版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
專題06五大??枷嗨颇P鸵弧ⅰ局R(shí)回顧】模型一:A字模型模型二:8字模型模型三:子母模型(射影定理)模型四:一線三等角模型模型五:手拉手模型(旋轉(zhuǎn)模型)二、【考點(diǎn)類型】考點(diǎn)1:A字模型典例1:(2021秋·安徽安慶·九年級(jí)安慶市石化第一中學(xué)校考期中)圖,SKIPIF1<0,點(diǎn)H在BC上,AC與BD交于點(diǎn)G,AB=2,CD=3,求GH的長(zhǎng).【答案】SKIPIF1<0【分析】根據(jù)平行線分線段成比例定理,由SKIPIF1<0,可證△CGH∽△CAB,由性質(zhì)得出SKIPIF1<0,由SKIPIF1<0,可證△BGH∽△BDC,由性質(zhì)得出SKIPIF1<0,將兩個(gè)式子相加,即可求出GH的長(zhǎng).【詳解】解:∵SKIPIF1<0,∴∠A=∠HGC,∠ABC=∠GHC,∴△CGH∽△CAB,∴SKIPIF1<0,∵SKIPIF1<0,∴∠D=∠HGB,∠DCB=∠GHB,△BGH∽△BDC,∴SKIPIF1<0,∴SKIPIF1<0,∵AB=2,CD=3,∴SKIPIF1<0,解得:GH=SKIPIF1<0.【點(diǎn)睛】本題考查了相似三角形的判定和性質(zhì),平行線性質(zhì),熟練掌握相似三角形的判定和性質(zhì)是解題的關(guān)鍵.【變式1】(2022·廣東深圳·深圳市華勝實(shí)驗(yàn)學(xué)校??家荒#┤鐖D,在⊙O中,SKIPIF1<0,CD⊥AB于點(diǎn)F,交⊙O于點(diǎn)D,AO的延長(zhǎng)線交CD于點(diǎn)E.(1)求證:AE⊥BC;(2)求證:DF=EF;(3)若SKIPIF1<0,求SKIPIF1<0的值.【答案】(1)見(jiàn)解析(2)見(jiàn)解析(3)SKIPIF1<0【分析】(1)根據(jù)弦與圓周角的關(guān)系和等腰三角形的性質(zhì)可證得結(jié)論;(2)根據(jù)圓周角定理和平行線的判定與性質(zhì)證得SKIPIF1<0,再根據(jù)等腰三角形的判定與性質(zhì)可證得結(jié)論;(3)證明SKIPIF1<0得到SKIPIF1<0,再證明SKIPIF1<0得到SKIPIF1<0,由已知SKIPIF1<0得到SKIPIF1<0,進(jìn)而求解即可.【詳解】(1)證明:連接SKIPIF1<0,延長(zhǎng)SKIPIF1<0交圓O點(diǎn)M,∵SKIPIF1<0,SKIPIF1<0經(jīng)過(guò)圓心O,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0;(2)證明:連接SKIPIF1<0、SKIPIF1<0,∵SKIPIF1<0∴SKIPIF1<0,∵SKIPIF1<0是圓的直徑,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0;(3)解:∵SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.【點(diǎn)睛】本題考查圓周角定理,相似三角形的判定與性質(zhì),等腰三角形的判定與性質(zhì),全等三角形的判定與性質(zhì),圓周角、弧、弦的關(guān)系等知識(shí),熟練掌握相關(guān)知識(shí)的聯(lián)系與運(yùn)用,正確作出輔助線是解答的關(guān)鍵.【變式2】(2023春·安徽六安·九年級(jí)校聯(lián)考階段練習(xí))如圖,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0平分SKIPIF1<0交SKIPIF1<0于點(diǎn)SKIPIF1<0,SKIPIF1<0的垂直平分線交SKIPIF1<0于點(diǎn)SKIPIF1<0,以點(diǎn)SKIPIF1<0為圓心,以SKIPIF1<0長(zhǎng)為半徑作⊙SKIPIF1<0,交SKIPIF1<0于點(diǎn)SKIPIF1<0.(1)求證:SKIPIF1<0是⊙SKIPIF1<0的切線;(2)已知SKIPIF1<0,SKIPIF1<0,求⊙SKIPIF1<0的半徑.【答案】(1)見(jiàn)解析(2)3【分析】(1)連接SKIPIF1<0,由垂直平分線的性質(zhì)可知,SKIPIF1<0,易知SKIPIF1<0經(jīng)過(guò)點(diǎn)SKIPIF1<0,由SKIPIF1<0平分SKIPIF1<0,可知SKIPIF1<0,由SKIPIF1<0,可知SKIPIF1<0,SKIPIF1<0,進(jìn)而得SKIPIF1<0,可知SKIPIF1<0,易知SKIPIF1<0,得證SKIPIF1<0是SKIPIF1<0的切線;(2)由(1)易證SKIPIF1<0,可得SKIPIF1<0.設(shè)SKIPIF1<0的半徑為SKIPIF1<0,則SKIPIF1<0,解出方程即可得SKIPIF1<0的半徑.【詳解】(1)證明:連接SKIPIF1<0,SKIPIF1<0的垂直平分線交SKIPIF1<0于點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0經(jīng)過(guò)點(diǎn)SKIPIF1<0,SKIPIF1<0平分SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的切線;(2)解:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.