旁內(nèi)角互補(bǔ)
5、定理三角形兩邊的和大于第三邊
6、推論三角形兩邊的差小于第三邊
7、三角形內(nèi)角和定理三角形三個(gè)內(nèi)角的和等于180°
8、推論1直角三角形的兩個(gè)銳角互余
9、推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和
10、推論3三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角
11、全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等
12、邊角邊公理(SAS)有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等
13、角邊角公理(ASA)有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等
14、推論(AAS)有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等
15、邊邊邊公理(SSS)有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等
16、斜邊、直角邊公理(HL)有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等
17、定理1在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等
18、定理2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上
19、角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合
20、等腰三角形的性質(zhì)定理等腰三角形的兩個(gè)底角相等(即等邊對(duì)等角)
21、推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊
22、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
23、推論3等邊三角形的各角都相等,并且每一個(gè)角都等于60°
24、等腰三角形的判定定理如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊)
25、推論1三個(gè)角都相等的三角形是等邊三角形
26、推論2有一個(gè)角等于60°的等腰三角形是等邊三角形
27、在直角三角形中,如果一個(gè)銳角等于30°那么它所對(duì)的直角邊等于斜邊的一半
28、直角三角形斜邊上的中線等于斜邊上的一半
29、定理線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等
30、逆定理和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上
31、線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合
32、定理1關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形
33、定理2如果兩個(gè)圖形關(guān)于某直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線
34、定理3兩個(gè)圖形關(guān)于某直線對(duì)稱,如果它們的對(duì)應(yīng)線段或延長(zhǎng)線相交,那么交點(diǎn)在對(duì)稱軸上
35、逆定理如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱
36、勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2
37、勾股定理的逆定理如果三角形的三邊長(zhǎng)a、b、c有關(guān)系a^2+b^2=c^2,那么這個(gè)三角形是直角三角形
38、定理四邊形的內(nèi)角和等于360°
39、四邊形的外角和等于360°
40、多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)_180°
41、推論任意多邊的外角和等于360°
42、平行四邊形性質(zhì)定理1平行四邊形的對(duì)角相等
43、平行四邊形性質(zhì)定理2平行四邊形的對(duì)邊相等
44、推論夾在兩條平行線間的平行線段相等
45、平行四邊形性質(zhì)定理3平行四邊形的對(duì)角線互相平分
46、平行四邊形判定定理1兩組對(duì)角分別相等的四邊形是平行四邊形
47、平行四邊形判定定理2兩組對(duì)邊分別相等的四邊形是平行四邊形
48、平行四邊形判定定理3對(duì)角線互相平分的四邊形是平行四邊形
49、平行四邊形判定定理4一組對(duì)邊平行相等的四邊形是平行四邊形
50、圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合
51、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合
52、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合
53、同圓或等圓的半徑相等
54、到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓
55、和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直平分線
56、到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線
57、到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線
58、定理不在同一直線上的三點(diǎn)確定一個(gè)圓。
59、垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧
60推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧
②弦的垂直平分線經(jīng)過圓心,并且平分弦所對(duì)的兩條弧
③平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧
61、推論2圓的兩條平行弦所夾的弧相等
62、3圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形
63、定理在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等
64、推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等
65、定理一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半
66、推論1同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等
67、推論2半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的`弦是直徑
68、推論3如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形
69、定理圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角
70、①直線L和⊙O相交d
②直線L和⊙O相切d=r
③直線L和⊙O相離d>r
71、切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線
72、切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點(diǎn)的半徑
73、推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)
74、推論2經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心
75、切線長(zhǎng)定理從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角
76、圓的外切四邊形的兩組對(duì)邊的和相等
77、弦切角定理弦切角等于它所夾的弧對(duì)的圓周角
78、推論如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等
79、相交弦定理圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長(zhǎng)的積相等
80、推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng)
81、切割線定理從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng)
82、推論從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長(zhǎng)的積相等
83、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上
84、定理相交兩圓的連心線垂直平分兩圓的公共弦
85、定理任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓
初中數(shù)學(xué)常用公式大全7