設(shè)SKIPIF1<0的半徑為SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0(舍去),經(jīng)檢驗(yàn),SKIPIF1<0是原分式方程的解,故SKIPIF1<0的半徑為3.【點(diǎn)睛】本題考查切線的判定,相似三角形的判定及性質(zhì),通過(guò)作輔助線,與圓心相連是解決問(wèn)題的關(guān)鍵.【變式3】(2023·全國(guó)·九年級(jí)專題練習(xí))如圖,在SKIPIF1<0中,SKIPIF1<0,D是SKIPIF1<0上一點(diǎn),點(diǎn)E在SKIPIF1<0上,連接SKIPIF1<0交于點(diǎn)F,若SKIPIF1<0,則SKIPIF1<0=__________.【答案】2【分析】過(guò)D作SKIPIF1<0垂直SKIPIF1<0于H點(diǎn),過(guò)D作SKIPIF1<0交BC于G點(diǎn),先利用解直角三角形求出SKIPIF1<0的長(zhǎng),其次利用SKIPIF1<0,求出SKIPIF1<0的長(zhǎng),得出SKIPIF1<0的長(zhǎng),最后利用SKIPIF1<0求出SKIPIF1<0的長(zhǎng),最后得出答案.【詳解】解:如圖:過(guò)D作SKIPIF1<0垂直SKIPIF1<0于H點(diǎn),過(guò)D作SKIPIF1<0交SKIPIF1<0于G點(diǎn),∵在SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,∴在等腰直角三角形SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,
又∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,又SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,故答案為:2.【點(diǎn)睛】本題考查勾股定理,等腰直角三角形性質(zhì)及相似三角形的判定與性質(zhì)綜合,解題關(guān)鍵在于正確做出輔助線,利用相似三角形的性質(zhì)得出對(duì)應(yīng)邊成比例求出答案.考點(diǎn)2:8字模型典例2:(2021秋·重慶·九年級(jí)校聯(lián)考期末)如圖SKIPIF1<0與SKIPIF1<0交于SKIPIF1<0,且SKIPIF1<0.(1)求證:SKIPIF1<0∽SKIPIF1<0.(2)若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0的長(zhǎng).【答案】(1)證明見(jiàn)解析;(2)SKIPIF1<0.【分析】(1)根據(jù)相似三角形的判定解答即可;(2)因?yàn)镾KIPIF1<0∽SKIPIF1<0,根據(jù)相似三角形的性質(zhì)可知SKIPIF1<0,代入數(shù)據(jù)解答即可.【詳解】證明:(1)SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0∽SKIPIF1<0;(2)SKIPIF1<0SKIPIF1<0∽SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0.【點(diǎn)睛】本題考查了相似三角形的判定和性質(zhì),掌握相似三角形的性質(zhì)是解題的關(guān)鍵.【變式1】39.(2021春·全國(guó)·九年級(jí)專題練習(xí))已知:如圖,在△ABC中,點(diǎn)D、E分別在邊AB、AC上,DE∥BC,點(diǎn)F在邊AB上,BC2=BF?BA,CF與DE相交于點(diǎn)G.(1)求證:DF?AB=BC?DG;(2)當(dāng)點(diǎn)E為AC中點(diǎn)時(shí),求證:2DF?EG=AF?DG.【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析.【分析】(1)由BC2=BF?BA,∠ABC=∠CBF可判斷△BAC∽△BCF,再由DE∥BC可判斷SKIPIF1<0,所以SKIPIF1<0,然后利用相似三角形的性質(zhì)即可得到結(jié)論;(2)作AH∥BC交CF的延長(zhǎng)線于H,如圖,易得AH∥DE,由點(diǎn)E為AC的中點(diǎn)得AH=2EG,再利用AH∥DG可判定SKIPIF1<0,則根據(jù)相似三角形的性質(zhì)得SKIPIF1<0,然后利用等線段代換即可.【詳解】證明:(1)∵BC2=BF?BA,∴BC:BF=BA:BC,而∠ABC=∠CBF,∴SKIPIF1<0,∵DE∥BC,∴SKIPIF1<0,∴SKIPIF1<0,∴DF:BC=DG:BA,∴DF?AB=BC?DG;(2)作AH∥BC交CF的延長(zhǎng)線于H,如圖,∵DE∥BC,∴AH∥DE,∵點(diǎn)E為AC的中點(diǎn),SKIPIF1<0為SKIPIF1<0的中位線,∴AH=2EG,∵AH∥DG,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,即2DF?EG=AF?DG.【點(diǎn)睛】本題考查了相似三角形的判定與性質(zhì):在判定兩個(gè)三角形相似時(shí),應(yīng)注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用,尋找相似三角形的一般方法是通過(guò)作平行線構(gòu)造相似三角形;在運(yùn)用相似三角形的性質(zhì)時(shí),主要通過(guò)相似比得到線段之間的關(guān)系.【變式2】(2023·山西太原·山西實(shí)驗(yàn)中學(xué)校考一模)如圖所示,在SKIPIF1<0中,兩條弦SKIPIF1<0相交于點(diǎn)E,連接SKIPIF1<0,則下列說(shuō)法中錯(cuò)誤的是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根據(jù)圓周角定理可得SKIPIF1<0,SKIPIF1<0,即可得到SKIPIF1<0,即可得到答案;【詳解】解:由題意可得,∵弧SKIPIF1<0弧SKIPIF1<0,弧SKIPIF1<0弧SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,故選C.【點(diǎn)睛】本題考查圓周角定理及三角形相似的性質(zhì)與判定,解題的關(guān)鍵是熟練掌握?qǐng)A中同弧或等弧所對(duì)的圓周角圓心角相等.考點(diǎn)3:子母模型(射影定理)典例3:(2022·遼寧營(yíng)口·一模)如圖,SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的直徑,SKIPIF1<0為SKIPIF1<0的切線,SKIPIF1<0為切點(diǎn),連接SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0于點(diǎn)SKIPIF1<0,延長(zhǎng)SKIPIF1<0交SKIPIF1<0于點(diǎn)SKIPIF1<0,交SKIPIF1<0于點(diǎn)SKIPIF1<0,交SKIPIF1<0于點(diǎn)SKIPIF1<0,連接SKIPIF1<0.(1)求證:SKIPIF1<0;(2)若SKIPIF1<0半徑為SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0的長(zhǎng).【答案】(1)見(jiàn)解析(2)SKIPIF1<0【分析】(1)SKIPIF1<0是SKIPIF1<0的直徑,SKIPIF1<0為SKIPIF1<0的切線,得SKIPIF1<0,所以SKIPIF1<0,而SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0,即可得SKIPIF1<0;(2)根據(jù)SKIPIF1<0是SKIPIF1<0的直徑,得SKIPIF1<0,根據(jù)勾股定理得SKIPIF1<0,根據(jù)垂徑定理得SKIPIF1<0,證明SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,求出SKIPIF1<0,所以SKIPIF1<0.【詳解】(1)證明:SKIPIF1<0是SKIPIF1<0的直徑,SKIPIF1<0為SKIPIF1<0的切線,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;(2)解:SKIPIF1<0是SKIPIF1<0的直徑,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0即SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0.【點(diǎn)睛】本題考查了切線的性質(zhì)、圓周角定理、垂徑定理、勾股定理及相似三角形的判定和性質(zhì)等,掌握?qǐng)A的切線垂直于過(guò)切點(diǎn)的半徑是解題的關(guān)鍵.【變式1】(2022·陜西西安·西北大學(xué)附中??寄M預(yù)測(cè))如圖,SKIPIF1<0是SKIPIF1<0的內(nèi)接三角形,過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0的切線交SKIPIF1<0的延長(zhǎng)線于點(diǎn)SKIPIF1<0,SKIPIF1<0于點(diǎn)SKIPIF1<0,交SKIPIF1<0于點(diǎn)SKIPIF1<0.(1)求證:SKIPIF1<0;(2)若SKIPIF1<0,SKIPIF1<0,求線段SKIPIF1<0的長(zhǎng).【答案】(1)證明見(jiàn)解析(2)SKIPIF1<0【分析】(1)連接SKIPIF1<0,根據(jù)切線的性質(zhì)可得SKIPIF1<0,再根據(jù)垂徑定理可得結(jié)論;(2)由勾股定理求出SKIPIF1<0的長(zhǎng),證明SKIPIF1<0,由相似三角形的性質(zhì)得出SKIPIF1<0,則可得出答案.【詳解】(1)證明:連接SKIPIF1<0,SKIPIF1<0SKIPIF1<0是SKIPIF1<0的切線,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;(2)解:SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0.