最簡(jiǎn)根式的條件:最簡(jiǎn)根式三條件,號(hào)內(nèi)不把分母含,冪指(數(shù))根指(數(shù))要互質(zhì),冪指比根指小一點(diǎn)。
特殊點(diǎn)的坐標(biāo)特征:坐標(biāo)平面點(diǎn)(_,y),橫在前來縱在后;(+,+),(-,+),(-,-)和(+,-),四個(gè)象限分前后;_軸上y為0,_為0在y軸。
象限角的平分線:象限角的平分線,坐標(biāo)特征有特點(diǎn),一、三橫縱都相等,二、四橫縱確相反。
平行某軸的直線:平行某軸的直線,點(diǎn)的坐標(biāo)有講究,直線平行_軸,縱坐標(biāo)相等橫不同;直線平行于y軸,點(diǎn)的橫坐標(biāo)仍照舊。
對(duì)稱點(diǎn)的坐標(biāo):對(duì)稱點(diǎn)坐標(biāo)要記牢,相反數(shù)位置莫混淆,_軸對(duì)稱y相反,y軸對(duì)稱,_前面添負(fù)號(hào);原點(diǎn)對(duì)稱最好記,橫縱坐標(biāo)變符號(hào)。
自變量的取值范圍:分式分母不為零,偶次根下負(fù)不行;零次冪底數(shù)不為零,整式、奇次根全能行。
函數(shù)圖象的移動(dòng)規(guī)律:若把一次函數(shù)解析式寫成y=k(_+0)+b,二次函數(shù)的解析式寫成y=a(_+h)2+k的形式,則可用下面的口訣“左右平移在括號(hào),上下平移在末稍,左正右負(fù)須牢記,上正下負(fù)錯(cuò)不了”。
一次函數(shù)的圖象與性質(zhì)的口訣:一次函數(shù)是直線,圖象經(jīng)過三象限;正比例函數(shù)更簡(jiǎn)單,經(jīng)過原點(diǎn)一直線;兩個(gè)系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與y軸來相見,k為正來右上斜,_增減y增減;k為負(fù)來左下展,變化規(guī)律正相反;k的絕對(duì)值越大,線離橫軸就越遠(yuǎn)。
二次函數(shù)的圖象與性質(zhì)的口訣:二次函數(shù)拋物線,圖象對(duì)稱是關(guān)鍵;開口、頂點(diǎn)和交點(diǎn),它們確定圖象現(xiàn);開口、大小由a斷,c與y軸來相見,b的符號(hào)較特別,符號(hào)與a相關(guān)聯(lián);頂點(diǎn)位置先找見,y軸作為參考線,左同右異中為0,牢記心中莫混亂;頂點(diǎn)坐標(biāo)最重要,一般式配方它就現(xiàn),橫標(biāo)即為對(duì)稱軸,縱標(biāo)函數(shù)最值見.若求對(duì)稱軸位置,符號(hào)反,一般、頂點(diǎn)、交點(diǎn)式,不同表達(dá)能互換。
反比例函數(shù)的圖象與性質(zhì)的口訣:反比例函數(shù)有特點(diǎn),雙曲線相背離得遠(yuǎn);k為正,圖在一、三(象)限,k為負(fù),圖在二、四(象)限;圖在一、三函數(shù)減,兩個(gè)分支分別減.圖在二、四正相反,兩個(gè)分支分別增;線越長(zhǎng)越近軸,永遠(yuǎn)與軸不沾邊。
巧記三角函數(shù)定義:初中所學(xué)的三角函數(shù)有正弦、余弦、正切、余切,它們實(shí)際是直角三角形的邊的`比值,可以把兩個(gè)字用/隔開,再用下面的。
一句話記定義:一位不高明的廚子教徒弟殺魚,說了這么一句話:“正對(duì)魚磷(余鄰)直刀切.”正:正弦或正切,對(duì):對(duì)邊即正是對(duì);余:余弦或余弦,鄰:鄰邊即余是鄰;切是直角邊。
三角函數(shù)的增減性:正增余減。
特殊三角函數(shù)值記憶:首先記住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子記口訣“123,321,三九二十七”既可。
平行四邊形的判定:要證平行四邊形,兩個(gè)條件才能行,一證對(duì)邊都相等,或證對(duì)邊都平行,一組對(duì)邊也可以,必須相等且平行.對(duì)角線,是個(gè)寶,互相平分“跑不了”,對(duì)角相等也有用,“兩組對(duì)角”才能成。
梯形問題的輔助線:移動(dòng)梯形對(duì)角線,兩腰之和成一線;平行移動(dòng)一條腰,兩腰同在“△”現(xiàn);延長(zhǎng)兩腰交一點(diǎn),“△”中有平行線;作出梯形兩高線,矩形顯示在眼前;已知腰上一中線,莫忘作出中位線。
添加輔助線歌:輔助線,怎么添?找出規(guī)律是關(guān)鍵,題中若有角(平)分線,可向兩邊作垂線;線段垂直平分線,引向兩端把線連,三角形兩邊中點(diǎn),連接則成中位線;三角形中有中線,延長(zhǎng)中線翻一番。
圓的證明歌:圓的證明不算難,常把半徑直徑連;有弦可作弦心距,它定垂直平分弦;直徑是圓最大弦,直圓周角立上邊,它若垂直平分弦,垂徑、射影響耳邊;還有與圓有關(guān)角,勿忘相互有關(guān)聯(lián),圓周、圓心、弦切角,細(xì)找關(guān)系把線連.同弧圓周角相等,證題用它最多見,圓中若有弦切角,夾弧找到就好辦;圓有內(nèi)接四邊形,對(duì)角互補(bǔ)記心間,外角等于內(nèi)對(duì)角,四邊形定內(nèi)接圓;直角相對(duì)或共弦,試試加個(gè)輔助圓;若是證題打轉(zhuǎn)轉(zhuǎn),四點(diǎn)共圓可解難;要想證明圓切線,垂直半徑過外端,直線與圓有共點(diǎn),證垂直來半徑連,直線與圓未給點(diǎn),需證半徑作垂線;四邊形有內(nèi)切圓,對(duì)邊和等是條件;如果遇到圓與圓,弄清位置很關(guān)鍵,兩圓相切作公切,兩圓相交連公弦.
圓中比例線段:遇等積,改等比,橫找豎找定相似;不相似,別生氣,等線等比來代替,遇等比,改等積,引用射影和圓冪,平行線,轉(zhuǎn)比例,兩端各自找聯(lián)系。
正多邊形訣竅歌:份相等分割圓,n值必須大于三,依次連接各分點(diǎn),內(nèi)接正n邊形在眼前.經(jīng)過分點(diǎn)做切線,切線相交n個(gè)點(diǎn).n個(gè)交點(diǎn)做頂點(diǎn),外切正n邊形便出現(xiàn).正n邊形很美觀,它有內(nèi)接、外切圓,內(nèi)接、外切都唯一,兩圓還是同心圓,它的圖形軸對(duì)稱,n條對(duì)稱軸都過圓心點(diǎn),如果n值為偶數(shù),中心對(duì)稱很方便.正n邊形做計(jì)算,邊心距、半徑是關(guān)鍵,內(nèi)切、外接圓半徑,邊心距、半徑分別換,分成直角三角形2n個(gè)整,依此計(jì)算便簡(jiǎn)單。
函數(shù)學(xué)習(xí)口決:正比例函數(shù)是直線,圖象一定過原點(diǎn),k的正負(fù)是關(guān)鍵,決定直線的象限,負(fù)k經(jīng)過二四限,_增大y在減,上下平移k不變,由引得到一次線,向上加b向下減,圖象經(jīng)過三個(gè)限,兩點(diǎn)決定一條線,選定系數(shù)是關(guān)鍵。
反比例函數(shù)雙曲線:待定只需一個(gè)點(diǎn),正k落在一三限,_增大y在減,圖象上面任意點(diǎn),矩形面積都不變,對(duì)稱軸是角分線,_、y的順序可交換。
二次函數(shù)拋物線:選定需要三個(gè)點(diǎn),a的正負(fù)開口判,c的大小y軸看,△的符號(hào)最簡(jiǎn)便,_軸上數(shù)交點(diǎn),a、b同號(hào)軸左邊,拋物線平移a不變,頂點(diǎn)牽著圖象轉(zhuǎn),三種形式可變換,配方法作用最關(guān)鍵。
初中數(shù)學(xué)常用公式大全8
輔助角公式:
Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中
sint=B/(A^2+B^2)^(1/2)
cost=A/(A^2+B^2)^(1/2)
tant=B/A
Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B
初中數(shù)學(xué)正方形定理公式
正方形定理公式
正方形的特征:
①正方形的四邊相等;
②正方形的四個(gè)角都是直角;
③正方形的兩條對(duì)角線相等,且互相垂直平分,每一條對(duì)角線平分一組對(duì)角;
正方形的判定:
①有一個(gè)角是直角的菱形是正方形;
②有一組鄰邊相等的矩形是正方形。
希望上面對(duì)正方形定理公式知識(shí)的講解學(xué)習(xí),同學(xué)們都能很好的`掌握,相信同學(xué)們會(huì)取得很好的成績(jī)的哦。
初中數(shù)學(xué)平行四邊形定理公式
平行四邊形
平行四邊形的性質(zhì):
①平行四邊形的對(duì)邊相等;
②平行四邊形的對(duì)角相等;
③平行四邊形的對(duì)角線互相平分;
初中數(shù)學(xué)常用公式大全9
時(shí)間單位換算
1世紀(jì)=100年1年=12月
大月(31天)有:135781012月
小月(30天)的有:46911月
平年2月28天,閏年2月29天
平年全年365天,閏年全年366天
1日=24小時(shí)1時(shí)=60分
1分=60秒1時(shí)=3600秒
重量單位換算
1噸=1000千克
1千克=1000克
1千克=1公斤
人民幣單位換算
1元=10角
1角=10分
1元=100分
體(容)積單位換算
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方分米=1升
1立方厘米=1毫升
1立方米=1000升
面積單位換算
1平方千米=100公頃
1公頃=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米
長(zhǎng)度單位換算
1千米=1000米1米=10分米
1分米=10厘米1米=100厘米
1厘米=10毫米
和差問題的公式
(和+差)÷2=大數(shù)
(和-差)÷2=小數(shù)
和倍問題