【點(diǎn)睛】此題考查了切線的性質(zhì),圓周角定理,勾股定理,垂徑定理,解直角三角形.證明SKIPIF1<0是解此題的關(guān)鍵.【變式2】(2022·江蘇·九年級(jí)專題練習(xí))如圖,在Rt△ABC中,∠ACB=90°,點(diǎn)D在AB上,且SKIPIF1<0=SKIPIF1<0.(1)求證△ACD∽△ABC;(2)若AD=3,BD=2,求CD的長(zhǎng).【答案】(1)見(jiàn)解析;(2)SKIPIF1<0【分析】(1)根據(jù)相似三角形的判定兩邊成比例且?jiàn)A角相等的兩個(gè)三角形相似,即可得出SKIPIF1<0(2)由SKIPIF1<0得SKIPIF1<0,SKIPIF1<0,推出SKIPIF1<0,由相似三角形的性質(zhì)得SKIPIF1<0,即可求出CD的長(zhǎng).【詳解】(1)∵SKIPIF1<0,SKIPIF1<0SKIPIF1<0,∴SKIPIF1<0;(2)∵SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0.【點(diǎn)睛】本題考查相似三角形的判定與性質(zhì),掌握相似三角形的判定定理與性質(zhì)是解題的關(guān)鍵.【變式3】(2021·江蘇無(wú)錫·九年級(jí)專題練習(xí))如圖,在矩形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為矩形SKIPIF1<0對(duì)角線的交點(diǎn),以SKIPIF1<0為圓心,1為半徑作SKIPIF1<0,SKIPIF1<0為SKIPIF1<0上的一個(gè)動(dòng)點(diǎn),連接SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0面積的最大值是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】當(dāng)SKIPIF1<0點(diǎn)移動(dòng)到過(guò)點(diǎn)SKIPIF1<0的直線平行于SKIPIF1<0且與SKIPIF1<0相切時(shí),SKIPIF1<0面積的最大,由于SKIPIF1<0為切點(diǎn),得出SKIPIF1<0垂直于切線,進(jìn)而得出SKIPIF1<0,根據(jù)勾股定理先求得SKIPIF1<0的長(zhǎng),進(jìn)而求得SKIPIF1<0的長(zhǎng),根據(jù)SKIPIF1<0,求得SKIPIF1<0的長(zhǎng),從而求得SKIPIF1<0的長(zhǎng),最后根據(jù)三角形的面積公式即可求得.【詳解】解:當(dāng)SKIPIF1<0點(diǎn)移動(dòng)到過(guò)點(diǎn)SKIPIF1<0的直線平行于SKIPIF1<0且與SKIPIF1<0相切時(shí),SKIPIF1<0面積的最大,如圖,SKIPIF1<0過(guò)SKIPIF1<0的直線是SKIPIF1<0的切線,SKIPIF1<0垂直于切線,延長(zhǎng)SKIPIF1<0交SKIPIF1<0于SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0在矩形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的最大面積SKIPIF1<0,故選:C.【點(diǎn)睛】本題考查了圓的切線的性質(zhì),矩形的性質(zhì),平行線的性質(zhì),勾股定理的應(yīng)用以及三角形相似的判定和性質(zhì),本題的關(guān)鍵是判斷出SKIPIF1<0處于什么位置時(shí)面積最大.考點(diǎn)4:一線三等角模型(重點(diǎn))典例4:(2020秋·寧夏銀川·九年級(jí)校考階段練習(xí))將一副三角尺如圖①擺放,在SKIPIF1<0中,SKIPIF1<0;在SKIPIF1<0中,SKIPIF1<0,點(diǎn)SKIPIF1<0為SKIPIF1<0的中點(diǎn),SKIPIF1<0交SKIPIF1<0于點(diǎn)SKIPIF1<0,SKIPIF1<0經(jīng)過(guò)點(diǎn)SKIPIF1<0.(1)求SKIPIF1<0的度數(shù);(2)如圖②,將SKIPIF1<0繞點(diǎn)SKIPIF1<0順時(shí)針?lè)较蛐D(zhuǎn)角SKIPIF1<0(SKIPIF1<0),此時(shí)的等腰直角三角尺記為SKIPIF1<0,SKIPIF1<0交SKIPIF1<0于點(diǎn)SKIPIF1<0,SKIPIF1<0交SKIPIF1<0于點(diǎn)SKIPIF1<0,試判斷SKIPIF1<0的值是否隨著SKIPIF1<0的變化而變化?如果不變,請(qǐng)求出SKIPIF1<0的值;反之,請(qǐng)說(shuō)明理由.【答案】(1)30°;(2)不變,SKIPIF1<0.【分析】(1)根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得SKIPIF1<0,根據(jù)等邊對(duì)等角求出SKIPIF1<0,再求出SKIPIF1<0,再根據(jù)SKIPIF1<0計(jì)算即可得解;(2)先證明SKIPIF1<0,再根據(jù)兩組角對(duì)應(yīng)相等,兩三角形相似判斷出SKIPIF1<0∽SKIPIF1<0,再根據(jù)相似三角形對(duì)應(yīng)邊成比例可得SKIPIF1<0為定值,再根據(jù)特殊角三角函數(shù)值求解即可.【詳解】解:(1)如圖①,SKIPIF1<0,點(diǎn)SKIPIF1<0為SKIPIF1<0的中點(diǎn),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;(2)如圖②,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是等邊三角形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0的值不隨著SKIPIF1<0的變化而變化,是定值SKIPIF1<0.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì),相似三角形的判定與性質(zhì),直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),熟記各性質(zhì)并判斷出相似三角形是解題的關(guān)鍵,也是本題的難點(diǎn).【變式1】(2023春·廣東佛山·九年級(jí)??茧A段練習(xí))如圖,在等邊△ABC中,P為BC上一點(diǎn),D為AC上一點(diǎn),且∠APD=60°,2BP=3CD,BP=1.(1)求證△ABP∽△PCD;(2)求△ABC的邊長(zhǎng).【答案】(1)證明見(jiàn)解析;(2)3.【分析】(1)由△ABC是等邊三角形,證明∠B=∠C=60°,再利用平角的定義與三角形的內(nèi)角和定理證明:∠BPA=∠PDC,從而可得結(jié)論;(2)由SKIPIF1<0,先求解SKIPIF1<0,設(shè)SKIPIF1<0,再利用相似三角形的性質(zhì)可得:SKIPIF1<0,列方程,解方程即可得到答案.【詳解】證明:(1)∵△ABC是等邊三角形,∴AB=BC=AC,∠B=∠C=60°,∵∠BPA+∠APD+∠DPC=180°且∠APD=60°,∴∠BPA+∠DPC=120°∵∠DPC+∠C+∠PDC=180°,∴∠DPC+∠PDC=120°,∴∠BPA=∠PDC,∴△ABP∽△PCD;(2)∵2BP=3CD,且BP=1,∴SKIPIF1<0,∵△ABP∽△PCDSKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0SKIPIF1<0經(jīng)檢驗(yàn):SKIPIF1<0是原方程的解,所以三角形SKIPIF1<0的邊長(zhǎng)為:3.【點(diǎn)睛】本題考查的是等邊三角形的性質(zhì),相似三角形的判定與性質(zhì),分式方程的解法,掌握三角形的判定及利用相似三角形的性質(zhì)解決問(wèn)題是解題的關(guān)鍵.【變式2】(2023·全國(guó)·九年級(jí)專題練習(xí))如圖,四邊形SKIPIF1<0是矩形,點(diǎn)P是對(duì)角線AC上一動(dòng)點(diǎn)(不與A、C重合),連接SKIPIF1<0,過(guò)點(diǎn)P作SKIPIF1<0,交SKIPIF1<0于點(diǎn)E,已知SKIPIF1<0,SKIPIF1<0.設(shè)SKIPIF1<0的長(zhǎng)為x.(1)SKIPIF1<0___________;當(dāng)SKIPIF1<0時(shí),求SKIPIF1<0的值;(2)試探究:SKIPIF1<0是否是定值?若是,請(qǐng)求出這個(gè)值;若不是,請(qǐng)說(shuō)明理由;(3)當(dāng)SKIPIF1<0是等腰三角形時(shí),請(qǐng)求出SKIPIF1<0的值.【答案】(1)4,SKIPIF1<0(2)是,SKIPIF1<0(3)SKIPIF1<0或4【分析】(1)作SKIPIF1<0于SKIPIF1<0交SKIPIF1<0于SKIPIF1<0.由SKIPIF1<0,推出SKIPIF1<0,只要求出SKIPIF1<0、SKIPIF1<0即可解決問(wèn)題;(2)結(jié)論:SKIPIF1<0的值為定值.證明方法類似(1);(3)連接SKIPIF1<0交SKIPIF1<0于SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,代入數(shù)據(jù)求得SKIPIF1<0,進(jìn)而即可求解.【詳解】(1)解:作SKIPIF1<0于SKIPIF1<0交SKIPIF1<0于SKIPIF1<0.SKIPIF1<0四邊形SKIPIF1<0是矩形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,故答案為4,SKIPIF1<0.(2)結(jié)論:SKIPIF1<0的值為定值.理由:由SKIPIF1<0,可得SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0;(3)連接SKIPIF1<0交SKIPIF1<0于SKIPIF1<0.SKIPIF1<0,所以只能SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0垂直平分線段SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.綜上所述,SKIPIF1<0的值為SKIPIF1<0.