和÷(倍數(shù)-1)=小數(shù)
小數(shù)_倍數(shù)=大數(shù)
(或者和-小數(shù)=大數(shù))
利潤(rùn)與折扣問題
利潤(rùn)=售出價(jià)-成本
利潤(rùn)率=利潤(rùn)÷成本_100%=(售出價(jià)÷成本-1)_100%
漲跌金額=本金_漲跌百分比
折扣=實(shí)際售價(jià)÷原售價(jià)_100%(折扣
利息=本金_利率_時(shí)間
稅后利息=本金_利率_時(shí)間_(1-20%)
濃度問題
溶質(zhì)的重量+溶劑的重量=溶液的重量
溶質(zhì)的重量÷溶液的重量_100%=濃度
溶液的重量_濃度=溶質(zhì)的重量
溶質(zhì)的重量÷濃度=溶液的重量
流水問題
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2
追及問題
追及距離=速度差_追及時(shí)間
追及時(shí)間=追及距離÷速度差
速度差=追及距離÷追及時(shí)間
相遇問題
相遇路程=速度和_相遇時(shí)間
相遇時(shí)間=相遇路程÷速度和
速度和=相遇路程÷相遇時(shí)間
盈虧問題
(盈+虧)÷兩次分配量之差=參加分配的份數(shù)
(大盈-小盈)÷兩次分配量之差=參加分配的份數(shù)
(大虧-小虧)÷兩次分配量之差=參加分配的份數(shù)
植樹問題
1.非封閉線路上的.植樹問題主要可分為以下三種情形:
⑴如果在非封閉線路的兩端都要植樹,那么:
株數(shù)=段數(shù)+1=全長(zhǎng)÷株距-1
全長(zhǎng)=株距_(株數(shù)-1)
株距=全長(zhǎng)÷(株數(shù)-1)
⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那么:
株數(shù)=段數(shù)=全長(zhǎng)÷株距
全長(zhǎng)=株距_株數(shù)
株距=全長(zhǎng)÷株數(shù)
⑶如果在非封閉線路的兩端都不要植樹,那么:
株數(shù)=段數(shù)-1=全長(zhǎng)÷株距-1
全長(zhǎng)=株距_(株數(shù)+1)
株距=全長(zhǎng)÷(株數(shù)+1)
2.封閉線路上的植樹問題的數(shù)量關(guān)系如下
株數(shù)=段數(shù)=全長(zhǎng)÷株距
全長(zhǎng)=株距_株數(shù)
株距=全長(zhǎng)÷株數(shù)
差倍問題
差÷(倍數(shù)-1)=小數(shù)
小數(shù)_倍數(shù)=大數(shù)
(或小數(shù)+差=大數(shù))
小學(xué)數(shù)學(xué)圖形計(jì)算公式
1.正方形C周長(zhǎng)S面積a邊長(zhǎng)周長(zhǎng)=邊長(zhǎng)_4C=4a面積=邊長(zhǎng)_邊長(zhǎng)S=a_a
2.正方體V:體積a:棱長(zhǎng)表面積=棱長(zhǎng)_棱長(zhǎng)_6S表=a_a_6體積=棱長(zhǎng)_棱長(zhǎng)_棱長(zhǎng)V=a_a_a
3.長(zhǎng)方形C周長(zhǎng)S面積a邊長(zhǎng)周長(zhǎng)=(長(zhǎng)+寬)_2C=2(a+b)面積=長(zhǎng)_寬S=ab
4.長(zhǎng)方體V:體積s:面積a:長(zhǎng)b:寬h:高(1)表面積(長(zhǎng)_寬+長(zhǎng)_高+寬_高)_2S=2(ab+ah+bh)(2)體積=長(zhǎng)_寬_高V=abh
5.三角形s面積a底h高面積=底_高÷2s=ah÷2三角形高=面積_2÷底三角形底=面積_2÷高
6.平行四邊形s面積a底h高面積=底_高s=ah
7.梯形s面積a上底b下底h高面積=(上底+下底)_高÷2s=(a+b)_h÷2
8.圓形S面積C周長(zhǎng)∏d=直徑r=半徑(1)周長(zhǎng)=直徑_∏=2_∏_半徑C=∏d=2∏r(2)面積=半徑_半徑_∏
9.圓柱體v:體積h:高s;底面積r:底面半徑c:底面周長(zhǎng)(1)側(cè)面積=底面周長(zhǎng)_高(2)表面積=側(cè)面積+底面積_2(3)體積=底面積_高(4)體積=側(cè)面積÷2_半徑
10.圓錐體v:體積h:高s;底面積r:底面半徑體積=底面積_高÷3總數(shù)÷總份數(shù)=平均數(shù)
單位換算
(1)1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米
(2)1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米
(3)1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米
(4)1噸=1000千克1千克=1000克=1公斤=1市斤
(5)1公頃=10000平方米1畝=666.666平方米
(6)1升=1立方分米=1000毫升1毫升=1立方厘米
1.