【點(diǎn)睛】本題屬于四邊形綜合題、考查了矩形的性質(zhì)、相似三角形的判定和性質(zhì)、勾股定理以及等腰三角形的構(gòu)成條件等重要知識(shí),同時(shí)還考查了分類討論的數(shù)學(xué)思想,難度較大.【變式3】(2020春·重慶沙坪壩·九年級(jí)重慶八中??茧A段練習(xí))如圖,點(diǎn)SKIPIF1<0是正SKIPIF1<0兩邊上的點(diǎn),將SKIPIF1<0沿直線SKIPIF1<0翻折,點(diǎn)SKIPIF1<0的對(duì)應(yīng)點(diǎn)恰好落在邊SKIPIF1<0上,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的值是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】先證明SKIPIF1<0,再根據(jù)相似三角形的周長(zhǎng)比等于相似比和折疊的性質(zhì)進(jìn)行轉(zhuǎn)化即可求解.【詳解】解:設(shè)AF=x,∵SKIPIF1<0為等邊三角形,∴AC=AB=BC=4x,∠A=∠B=∠C=60°,CF=3x∵SKIPIF1<0翻折得到SKIPIF1<0,∴BD=FD,BE=FE,∠B=∠DFE=60°,∴∠AFD+∠DFE=∠C+∠FEC,∴∠AFD=∠CEF,∴SKIPIF1<0,SKIPIF1<0.故選:D【點(diǎn)睛】本題難度較大,根據(jù)題意找到“一線三等角”相似模型,理解相似三角形的周長(zhǎng)比等于相似比是解題關(guān)鍵.考點(diǎn)5:手拉手模型(重點(diǎn))典例5:(2023春·湖北襄陽(yáng)·九年級(jí)統(tǒng)考階段練習(xí))(1)問(wèn)題探究:如圖1,SKIPIF1<0,SKIPIF1<0均為等邊三角形,連接SKIPIF1<0、SKIPIF1<0,求證:SKIPIF1<0.(2)類比延伸:如圖2,在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,連接SKIPIF1<0、SKIPIF1<0,求證:SKIPIF1<0.(3)拓展遷移:如圖3,在四邊形SKIPIF1<0中,SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,若將線段SKIPIF1<0繞點(diǎn)D按逆時(shí)針?lè)较蛐D(zhuǎn)SKIPIF1<0得到SKIPIF1<0,連接SKIPIF1<0,求線段SKIPIF1<0的長(zhǎng).【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3)SKIPIF1<0【分析】(1)根據(jù)“邊角邊”證明SKIPIF1<0,問(wèn)題得證;(2)根據(jù)含SKIPIF1<0角的直角三角形的性質(zhì)等知識(shí)得到SKIPIF1<0,進(jìn)而證明SKIPIF1<0,即可證明SKIPIF1<0;(3)連接SKIPIF1<0,根據(jù)SKIPIF1<0為等腰直角三角形得到SKIPIF1<0,SKIPIF1<0,根據(jù)SKIPIF1<0繞點(diǎn)D按逆時(shí)針?lè)较蛐D(zhuǎn)SKIPIF1<0得到SKIPIF1<0,得到SKIPIF1<0,SKIPIF1<0,進(jìn)而證明SKIPIF1<0,即可求出SKIPIF1<0.【詳解】解:(1)∵SKIPIF1<0,SKIPIF1<0均為等邊三角形,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0;(2)∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0;(3)如圖③,連接SKIPIF1<0,∵SKIPIF1<0,且SKIPIF1<0,∴SKIPIF1<0為等腰直角三角形.∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0繞點(diǎn)D按逆時(shí)針?lè)较蛐D(zhuǎn)SKIPIF1<0得到SKIPIF1<0,∴SKIPIF1<0為等腰直角三角形,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0.【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì),相似三角形的判定與性質(zhì),等邊三角形的性質(zhì),等腰直角三角形的性質(zhì),含SKIPIF1<0角的直角三角形的性質(zhì),旋轉(zhuǎn)的性質(zhì)等知識(shí),理解特殊三角形的性質(zhì),根據(jù)題意證明三角形全等或相似是解題關(guān)鍵.【變式1】(2021秋·重慶渝北·九年級(jí)統(tǒng)考期末)如圖,在等邊三角形SKIPIF1<0中,點(diǎn)SKIPIF1<0,SKIPIF1<0分別是邊SKIPIF1<0,SKIPIF1<0上的點(diǎn).