每份數(shù)_份數(shù)=總數(shù)
總數(shù)÷每份數(shù)=份數(shù)
總數(shù)÷份數(shù)=每份數(shù)
2
1倍數(shù)_倍數(shù)=幾倍數(shù)
幾倍數(shù)÷1倍數(shù)=倍數(shù)
幾倍數(shù)÷倍數(shù)=1倍數(shù)
3
速度_時(shí)間=路程
路程÷速度=時(shí)間
路程÷時(shí)間=速度
4
單價(jià)_數(shù)量=總價(jià)
總價(jià)÷單價(jià)=數(shù)量
總價(jià)÷數(shù)量=單價(jià)
5
工作效率_工作時(shí)間=工作總量
工作總量÷工作效率=工作時(shí)間
工作總量÷工作時(shí)間=工作效率
6
加數(shù)+加數(shù)=和
和-一個(gè)加數(shù)=另一個(gè)加數(shù)
7
被減數(shù)-減數(shù)=差
被減數(shù)-差=減數(shù)
差+減數(shù)=被減數(shù)
8
因數(shù)_因數(shù)=積
積÷一個(gè)因數(shù)=另一個(gè)因數(shù)
9
被除數(shù)÷除數(shù)=商
被除數(shù)÷商=除數(shù)
商_除數(shù)=被除數(shù)
初中數(shù)學(xué)常用公式大全10
梯形中位線定理
梯形的中位線平行于兩底,并且等于兩底和的一半L=(a+b)÷2S=L_h
(1)比例的基本性質(zhì)如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d
(2)合比性質(zhì)如果a/b=c/d,那么(a±b)/b=(c±d)/d
(3)等比性質(zhì)如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b
平行線分線段成比例定理三條平行線截兩條直線,所得的`對(duì)應(yīng)線段成比例
推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長(zhǎng)線),所得的對(duì)應(yīng)線段成比例
定理如果一條直線截三角形的兩邊(或兩邊的延長(zhǎng)線)所得的對(duì)應(yīng)線段成比例,那么這條直線平行于三角形的第三邊
平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對(duì)應(yīng)成比例
看過梯形中位線定理,聰明的同學(xué)都知道梯形的中位線平行于兩底,并且等于兩底和的一半了吧。
初中數(shù)學(xué)常用公式大全11
平方差公式:a^2;-b^2;=(a+b)(a-b);
完全平方公式:a^2;±2ab+b^2;=(a±b)^2;;
注意:能運(yùn)用完全平方公式分解因式的`多項(xiàng)式必須是三項(xiàng)式,其中有兩項(xiàng)能寫成兩個(gè)數(shù)(或式)的平方和的形式,另一項(xiàng)是這兩個(gè)數(shù)(或式)的積的2倍。
立方和公式:a^3;+b^3;=(a+b)(a^2;-ab+b^2;);
立方差公式:a^3;-b^3;=(a-b)(a^2;+ab+b^2;);
完全立方公式:a^3;±3a^2;b+3ab^2;±b^3;=(a±b)^3;.