將SKIPIF1<0沿SKIPIF1<0翻折,點(diǎn)SKIPIF1<0正好落在線段SKIPIF1<0上的點(diǎn)SKIPIF1<0處,使得SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0的長(zhǎng)度為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】由SKIPIF1<0是等邊三角形,SKIPIF1<0=SKIPIF1<0=SKIPIF1<0=60°,由沿DE折疊C落在AB邊上的點(diǎn)F上,SKIPIF1<0,SKIPIF1<0=SKIPIF1<0=60°,CD=DF,CE=EF,由AF:BF=1:2,設(shè)AF=m,BF=2m,AB=3m,設(shè)AD=x,CD=DF=SKIPIF1<0,由BE=2,BC=SKIPIF1<0,可得CE=SKIPIF1<0,可證SKIPIF1<0,利用性質(zhì)SKIPIF1<0,即SKIPIF1<0,解方程即可【詳解】解:∵SKIPIF1<0是等邊三角形,∴SKIPIF1<0=SKIPIF1<0=SKIPIF1<0=60°,∵沿DE折疊C落在AB邊上的點(diǎn)F上,∴SKIPIF1<0,∴SKIPIF1<0=SKIPIF1<0=60°,CD=DF,CE=EF,∵AF:BF=1:2,設(shè)AF=m,BF=2m,AB=3m,設(shè)SKIPIF1<0=x,SKIPIF1<0=DF=SKIPIF1<0,∵BE=2,BC=SKIPIF1<0,∴CE=SKIPIF1<0,∵SKIPIF1<0=SKIPIF1<0,SKIPIF1<0=60°,∴SKIPIF1<0=120°,SKIPIF1<0=120°,∴SKIPIF1<0=SKIPIF1<0,∵SKIPIF1<0=SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0SKIPIF1<0解得:SKIPIF1<0,使等式有意義,∴SKIPIF1<0=SKIPIF1<0,故選擇:A.【點(diǎn)睛】本題考查等邊三角形性質(zhì)和折疊性質(zhì)以及相似三角形的性質(zhì)和判定,主要考查學(xué)生運(yùn)用定理進(jìn)行推理和計(jì)算的能力,題目綜合性比較強(qiáng),有一定的難度.【變式2】(2020·江蘇常州·統(tǒng)考一模)如圖,在平面直角坐標(biāo)系中,△AOB中,∠AOB=90°,∠ABO=30°,頂點(diǎn)A在反比例函y=SKIPIF1<0(x>0)上運(yùn)動(dòng),此時(shí)頂點(diǎn)B也在反比例函數(shù)y=SKIPIF1<0上運(yùn)動(dòng),則m的值為(
)A.-9 B.-12 C.-15 D.-18【答案】A【分析】根據(jù)∠AOB=90°,∠ABO=30°,可求出OA與OB的比,設(shè)出點(diǎn)B的坐標(biāo),再根據(jù)相似三角形的性質(zhì),求出點(diǎn)A的坐標(biāo),可得ab的值,進(jìn)而求出m的值.【詳解】解:過(guò)A、B分別作AM⊥x軸,BN⊥x軸,垂足為M、N,∵∠AOB=90°,∠ABO=30°,∴tan30°=SKIPIF1<0,∵∠BON+∠AOM=90°,∠BON+∠OBN=90°,∴∠OBN=∠AOM,∵∠BNO=∠AMO=90°,∴△BNO∽△OMA,∴SKIPIF1<0,∴設(shè)ON=a,BN=b,則AM=SKIPIF1<0,OM=SKIPIF1<0,∴B(-a,b),A(SKIPIF1<0,SKIPIF1<0),∵點(diǎn)A在反比例函數(shù)y=SKIPIF1<0上,則SKIPIF1<0×SKIPIF1<0=3,∴ab=9,∵點(diǎn)B在反比例函數(shù)y=SKIPIF1<0上,∴-a×b=m=-9,故選A.【點(diǎn)睛】本題考查反比例函數(shù)的圖象和性質(zhì),直角三角形的性質(zhì)、相似三角形的判定和性質(zhì)等知識(shí),求出反比例函數(shù)圖象上點(diǎn)的坐標(biāo)是解答前提的關(guān)鍵.鞏固訓(xùn)練一、單選題1.(2021·山東臨沂·三模)如圖,在△ABC中,DE∥BC,若AE=2,EC=3,則△ADE與△ABC的面積之比為(
)A.4:25 B.2:3 C.4:9 D.2:5【答案】A【分析】根據(jù)相似三角形的判定定理得到△ADE∽△ABC,根據(jù)相似三角形的面積比等于相似比的平方計(jì)算,得到答案.【詳解】解:∵AE=2,EC=3,∴AC=AE+EC=5,∵DESKIPIF1<0BC,∴△ADE∽△ABC,∴SKIPIF1<0,故選:A.【點(diǎn)睛】本題考查的是相似三角形的判定和性質(zhì),掌握相似三角形的面積比等于相似比的平方是解題的關(guān)鍵.2.(2023·全國(guó)·九年級(jí)專題練習(xí))如圖,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0分別交SKIPIF1<0于點(diǎn)G,H,則下列結(jié)論中錯(cuò)誤的是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)平行線分線段成比例和相似三角形的性質(zhì)與判定,進(jìn)行逐一判斷即可.【詳解】解:∵AB∥CD,∴SKIPIF1<0,∴A選項(xiàng)正確,不符合題目要求;∵AE∥DF,∴∠CGE=∠CHD,∠CEG=∠D,∴△CEG∽△CDH,∴SKIPIF1<0,∴SKIPIF1<0,∵AB∥CD,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴B選項(xiàng)正確,不符合題目要求;∵AB∥CD,AE∥DF,∴四邊形AEDF是平行四邊形,∴AF=DE,∵AE∥DF,∴SKIPIF1<0,∴SKIPIF1<0;∴C選項(xiàng)正確,不符合題目要求;∵AE∥DF,∴△BFH∽△BAG,∴SKIPIF1<0,∵AB>FA,∴SKIPIF1<0∴D選項(xiàng)不正確,符合題目要求.