其他公式:(1)a^3;+b^3;+c^3;+3abc=(a+b+c)(a^2;+b^2;+c^2;-ab-bc-ca)
例如:a^2;+4ab+4b^2;=(a+2b)^
初中數(shù)學(xué)常用公式大全12
1過兩點(diǎn)有且只有一條直線
2兩點(diǎn)之間線段最短
3同角或等角的補(bǔ)角相等
4同角或等角的余角相等
5過一點(diǎn)有且只有一條直線和已知直線垂直
6直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短
7平行公理經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行
8如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9同位角相等,兩直線平行
10內(nèi)錯(cuò)角相等,兩直線平行
11同旁內(nèi)角互補(bǔ),兩直線平行
12兩直線平行,同位角相等
13兩直線平行,內(nèi)錯(cuò)角相等
14兩直線平行,同旁內(nèi)角互補(bǔ)
15定理三角形兩邊的和大于第三邊
16推論三角形兩邊的差小于第三邊
17三角形內(nèi)角和定理三角形三個(gè)內(nèi)角的和等于180
18推論1直角三角形的兩個(gè)銳角互余
19推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和
20推論3三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角
21全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等
22邊角邊公理(SAS)有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等
23角邊角公理(ASA)有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等
24推論(AAS)有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等
25邊邊邊公理(SSS)有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等
26斜邊、直角邊公理(HL)有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等
27定理1在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等
28定理2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上
29角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合
30等腰三角形的性質(zhì)定理等腰三角形的兩個(gè)底角相等(即等邊對(duì)等角)
31推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊
32等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33推論3等邊三角形的各角都相等,并且每一個(gè)角都等于60
34等腰三角形的判定定理如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊)
35推論1三個(gè)角都相等的三角形是等邊三角形
36推論2有一個(gè)角等于60的等腰三角形是等邊三角形
37在直角三角形中,如果一個(gè)銳角等于30那么它所對(duì)的直角邊等于斜邊的一半
38直角三角形斜邊上的中線等于斜邊上的一半
39定理線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等
40逆定理和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上
41線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合
42定理1關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形
43定理2如果兩個(gè)圖形關(guān)于某直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線
44定理3兩個(gè)圖形關(guān)于某直線對(duì)稱,如果它們的對(duì)應(yīng)線段或延長(zhǎng)線相交,那么交點(diǎn)在對(duì)稱軸上
45逆定理如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱
46勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2
47勾股定理的逆定理如果三角形的三邊長(zhǎng)a、b、c有關(guān)系a^2+b^2=c^2,那么這個(gè)三角形是直角三角形
48定理四邊形的內(nèi)角和等于360
49四邊形的外角和等于360
50多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)180
51推論任意多邊的外角和等于360
52平行四邊形性質(zhì)定理1平行四邊形的對(duì)角相等
53平行四邊形性質(zhì)定理2平行四邊形的對(duì)邊相等
54推論夾在兩條平行線間的.平行線段相等
55平行四邊形性質(zhì)定理3平行四邊形的對(duì)角線互相平分
56平行四邊形判定定理1兩組對(duì)角分別相等的四邊形是平行四邊形
57平行四邊形判定定理2兩組對(duì)邊分別相等的四邊形是平行四邊形
58平行四邊形判定定理3對(duì)角線互相平分的四邊形是平行四邊形
59平行四邊形判定定理4一組對(duì)邊平行相等的四邊形是平行四邊形
60矩形性質(zhì)定理1矩形的四個(gè)角都是直角
61矩形性質(zhì)定理2矩形的對(duì)角線相等
62矩形判定定理1有三個(gè)角是直角的四邊形是矩形
63矩形判定定理2對(duì)角線相等的平行四邊形是矩形
64菱形性質(zhì)定理1菱形的四條邊都相等