故選D.【點(diǎn)睛】本題考查了平行線分線段成比例定理,相似三角形的性質(zhì)和判定的應(yīng)用,能根據(jù)定理得出比例式是解此題的關(guān)鍵.3.(2013·海南·中考真題)直線l1∥l2∥l3,且l1與l2的距離為1,l2與l3的距離為3,把一塊含有45°角的直角三角形如圖放置,頂點(diǎn)A,B,C恰好分別落在三條直線上,AC與直線l2交于點(diǎn)D,則線段BD的長(zhǎng)度為A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.【答案】C【分析】分別過(guò)點(diǎn)A、B、D作AF⊥l3,BE⊥l3,DG⊥l3,先證明△BCE≌△ACF,再證明△CDG∽△CAF,進(jìn)而即可求解.【詳解】解:如圖,分別過(guò)點(diǎn)A、B、D作AF⊥l3,BE⊥l3,DG⊥l3,∵△ABC是等腰直角三角形,∴AC=BC.∵∠EBC+∠BCE=90°,∠BCE+∠ACF=90°,∠ACF+∠CAF=90°,∴∠EBC=∠ACF,∠BCE=∠CAF.在△BCE與△ACF中,∵∠EBC=∠ACF,BC=AC,∠BCE=∠CAF,∴△BCE≌△CAF(ASA).∴CF=BE=3,CE=AF=4.在Rt△ACF中,∵AF=4,CF=3,∴SKIPIF1<0,∵AF⊥l3,DG⊥l3,∴△CDG∽△CAF.∴SKIPIF1<0,解得SKIPIF1<0.在Rt△BCD中,∵SKIPIF1<0,BC=5,∴SKIPIF1<0.故選C.【點(diǎn)睛】本題主要考查全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),勾股定理,掌握相似三角形的判定和性質(zhì),列出比例式是關(guān)鍵.4.(2023·河北秦皇島·統(tǒng)考一模)如圖,在SKIPIF1<0中,SKIPIF1<0,點(diǎn)D為線段SKIPIF1<0上一動(dòng)點(diǎn)(不與點(diǎn)B,C重合),連接SKIPIF1<0,作SKIPIF1<0,SKIPIF1<0交線段SKIPIF1<0于點(diǎn)E.下面是某學(xué)習(xí)小組根據(jù)題意得到的結(jié)論:甲同學(xué):SKIPIF1<0;乙同學(xué):若SKIPIF1<0,則SKIPIF1<0;丙同學(xué):當(dāng)SKIPIF1<0時(shí),D為SKIPIF1<0的中點(diǎn).則下列說(shuō)法正確的是(
)A.只有甲同學(xué)正確 B.乙和丙同學(xué)都正確C.甲和丙同學(xué)正確 D.三個(gè)同學(xué)都正確【答案】D【分析】在SKIPIF1<0中,依據(jù)三角形外角及已知可得SKIPIF1<0,結(jié)合等腰三角形易證SKIPIF1<0;結(jié)合SKIPIF1<0,易證SKIPIF1<0,得到SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),結(jié)合已知求得SKIPIF1<0,易證SKIPIF1<0,依據(jù)等腰三角形“三線合一”得SKIPIF1<0【詳解】解:在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,甲同學(xué)正確;SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,乙同學(xué)正確;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,D為
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 高效授課服務(wù)合同
- 酒店用品招標(biāo)采購(gòu)流程
- 苗木種植購(gòu)銷合同
- 土地使用權(quán)流轉(zhuǎn)協(xié)議書(shū)修改
- 唯一住房保證書(shū)范本
- 智能化船舶監(jiān)控系統(tǒng)招標(biāo)
- 國(guó)內(nèi)購(gòu)銷合同書(shū)版
- 石粉購(gòu)銷合同范本
- 飼料青貯采購(gòu)平臺(tái)
- 優(yōu)化勞務(wù)分包合同制度
- 開(kāi)題報(bào)告基于MSP430單片機(jī)的溫濕度測(cè)量系統(tǒng)設(shè)計(jì)
- 螺栓各部位的英文名稱
- 簡(jiǎn)擺顎式破碎機(jī)設(shè)計(jì)機(jī)械CAD圖紙
- 光伏電站項(xiàng)目建設(shè)各部門(mén)職責(zé)
- 計(jì)價(jià)格[1999]1283號(hào)_建設(shè)項(xiàng)目前期工作咨詢收費(fèi)暫行規(guī)定
- 取向硅鋼冷軋斷帶的原因分析
- 設(shè)備投資評(píng)估分析表-20100205
- 石灰窯烘爐及開(kāi)爐方案
- 復(fù)蘇囊的使用PPT
- 教學(xué)論文】《自制教具應(yīng)用于初中物理有效教學(xué)的研究》課題研究報(bào)告【教師職稱評(píng)定】
- 串宮壓運(yùn)推算表
評(píng)論
0/150
提交評(píng)論