65菱形性質(zhì)定理2菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角
66菱形面積=對(duì)角線乘積的一半,即S=(ab)2
67菱形判定定理1四邊都相等的四邊形是菱形
68菱形判定定理2對(duì)角線互相垂直的平行四邊形是菱形
69正方形性質(zhì)定理1正方形的四個(gè)角都是直角,四條邊都相等
70正方形性質(zhì)定理2正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角
71定理1關(guān)于中心對(duì)稱的兩個(gè)圖形是全等的
72定理2關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過對(duì)稱中心,并且被對(duì)稱中心平分
73逆定理如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線都經(jīng)過某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱
74等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個(gè)角相等
75等腰梯形的兩條對(duì)角線相等
76等腰梯形判定定理在同一底上的兩個(gè)角相等的梯形是等腰梯形
77對(duì)角線相等的梯形是等腰梯形
78平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等
79推論1經(jīng)過梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰
80推論2經(jīng)過三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊
81三角形中位線定理三角形的中位線平行于第三邊,并且等于它的一半
82梯形中位線定理梯形的中位線平行于兩底,并且等于兩底和的一半L=(a+b)2S=Lh
83(1)比例的基本性質(zhì)如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d
84(2)合比性質(zhì)如果a/b=c/d,那么(ab)/b=(cd)/d
85(3)等比性質(zhì)如果a/b=c/d=…=m/n(b+d+…+n0),那么(a+c+…+m)/(b+d+…+n)=a/b
86平行線分線段成比例定理三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例
87推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長(zhǎng)線),所得的對(duì)應(yīng)線段成比例
88定理如果一條直線截三角形的兩邊(或兩邊的延長(zhǎng)線)所得的對(duì)應(yīng)線段成比例,那么這條直線平行于三角形的第三邊
89平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對(duì)應(yīng)成比例
90定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長(zhǎng)線)相交,所構(gòu)成的三角形與原三角形相似
91相似三角形判定定理1兩角對(duì)應(yīng)相等,兩三角形相似(ASA)
92直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似
93判定定理2兩邊對(duì)應(yīng)成比例且夾角相等,兩三角形相似(SAS)
94判定定理3三邊對(duì)應(yīng)成比例,兩三角形相似(SSS)
95定理如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似
96性質(zhì)定理1相似三角形對(duì)應(yīng)高的比,對(duì)應(yīng)中線的比與對(duì)應(yīng)角平分線的比都等于相似比
97性質(zhì)定理2相似三角形周長(zhǎng)的比等于相似比
98性質(zhì)定理3相
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年戊二酮苯項(xiàng)目合作計(jì)劃書
- 2024年射頻同軸電纜組件項(xiàng)目建議書
- ?一年級(jí)小學(xué)生讀書筆記(十篇)
- Tetradecane-Standard-生命科學(xué)試劑-MCE
- Sulcardine-hydrochloride-生命科學(xué)試劑-MCE
- 2024-2025學(xué)年新教材高中化學(xué)第三章晶體結(jié)構(gòu)與性質(zhì)3.1金屬晶體教案新人教版選擇性必修2
- 2024-2025學(xué)年新教材高中數(shù)學(xué)第3章函數(shù)的概念與性質(zhì)3.2.1單調(diào)性與最大小值鞏固練習(xí)含解析新人教A版必修第一冊(cè)
- 2024年高考化學(xué)二輪復(fù)習(xí)題型解讀五物質(zhì)結(jié)構(gòu)與性質(zhì)解題指導(dǎo)含解析
- 統(tǒng)考版2025屆高考英語一輪復(fù)習(xí)必修3Unit9Wheels課時(shí)提能練含解析北師大版
- 2025版高考物理一輪復(fù)習(xí)第十二章熱學(xué)第3講熱力學(xué)定律與能量守恒定律學(xué)案新人教版
- 02S515排水檢查井圖集
- 走進(jìn)魚類世界智慧樹知到答案2024年中國(guó)海洋大學(xué)
- 代賣商品合同協(xié)議書
- 十字相乘法解一元二次方程練習(xí)100題及答案
- 中外合作辦學(xué)規(guī)劃方案
- 廠房屋頂光伏分布式發(fā)電項(xiàng)目建議書
- 2024年人教版初一道德與法治上冊(cè)期中考試卷(附答案)
- 2024年第九屆“鵬程杯”六年級(jí)語文邀請(qǐng)賽試卷(復(fù)賽)
- 國(guó)開2024年《建筑結(jié)構(gòu)#》形考作業(yè)1-4答案
- DL-T1475-2015電力安全工器具配置與存放技術(shù)要求
- 漏檢分析改善措施
評(píng)論
0/150
提交評(píng)論